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Abstract

Large-scale vector mapping is the foundation for trans-
portation and urban planning. Most existing mapping meth-
ods are tailored to one specific mapping task, due to task-
specific requirements on shape regularization and topol-
ogy reconstruction. We propose GraphMapper, a unified
framework for end-to-end vector map extraction from satel-
lite images. Our key idea is using primitive graph as
a unified representation of vector maps and formulating
shape regularization and topology reconstruction as prim-
itive graph reconstruction problems that can be solved in
the same framework. Specifically, shape regularization is
modeled as the consistency between primitive directions
and their pairwise relationship. Based on the primitive
graph, we design a learning approach to reconstruct prim-
itive graphs in multiple stages. GraphMapper can fully
explore primitive-wise and pairwise information for shape
regularization and topology reconstruction, resulting im-
proved primitive graph learning capabilities. We empiri-
cally demonstrate the effectiveness of GraphMapper on two
challenging mapping tasks for building footprints and road
networks. With the premise of sharing the majority design of
the architecture and a few task-specific designs, our model
outperforms state-of-the-art methods in both tasks on public
benchmarks. Our code will be publicly available.

1. Introduction
Up-to-date vector maps are essential for navigation and

urban planning. Methods to automatically extract vec-
tor maps from aerial or satellite images have greatly ad-
vanced in recent years. However, state-of-the-art vector
mapping methods are tailored for one specific type of tar-
get [39, 18, 30, 16]. Consequently, multiple models must
be maintained for comprehensive mapping systems, which
increases the burden of model development and limits the
system extensibility.

Designing a unified method for multiple vector mapping
tasks is challenging due to the difficulties in processing mul-
tiple types of geometric primitives. The method must gen-

erate shapes with precise location, well-regularized geome-
try, and correct topology, which are the three fundamental
requirements for vector mapping. However, existing end-
to-end methods either only focus on refining location ac-
curacy [23], or learnable topology reconstruction [39, 34];
end-to-end shape regularization is still under explored.

Shape regularization in vector mapping is essentially re-
ducing the variation of relative relationship between prim-
itives; for example, the angles between line segments of
a building polygon usually share a few distinctive values
(i.e, 0°, 90°, etc.). Conventional methods rely on heuristics-
based rules [10, 1, 31] to generate regularized shapes, which
are not flexible and requires extensive tuning. Recent meth-
ods regularize shapes through contour optimization or de-
formation [16, 25, 12, 10, 39]. However, these methods are
not utilizing global shape structure, which we think is essen-
tial for accurate and flexible shape regularization. None of
these methods are explicitly enforce low variation of primi-
tive relationships.

In this paper, we use primitive graph as a generic repre-
sentation to build a unified framework, GraphMapper, for
multi-type vector mapping. GraphMapper incrementally
learns to refine primitives’ locations and reconstruct their
pairwise relationships. Effective shape regularization and
topology reconstruction are achieved through the relation-
ship classification of pairwise primitives. With our design,
most existing mapping tasks can be converted to image-
based primitive graph reconstruction tasks. As shown in
Fig. 1, GraphMapper is mainly composed of a convo-
lutional visual feature encoder and two primitive learning
structures (PLS) using multi-head attention (MHA) net-
work. We first extract visual features of input image using
a convolutional encoder and sample primitives (i.e., points,
line segments) from the segmentation maps and key points.
Then, we refine the primitives’ coordinates and predict their
geometric directions, which uses a PLS for local and global
shape context modeling. Finally, we use another PLS to
classify the relationships of primitive pairs.

We apply GraphMapper to two typical mapping tasks:
building and road mapping. For building, we find line seg-
ment primitives and their topology from segmentation re-
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sults, and predict inlineness between line segments; the net-
work learns shape regularization by enforcing consistency
between the network predicted angle matrix and pairwise
relationship matrix of line segments. For road, we predict
point primitives and reconstruct road topology by classify-
ing their pairwise connectivity relationship.

By sharing most network components with few task-
specific designs, GraphMapper outperforms state-of-the-art
methods in both tasks in public benchmarks. In summary,
our main contributions are the following:

• We propose a unified learning framework based on
primitive graph, which can be trained end-to-end and
adapt to multi-type vector mapping tasks.

• We propose an adaptive shape regularization module
that learns to balance between shape regularity and lo-
cation accuracy through enforcing internal consistency
of primitive graphs.

• We provide adaptations of our learning framework for
building and road vector mapping, and achieved state-
of-the-art performance on both tasks.

2. Related Works
Unified vector mapping. To the best of our knowl-

edge, PolyMapper [22] is currently the only unified learn-
ing method for vector mapping. PolyMapper uses polygons
as the unified representation for buildings and roads. A
CNN-RNN structure is used to recurrently predict point se-
quences. However, representing roads as polygons leads to
redundant points, and predicting point sequences can easily
introduce geometric errors. In contrast, GraphMapper sup-
ports learning on different primitives, and holistically re-
constructs the topology of sampled primitives.

Building mapping and shape regularization. Build-
ing mapping methods are now focusing on learning vector
results from image inputs, where regularized shape repre-
sentation is often a major concern. Conventional methods
often rely on heuristic rules [1, 31] for shape regularization,
which is limited to simple scenarios and requires extensive
tuning. PolygonRNN and its extensions [9, 2, 22] achieved
end-to-end vector mapping from images by recurrently pre-
dicting point sequences. However, RNN-based methods of-
ten fail to produce regularized shapes due to the lack of
shape optimization design.

[25, 12, 16] try to optimize contours using ACM (Active
Contour Model) [19] guided by learned semantic informa-
tion. Specifically, DSAC [25] and DARNNet [12] regress
the weights of the contour smoothness term based on se-
mantic information for shape generalization, which tends to
generate under-regularized shapes due to inadequate design
in simplified representation; [16] further optimizes bound-
ary skeletons to align with learned frame fields, but still

requires complicated post-processing for shape regulariza-
tion. Instead, PolygonCNN [10] and Polygon Transformer
[23] predict point deformation of segmented contours, in
which the results are regularized implicitly by improving
the accuracy of building vertices; comparatively, our ap-
proach goes one step further by explicitly modeling shape
regularity. Recently, PolyWorld [39] achieved great perfor-
mance by first deforming key points’ coordinates, and then
reconstructing topology through classifying pairwise point
connectivity relationships. Despite that GraphMapper fol-
lows a similar structure, the relationship classification mod-
ule in our framework serves multiple purposes: topology
reconstruction for road mapping, and explicit shape regu-
larization for building mapping.

[40] tried to regularize building footprint segmentation
masks using a GAN loss, which is complementary to our
geometry-based regularization method.

Road mapping and topology reconstruction. Road
mapping methods focus on improving topological correct-
ness for navigation purposes. Various techniques are de-
veloped to improve the connectivity of road segmentation
maps [27, 36, 29, 5, 5, 14]. Some other methods try to
reconstruct road topology from defective segmentation re-
sults. [26] uses a binary decision classifier to predict the
correctness of connections of nearby road endpoints from
their image features, but it does not explore global road
structure or shape prior. Graph-based methods [4, 32, 22]
reconstruct road networks by iterative searching of the next
point in the road graph, using a CNN or CNN-RNN struc-
ture. Shape prior and global road structure is implicitly
modeled in the iterative searching process. Compared to
graph-based methods, our method generates a road graph
in one forward run with all road points available, which al-
lows easier integration of global and local shape contextual
information.

Recently, Sat2Graph [18] achieved state-of-the-art per-
formance by connecting segmented key points along road
direction with carefully designed searching rules. Uni-
formly distributed road points and their directions are pre-
dicted using a multi-task CNN. Several steps of post-
processing are performed to reduce artifacts and false con-
nections. Compared to Sat2Graph, our method learns con-
nectivity end-to-end, without complicated post-processing.

3. GraphMapper
Our main idea is to turn various vector mapping prob-

lems into a unified primitive graph estimation problem.
In the following sections, We will first introduce primi-
tive graph in Section 3.1. Then we explain the design of
GraphMapper’s network architecture in Section 3.2, and
training targets in Section 3.3. Lastly, we provide details
of applying GraphMapper to road and building mapping in
Section 3.4.
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(a) GraphMapper workflow. We use two PLS modules sequentially for primitive refinement and relationship reconstruction. Shape regu-
larization and topology reconstruction are achieved in this process.

(b) The stages of GraphMapper when applied to building and road mapping.

Figure 1: GraphMapper workflow and application to building and road mapping.

3.1. Primitive Graph

A primitive graph is a homogeneous un-directed graph:

G = {V,E}, V ∈ RN×d, E ∈ Z+N×N (1)

where V represents N primitives with d-dimensional coor-
dinates. A point primitive is represented by its image coor-
dinate (x, y); a line segment primitive is represented by the
coordinates of its two endpoints (x1, y1, x2, y2). E is the re-
lationship matrix, in which Eij represents the relationship
between Vi and Vj . Example primitive graph representation
for roads and buildings are shown in Fig. 2. Depending on
the choice of primitives and pairwise relationships, a prim-
itive graph can model various types of targets.

3.2. Network Architecture

The overall structure of GraphMapper is illustrated in
Fig. 1. We reconstruct primitive graphs in three sequential
steps. We first extract initial primitives from input images.
Then, the locations of initial primitives are refined using a
primitive learning structure (PLS). The direction or normal
direction of each primitive is also estimated at this stage.
Lastly, we reconstruct the relationship matrix between pair-
wise primitives using another PLS.

3.2.1 Primitive Detection

We detect primitives by sampling from semantic maps pre-
dicted from input images. Previous methods tried to sam-
ple points from key point heatmap [18, 39]. We found this
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Figure 2: Example primitive graph representations of a road
junction and a building polygon.

method often miss-detect points. Therefore, we sample ad-
ditional key points from semantic segmentation maps.

More specifically, we use an FPN [24] network with a
resnet backbone to encode input image I ∈ R3×H×W

+ into
a multi-scale feature F . Then, we predict a semantic seg-
mentation map Yseg ∈ RS×H×W

+ and a key point heatmap
Ykp ∈ RK×H×W

+ from F using two FCN heads.
To sample point primitives, we first extract local max-

imum points using NMS on all non-background classes of
Yseg and Ykp, resulting S+K−2 of candidate points. Then,
we combine all candidate points and apply another NMS
with category-specific priority scores to remove redundant
points to get the sampled points V ′ ∈ RN×2

+ , so that points
of higher priority categories are kept over lower ones.

We sample line segments by connecting sampled key
points. For polygon structures (i.e., buildings, forests), we
trace contours from segmentation maps, which are then
simplified using the Douglas–Peucker (DP) algorithm [13].
Points of the simplified contours are combined with sam-
pled key points. We project points to their nearest contours
and connect points according to their projections’ sequence
in contour [10]. Note that when the targets are represented
by polygons, this method can accurately derive the relative
sequence between line segments without learning the con-
nectivity between line segments.

3.2.2 Primitive Graph Reconstruction

Given the initialized primitives as input, we first refine the
coordinates of primitives to improve location accuracy and
alleviate the difficulty of relationship learning. Then, we
predict the pairwise relationship of the refined primitives.
As both tasks benefit from shape context information, they
share a common primitive learning structure. Different
from previous methods [39], we reconstruct pairwise rela-
tionships based on refined primitives instead of initial prim-
itives. Using refined primitives can reduce the ambiguity
for relationship recognition and ground truth relationship

generation, which is essential for high-quality primitive re-
lationship reconstruction.

Primitive Learning Structure. The structure of Primi-
tive Learning Structure (PLS) is illustrated in Fig. 1. Given
primitives V and their visual features as input, visual fea-
tures at primitives’ locations are pooled using patch pool-
ing. Patch pooling extracts a small crop of image features
centered at each primitive, and compresses the cropped fea-
tures using a small FCN network. The derived primitive
features hvis are flattened and individually projected using
an MLP (fproj), the result of which is fed into a multi-layer
MHSA module fMHSA [33] together with the positional
encoding of primitive coordinates [8]. MHSA can fuse ge-
ometric and visual information and exchange information
among primitives to generate local and global contextu-
alized primitive features hprims, which are used by MLP
heads to generate output predictions.

Primitive Refinement. We use a PLS with two MLP
heads to predict the coordinate deformation and directions
D ∈ RN×2 (normal direction for points and line direc-
tion for line segments) of input primitives from PLS gen-
erated primitive feature hprims. We get refined primitives
V ′ by adding estimated deformation back to input coordi-
nates. Note that line segments’ direction can also be com-
puted from their coordinates V ′. However, we found net-
work predicted D is more accurate, as it is easier to regress
a direction than adjusting both vertices of a line segment to
achieve the desired angle while staying close to the bound-
ary of segmentation masks.

For direction regression, the discontinuity of rotation an-
gles at 0 and 180° can lead to unstable learning [37] when
naively applying L2 loss on direction angles D. Therefore,
we regress the sine and cosine of a surrogate angle which is
2 times the target angle A as suggested in [37]:

Di = (cos(2Ai), sin(2Ai)). (2)

For each image, the network predicts a two-dimensional
tensor of size N × 2, normalizes it along the dimension to
get D. During inference, we recover the actual direction D′

from the surrogate direction D as (arccosDi/||Di||2)/2.
Primitive Relationship Reconstruction. We input the

refined primitives V ′ and visual feature into another PLS
to predict relationship matrix E. For a pair of point prim-
itives, we extract additional visual features on the line seg-
ment between them using LOI [38] from the visual feature,
Yseg and Ykp. These extracted features are concatenated to-
gether with their point features in hprims to form the point
pair’s feature. For a pair of line segment primitives, we
simply concatenate their features in hprim as the pair’s fea-
ture. For N primitives, we get a relationship feature matrix
Q ∈ Rdr×N×N . The MLP heads in PLS independently
classify each pair’s relationship using their feature in Q.

As only spatially neighboring primitives have a positive
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relationship, the ratio of positive and negative relationships
in relationship matrix E is often strongly biased. Therefore,
only primitive pairs within a spatial distance threshold t are
used for training to balance the positive-to-negative sample
ratio in E.

Shape regularization. Primitive graph allows explicit
representation of shape regularization as the consistency be-
tween primitives V and their relationship matrix E:

Lreg =
∑
i,j,r

Eijr|fprop(Vi, Vj , r)− fprop(V i, V j , r)| (3)

, where fprop computes the desired property between prim-
itives. The term in | · | represents the difference between
computed and desired property between Vi and Vj for re-
lationship category r. V i and V j are the corresponding
ground truth primitives for Vi and Vj . This formulation ex-
plicitly enforces low variation of primitives’ relative prop-
erties. Additionally, by adjusting the strength of regulariza-
tion according to the probability of its relationship type, the
network can learn to balance between shape regularity and
location accuracy.

3.3. GraphMapper Learning

GraphMapper is trained with a linear combination of the
following losses:

(Lseg,Lkp,Loff ,Ldir,Lret,Lreg,Laux) (4)

, which we explain below.
Shape regularization loss Lreg . We enable shape reg-

ularization by training with Lreg. We set fprop in Eq. 3 to

fprop(Di, Dj , r) =

{
cos(2[Di −Dj + 2π)//π]) , r = 1

0 , r = 0
(5)

, which computes the cosine between two line directions.
Here r = 1 means two primitives have a relationship
with fixed relative angles, such as parallel or perpendicu-
lar. r = 0 means no relationship, therefore no regulariza-
tion. Practically, we compute an angle matrix for all line
segment pairs as shown in Fig. 1. Lreg is evaluated using
the angle matrix and relationship matrix.

Relationship loss Lrel. Lrel is a cross-entropy loss ap-
plied to elements in E:

Lrel = − 1

|U |
∑

(i,j)∈U

Ei,j log(Ei,j), (6)

where Ei,j is the ground truth relationship matrix between
primitives V ′

i , V
′
j ) represented in one-hot format. U is the

set of primitive pairs that have a distance less than t.

Primitive direction loss Ldir. Ldir is a loss applied to
normalized surrogate direction D:

Ldir =
1

|D|
∑

(Di −Di)
2 (7)

where Di is the unit direction vector of 2 times the ground
truth angle for primitive V ′

i , which is the direction of its
matched primitive in ground truth.

Auxiliary loss Laux. To facilitate the learning of geo-
metric shape features in MHSA, we would like primitives’
visual feature hvis to be more related to geometric proper-
ties. Therefore, we add an auxiliary predictor on features
pooled by patch pooling in primitive refinement PLS to
predict coordinate offsets and primitive directions. Hence,
Laux is a linear combination of a deformation loss and a
direction loss applied to the auxiliary predictions.

Additionally, We use linear combination of cross-
entropy loss and Lovász-softmax loss [6] for Lseg and Lkp

on segmentation maps. We use bi-projection loss [10] for
shape deformation (Loff ). The point matches computed by
bi-projection loss are re-used to find the ground truth rela-
tionship matrix between primitives and primitive directions.
Please see Supplementary for more details.

3.4. Implementation Details

We only provide essential details here due to the limita-
tion of space. Please refer to the Supplementary for more
implementation details.

Training and testing. To provide reasonable shapes for
primitive graph reconstruction modules, we pre-train primi-
tive detection before training all modules end-to-end. We
use Adam optimizer [20] with batch size 12 and initial
learning rate 2e-4. The max number of primitives per im-
age is set to 150 for training and 300 for inference. Extra
sampled primitives are discarded.

Building mapping. We predict line segment primitives
and pairwise inlineness for building mapping. We trace con-
tours from Yseg , and reconstruct a primitive graph for each
group of line segments that belongs to the same contour,
so that network can learn the context information within
a building instance without the interference of other build-
ing geometries. At inference time, inline line segments are
merged to simplify output polygons. Please see more details
in Supplementary.

Road network mapping. We predict point primitives
and pairwise connectivity for road mapping. We segment
the buffered region of 5 pixels wide around road centerlines.
Following [18], we predict four classes of key points in Ykp:
junctions, overlays (crossing points of overlapping roads),
endpoints (endpoints of road line segments that are not junc-
tions or overlays), and interpolated points (points of fixed
intervals interpolated on road line segments). Here, we
don’t use Lreg as primitive refinement can already achieve
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Figure 3: Qualitative result of road mapping on City-Scale dataset. Top row is from Sat2Graph, bottom row is our method.
Our method shows to generate improved road topology compared to Sat2Graph in various scenarios.

the required shape regularization on road. To reconstruct
road networks, we connect point V ′

i to a maximum of ti
points that have connectivity probability in E larger than
threshold tr. We set ti = 3 for junctions, and 2 for other
points. We apply L2 normalization to the primitive features
before the last MLP layer of the second PLS to improve fea-
ture embedding quality, as inspired by contrastive learning
studies [17, 3, 11].

4. Experiments
4.1. Datasets And Metrics

Building. CrowdAI Mapping Challenge Dataset [28]
(CrowdAI dataset): It contains 280741 annotated aerial im-
ages for training and 60317 for testing. Each image has a
size of 300 × 300 pixels.

We use IoU (Intersection Over Union) and AP/AR (Av-
erage Precision/Average Recall) to evaluate the overall cor-
rectness of generated polygons. Since IoU and AP/AR
cannot describe the cleanness of predictions at boundaries,
we adopt Mean Max Tangent Angle Error (MTE) [16] and
C-IoU [39] as additional evaluation metrics to IoU and
AP/AR. MTE computes the max angle error of all line seg-
ments for each building and reports the average value over
the entire dataset [16]. C-IoU is IoU weighted by poly-
gon simplicity, where more points in the predicted polygon
means lower polygon simplicity and lower C-IoU. Here,
polygon simplicity is evaluated using N ratio, which is the
ratio of the number of vertices between predictions and
ground truth [39].

Road Network. (1) SpaceNet road dataset [15]: it con-

tains 2549 satellite images of size 1300 × 1300 pixels with
resolution around 0.3m. This dataset is challenging due to
the diverse scenarios from 5 cities around the globe. (2)
City-Scale Dataset [18]: it contains 180 tiles of size 2000 ×
2000 with 1-meter spatial resolution.

Road network topology is evaluated using TOPO [7] and
Average Path Length Similarity (APLS) [15]. TOPO mea-
sures the similarity of sub-graphs near seed points sampled
from the inferred graph and ground truth graph. APLS mea-
sures the similarity of graphs using the shortest path be-
tween sampled point pairs on each graph, which is more
sensitive to topology structure compared to TOPO.

4.2. Benchmark results

Building footprint extraction. Qualitative evaluation
results are reported in Fig. 4. We compare GraphMap-
per with two recent methods, Frame Field Learning (FFL)
[16] and PolyWorld [39], that represent the state-of-the-art
in building polygon mapping. All methods can accurately
capture small and simple building polygons. GraphMapper
shows the best shape regularization, polygon simplicity, and
accuracy.

Quantitative evaluation results are reported in Tab. 1.
GraphMapper significantly outperforms Polyworld [39] by
9.5/7.7 in COCO AP/AR. The improvements are largely
contributed by primitive refinement and relationship recon-
struction, which improved AP/AR by 9.2/7.2 to segmen-
tation mask (GraphMapper, mask). We report IoU, C-
IoU and MTA evaluation results in Tab. 2. GraphMap-
per outperforms all competing methods in all metrics. The
improved C-IoU, and MTA numerically demonstrated that
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Figure 4: Qualitative evaluation of building footprint mapping results. From top to bottom are the results from Frame Field
Learning [16], Polyworld [39], and GraphMapper. Yellow boxes highlight the differences between different methods.

Method AP AP50 AP75 APS APM APL AR AR50 AR75 ARS ARM ARL

FFL (with field), mask 57.7 83.8 66.3 33.8 73.8 81.0 68.1 91.0 77.7 47.5 80.0 86.7
FFL (with field), simple poly 61.7 87.6 71.4 35.7 74.9 83.0 65.4 89.8 74.6 42.5 78.6 85.8
FFL (with field), ACM poly 61.3 87.4 70.6 33.9 75.1 83.1 64.9 89.4 73.9 41.2 78.7 85.9
PolyWorld (offset off) 58.7 86.9 64.5 31.8 80.1 85.9 71.7 92.6 79.9 47.4 85.7 94.0
PolyWorld (offset on) 63.3 88.6 70.5 37.2 83.6 87.7 75.4 93.5 83.1 52.5 88.7 95.2
GraphMapper, mask 63.6 88.3 69.6 35.6 85.8 93.9 75.9 93.1 82.8 50.7 90.2 98.1
GraphMapper, refine 72.7 89.3 79.7 46.8 91.2 95.2 83.1 93.7 88.1 61.6 95.4 98.6
GraphMapper, final 72.8 89.1 79.7 46.6 90.6 91.3 83.1 93.3 88.1 61.5 95.2 97.2

Table 1: COCO evaluation results for building on CrowdAI Dataset. mask: the segmentation mask; refine: shapes with
deformed point location and line direction from segmentation masks; final: shapes generated with pairwise line relationship
predictions from refine.

Method IoU C-IoU MTA N ratio
FFL (no field), simple poly 83.9 23.6 51.8° 5.96
FFL (with field), simple poly 84.0 30.1 48.2° 2.31
FFL (with field), ACM poly 84.1 73.7 33.5° 1.13
PolyWorld (offset off) 89.9 86.9 35.0° 0.93
PolyWorld (offset on) 91.3 88.2 32.9° 0.93
GraphMapper 93.9 88.8 30.4◦ 1.01

Table 2: IoU, MTA, C-IoU, and N ratio evaluation results
on CrowdAI Dataset.

GraphMapper can generate more regularized vector shapes
compared to previous methods, which is consistent with our
visual comparison. Our N ratio is also closer to 1 com-
pared to other methods, which suggests our method gener-
ates polygons with more similar complexity to ground truth.

Road network extraction. We compare GraphMapper
with Sat2Graph [18] in Fig. 3, which is considered the state-
of-the-art method in road network mapping. GraphMap-
per can generate visually comparable results to Sat2Graph,
but with fewer redundant roads in both datasets. Also,
GraphMapper doesn’t require tedious post-processing.

Quantitatively, GraphMapper consistently shows im-
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Method City-Scale Dataset SpaceNet Roads Dataset
Prec. ↑ Rec. ↑ F1 ↑ APLS ↑ Prec. ↑ Rec. ↑ F1 ↑ APLS ↑

DRM[26] 76.5 71.3 73.8 54.3 82.8 72.6 77.3 62.3
SO[5] 75.8 68.9 72.2 55.3 81.6 71.4 76.1 58.8

RoadTracer[4] 78.0 57.4 66.2 57.3 78.6 62.5 69.6 56.0
Sat2Graph[18] 80.7 72.3 76.3 63.1 85.9 76.6 80.9 64.4
GraphMapper 89.6 82.6 85.6 68.0 90.7 84.6 87.1 68.8

Table 3: Comparison of road TOPO and APLS evaluation metric.

Method IoU C-IoU MTA N ratio
simple poly 92.3 81.6 38.5° 1.26
GraphMapper 94.3 89.5 30.4° 1.01

w/o Laux 94.1 89.0 30.9° 1.08
w/o Ldir 93.5 80.8 33.1° 1.18
w/o Lreg 94.4 82.7 31.5° 1.28
w/o incremental 93.8 78.3 34.6° 1.11

Table 4: Building ablation study on CrowdAI Dataset.

Method Pre. Rec. F1 APLS

w/o sort 87.2 80.1 82.5 66.2
w/o incremental 89.6 81.2 84.8 67.6
GraphMapper 89.9 82.9 85.9 68.9

Table 5: Road Ablation study on City-Scale dataset.

provement for APLS and TOPO on both road datasets (Tab.
3) compared to Sat2Graph [18], where TOPO F1 is im-
proved by 6.2 ∼ 9.3, and APLS is improved by 4.4 ∼ 4.9.

4.3. Ablation Study and Discussion

We report ablation study results in Tab. 4 for buildings
and Tab. 5 for roads. In these two tables, GraphMapper
is our proposed model; simple poly uses DP algorithm [13]
over traced polygons without primitive refinement or rela-
tionship reconstruction; w/o incremental refines primitives
and predicts relationships in parallel with shared MHSA en-
coder; w/o Laux, w/o Ldir and w/o Lreg removes the cor-
responding loss during training; w/o sort classifies relation-
ship by thresholding relationship probability in E.

Shape regularization. Relationship reconstruction for
shape regularization shows to improve C-IoU by 6.8 and
MTA by 1.1° compared to without shape regularization
loss (w/o reg) for building mapping, which suggests that
relationship learning with consistency between primitives’
properties and their relationships can effectively regularize
shapes for vector mapping. The network shows to adjust
the intensity of regularization in a fashion similar to human
labelers.

Even directions can be easily computed from the end
points of line segments, regressed directions shows much
improved direction accuracy (w/o Ldir’s MTA drops by

2.7°). Direction regression may be easier to learn compared
to point deformation, as the deformation ground truth varies
according to segmentation accuracy, while the ground truth
of direction is fixed.

Auxiliary loss Laux on primitive’s image features shows
to slightly improve performance in Table 4. This is consis-
tent with previous studies that uses auxiliary loses in inter-
mediate MHA layers [21, 35].

Incremental Reconstruction. For building mapping,
incremental modeling (GraphMapper) shows to signifi-
cantly improve C-IoU by 11.2% and MTA by 4.2% com-
pared to parallel modeling (w/o incremental). Similarly for
road mapping, TOPO and ALPS are improved with incre-
mental reconstruction. We believe that the improved perfor-
mance of incremental modeling is caused by the improved
accuracy of ground truth matching for relationship learning
when using refined primitives instead of initial primitives.

Sorting in embedding space. We compare our point
connections strategy with naive connectivity relationship
classification (w/o sort) in road mapping. Our method is
shown to improve TOPO F1 by 3.4 and ALPS by 2.7 com-
pared to standard relationship classification (w/o sort). We
found the improvement is mainly due to reduced redun-
dant connections between points, and reduced sensitivity to
the threshold (See supplementary materials) of connectivity
probability.

5. Conclusions
We propose GraphMapper, an end-to-end model for uni-

fied vector mapping from satellite images. By convert-
ing vector mapping tasks into primitive graph estimation
tasks, GraphMapper can explicitly model shape regulariza-
tion and topology reconstruction within the same frame-
work. We applied GraphMapper to building and road map-
ping with few task-specific designs and achieved favorable
performance to existing methods. The simplicity and strong
performance of GraphMapper effectively reduced the com-
plexity of comprehensive mapping tasks.

For future study, we plan to improve the compatibility
between shape features and image features for better co-
learning of vector shapes and image features.
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