
SSF: Accelerating Training of Spiking Neural Networks with
Stabilized Spiking Flow

Jingtao Wang1,4,5, Zengjie Song2, Yuxi Wang3,
Jun Xiao1∗, Yuran Yang6, Shuqi Mei6, Zhaoxiang Zhang1,3,4,5∗

1University of Chinese Academy of Sciences 2Xi’an Jiaotong University
3Centre for Artificial Intelligence and Robotics, HKISI-CAS

4Institute of Automation, Chinese Academy of Sciences
5State Key Laboratory of Multimodal Artificial Intelligence Systems 6Tencent

{wangjingtao2021, zhaoxiang.zhang}@ia.ac.cn, zjsong@hotmail.com, xiaojun@ucas.ac.cn

Abstract

Surrogate gradient (SG) is one of the most effective
approaches for training spiking neural networks (SNNs).
While assisting SNNs to achieve classification performance
comparable to artificial neural networks, SG suffers from
the problem of time-consuming training, preventing it from
efficient learning. In this paper, we formally analyze the
backward process of classic SG and find that the membrane
accumulation through time leads to exponential growth of
training time. With this discovery, we propose Stabilized
Spiking Flow (SSF), a simple yet effective approach to ac-
celerate training of SG-based SNNs. For each spiking neu-
ron, SSF averages its input and output activations over time
to yield stabilized input and output, respectively. Then, in-
stead of back propagating all errors that are related to cur-
rent neuron and inherently entangled in time domain, the
auxiliary gradient is directly propagated from the stabilized
output to input through a devised relationship mapping. Ad-
ditionally, SSF method is suitable to different neuron mod-
els. Extensive experiments on both static and neuromorphic
datasets demonstrate that SNNs trained with SSF approach
can achieve performance comparable to the original coun-
terparts, while reducing the training time significantly. In
particular, SSF speeds up the training process of state-of-
the-art SNN models up to 10× when time steps equal to 80.

1. Introduction

Benefiting from huge amount of data and advances
in computing hardwares, deep artificial neural networks
(ANNs) have achieved rapid development in past decades

∗Corresponding authors.

Figure 1. Training time and backward time cost in one epoch with
different time steps. Classic SG method [7] experiences an ex-
ponential growth of training time when number of time steps in-
creases. By contrast, SSF method significantly decreases training
time cost, especially when training SNNs with long time steps.

and even outperform human beings in areas like image
classification [14], semantic segmentation [38] and object
detection [25]. However, the promising performance of
ANNs builds on the expense of substantial computational
resources and power consumption during both training and
inference, limiting its application in edge devices.

Known as the third generation of neural networks, Spik-
ing Neural Network (SNN) simulates biological neuron’s
action potential process which accumulates inputs as mem-
brane potential and generates a binary spike when exceed-
ing threshold. This simulation brings SNN with special
neural dynamics, strong biological plausibility, and promis-
ing high energy efficiency on neuromorphic hardwares [26].
These advantages make SNN potential in solving many
problems ANN encountered, including limited energy sup-
plies in edge devices mentioned before. Hence, SNN has
drawn a lot of attention of researchers in recent years.

Yet still training SNN is a big challenge since the dis-
crete nature of binary spikes hampers the effective usage of
gradient-based backpropagation (BP) methods on the train-
ing of SNN [31]. Among all the studies, one effective idea

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5982



is using some auxiliary variable approximating the non-
differentiable part during back propagation. Based on this
idea comes surrogate gradient (SG) method, which trains
SNNs in the same way of training recurrent neural net-
works (RNNs) with the help of continuous relaxation of the
real gradients [36]. With several years’ development, SG
method enables SNNs to obtain high accuracy and be pro-
moted to very deep neural networks [7]. However, the com-
putation cost for SG is unacceptably high. As illustrated in
Fig. 1, when SNNs’ time steps grow longer, time needed
in training process increases exponentially. This creates an
awkward situation that bigger number of time steps usu-
ally leads to better performance as longer spike trains can
represent more complex information [7, 12, 41] (shown in
Fig. 4). Therefore, it is desired to speed up the training
of SG-based SNNs, especially with long time steps, while
maintaining competitive performance.

In this paper we propose an acceleration method, dubbed
Stabilized Spiking Flow (SSF), for efficiently training
SNNs. We first formalize the backward process of clas-
sic SG method and identify that the main contributor to
the exponential growth of the training time is SNNs’ mem-
brane accumulation process which has to calculate gradi-
ents sequentially to back-propagation in time domain. To
decrease the temporal correlation between time steps, SSF
approximates output and input spike trains in each layer
with stabilized inputs and outputs. Through the built map-
ping between stabilized inputs and outputs, SSF skips the
membrane accumulation process and thus greatly speeds up
the training process. As shown in Fig. 1, the effect of our
method becomes more pronounced when time steps grow
longer. Our main contributions are summarized as follows:

1. We systematically study the backward process of clas-
sic SG method and find that the exponential growth
of training cost is mainly caused by SNNs’ membrane
accumulation process.

2. To deal with the problem, we propose SSF method.
SSF approximates each layers’ input and output spike
trains with stabilized spiking flows and skips the cum-
bersome backpropagation in time domain by building
relationship between inputs and outputs directly.

3. The sufficient experiments on both static and neuro-
morphic datasets prove the effectiveness of SSF. Par-
ticularly, SSF can speed up the backward process
of state-of-the-art models up to 10× while achieving
nearly the same classification accuracy.

2. Related Work
2.1. Learning Strategy of SNN

Learning strategy plays a very important role in the de-
velopment of SNN. In general, training methods till now

can be divided into three parts: conversion methods, bio-
inspired methods, and adjusted BP methods.

The most representative conversion method is ANN-to-
SNN [13, 21, 2, 39, 28, 17, 3]. Typically, It transmits
a well-trained ANN into a SNN and then uses some tun-
ing approaches narrowing the gap between them. ANN-to-
SNN enables SNNs to perform as well as ANNs. However,
this method aims at making a SNN act like an ANN and
dismisses the rich time dynamic of SNN. Aside from low
performance on neuromorphic datasets, obtained SNN still
needs enough time steps to achieve good performance.

STDP method dominates the development of bio-
inspired methods in recent years [16, 15, 40, 8, 32, 23,
37, 29]. STDP method trains SNNs directly with Spike-
Timing-Dependent Plasticity (STDP) rules. These rules are
oriented from Hebb rules,which have been proven plausible
learning rules in brain. STDP method has the potential to re-
alize strong artificial intelligence and has already achieved
some success in unsupervised learning area [29], but those
rules it uses adjust weights with local spike histories rather
than global losses, stopping STDP from going deep or be-
ing applied to supervised learning. Till now, training SNNs
with STDP still cannot obtain satisfying performance.

In the aspect of adjusted BP methods [34, 22, 41, 35,
24, 42, 4, 10], surrogate gradient (SG) method attracts
widespread attention recently. SG replaces SNNs’ non-
differentiable parts with surrogate gradients, thus solving
the biggest barrier hindering the usage of classic BP on
training SNNs. After several years of development, SG
method now can train SNNs with both low latency and com-
petitive performance. Our work focuses on SG method.

2.2. SG Method

SG method uses surrogate gradients replacing the non-
differentiable parts during back-propagation and trains
SNN like RNN. It was first used by Bothe et al. in 2002 [1],
who bypassed the discontinuity problem by linearly pro-
cessing the relationship between the input received by the
neuron and the resulting pulse firing time. In 2016, Lee
et al. [19] obtained a SNN with several hidden layers which
outperformed ANN on neuromorphic datasets. In 2019, Wu
et al. [36] created the STBP framework and got high accu-
racy on CIFAR-10 dataset. Recently, Guo et al. [12] de-
signed the MPD approach, achieving nearly the same clas-
sify accuracy of ANN on CIFAR-10 dataset. In general, SG
method can now train SNNs with both high accuracy and
low latency, but the time cost is unacceptably high, espe-
cially in training SNNs with long time steps.

2.3. Speed Up Approaches

Quite a few works focus on dealing with the high train-
ing time cost of SG method. Wu et al. [35] attempted to
use a SNN to inference but back-propagate with an ANN,

5983



ASF-BP method [34] resembles it while in a different spik-
ing neuron model. These two works all built surrogate
gradients between inputs and outputs directly, decreasing
training time cost to a very low level. However, they both
failed to achieve competitive results. Deng et al. [7] pro-
posed TIT training strategy, which views SNN with short
time steps as pre-trained model for training long time steps
SNN. TIT strategy does expedite the convergence of SNN,
but it still suffers from the high cost of tuning process and
only fits with the TET function introduced in [7]. Meng
et al. [22] analyzed the relationship between inputs and
outputs of each layer in SNN and proposed DSR method.
This method enables fast training of SNNs with long time
steps, but it needs two additional measures to achieve good
performance. Inspired by [22], we devise SSF method.
Our method differs by speeding up the training of SNNs in
an easy-to-implement way while producing high accuracy
without any other measures.

3. Method
This section first introduces the Leaky-Integrate-and-

Fire (LIF) neuron model used in our method. Then, the
backward propagation of classic SG is analyzed and reveal-
ing the main reason for the rapid growth of computation
cost. Based on this discovery, our SSF method is proposed
and presented in detail. Finally, to show our method’s uni-
versality, soft reset function is discussed, along with the ap-
plication of SSF on it.

3.1. LIF Neuron Model

Different from ANN, neurons in SNN simulate biolog-
ical neurons’ action potential progress, which accumulates
inputs as membrane potential and generates a binary spike
when exceeding thresholds. As a widely used implement,
LIF model can be simply described as [12]:

τ
du

dt
= −u+RI, u < Vth, (1)

u = ureset & fire a spike, u ≥ Vth, (2)

where u is the accumulated membrane potential, ureset is
the resting potential that is usually set as 0, RI stands for
inputs, τ is a time constant deciding the decreasing speed
of u, Vth represents the firing threshold. Eq. (1) figures the
membrane potential accumulation process below Vth. Eq.
(2) means when u is up to Vth, the neuron fires a spike and
sets the membrane potential to the resting potential ureset,
which named as hard reset.

It’s worth noting that the differential representation with
continuously varying electricitys is not easy to implement
in mainstream machine learning frameworks. Wu et al. [36]
proposed an iterative model, which can be conducted as:

u[t] = (1− dt

τ
)u[t− 1] +

dt

τ
RI, (3)

where u[t] means the membrane potential at time step t .
Factor (1− dt

τ ) can be simplified as λ, standing for the atten-
uation in each time step. Input dtτ RI equals to the weighted
summation of pre-synaptic signals

∑
j wjoj [t], where wj

denotes the connection weight between the j-th pre-neuron
and current neuron, while oj [t] means the binary spike from
the j-th pre-neuron at time step t. With these settings, the
iterative model can be updated as [22]:

u[t] = λu[t− 1](1− o[t− 1]) +
∑
j

wjoj [t], (4)

oli[t] = H(uli[t]− Vth), (5)

where H denotes the Heaviside function and u[0] =∑
j wjoj [0].
It’s worth noting that another widely used IF model

equals to LIF model with λ set to 1, so our method can
easily adapt to IF models. Besides, SSF is also compatible
with soft reset function, we will discuss it in Sec. 3.4.

3.2. Formulation of Backward Process

In this part we analyze the backward process of classic
SG method. We use the LIF model introduced above. To
simplify our derivation, we set I li [t] =

∑
j wijo

l−1
j [t], rep-

resenting the input of neuron i in layer l on time step t. The
forward process of neuron i in layer l can be described as:

uli[t] =

{
λuli[t− 1](1− oli[t− 1]) + I li [t], t 6= 0,

I li [0], t = 0,
(6)

oli[t] = H(uli[t]− Vth). (7)

With the effect of chain rule, we can assume that the gra-
dient of I l+1

i [t] has already obtained through above layers.
As the output of last time step, oli[T ] ends the whole spik-
ing process, so it’s gradient can be generated from I l+1

i [T ]
directly. For time step t − 1, oli[t − 1] takes part in the ac-
cumulation of uli[t]. From Eq. (6) and Eq. (7), we have:

∂L

∂oli[t− 1]
=
∑
j

∂L

∂I l+1
j [t− 1]

∂I l+1
j [t− 1]

∂oli[t− 1]
+

∑
j

∂L

∂I l+1
j [t]

∂I l+1
j [t]

∂oli[t]

∂oli[t]

∂uli[t]
∗ (−λuli[t− 1]).

(8)

With ∂L
∂oli[t]

, we can move on calculating ∂L
∂ul

i[t]
. Same

with oli[T ],
∂L

∂ul
i[T ]

can be generated from ∂L
∂oli[T ]

directly. For

other time step t < T , uli[t] takes part in the accumulation
of uli[t+ 1]. From Eq. (6) and Eq. (7), we have:

∂L

∂uli[t]
=

∂L

∂oli[t]

∂oli[t]

∂uli[t]
+

∂L

∂uli[t+ 1]
∗ λ(1− oli[t]). (9)

5984



Il+1[T]

Il+1[T − 1]

Il+1[T − 2]

Il+1[T − 3]

Il+1[0]

̶̶̶̶

ol[T]

ol[T − 1]

ol[T − 2]

ol[T − 3]

ol[0]

ul[T]

ul[T − 1]

ul[T − 2]

ul[T − 3]

ul[0]

Il[T]

Il[T − 1]

Il[T − 2]

Il[T − 3]

Il[0]

̶̶̶̶ ̶̶̶̶ ̶̶̶̶

Layers’ inputs Membrane potential Layers’

(a) Backward process of classic SG method.

Il+1[T]

Il+1[T − 1]

Il+1[T − 2]

Il+1[T − 3]

Il+1[0]

̶̶̶̶

ol[T]

ol[T − 1]

ol[T − 2]

ol[T − 3]

ol[0]

Il[T]

Il[T − 1]

Il[T − 2]

Il[T − 3]

Il[0]

̶̶̶̶ ̶̶̶̶

FO FI

FI = ∑T
t=0 λT−tIl

i[t]
∑T

t=0 λT−t

FO = ∑T
t=0 λT−tol

i[t]
∑T

t=0 λT−t

Average spiking electricity (R)

outputs Stabilized spiking flow Error back propagation

(b) Backward process of proposed SSF.

Figure 2. Illustration of backward process in classic SG method and the proposed SSF approach. (a) demonstrates classic SG’s back-
propagation in time domain. The accumulation of membrane potential (i.e., entangled ul[t]) results in exponential growth of training time
when the number of time steps increases. As shown in (b), SSF approximates output and input spike trains with stabilized spiking flows and
builds the mappings between them with the average spiking electricity, skipping the back propagation in time domain and vastly decreasing
the training time cost.

As shown in Eq. (6), I li [t] only connects to uli[t]. With
∂L
∂ul

i[t]
, we can have:

∂L

∂I li [t]
=

∂L

∂uli[t]

∂uli[t]

∂I li [t]
=

∂L

∂uli[t]
, (10)

which will be back propagated to the next layer.
Intuitively, Fig. 2a illustrates this backward process,

from which we can find that the main computation cost
occurs in the back-propagation of membrane accumulation
process. What’s more, the error back-propagation in time
domain is serial, which forces programs to calculate T times
in sequence and greatly reduces the efficiency of parallel
computing devices like GPU. In fact, as shown in Fig. 1,
training time experiences an exponential growth when time
steps increase. This raises a natural question: is it possible
to avoid the back propagation of membrane potential while
not degrade final performance? We answer this question by
proposing the SSF method.

3.3. Stabilized Spiking Flow

Due to the complex dynamics of spiking neurons, it’s
challenge to skip membrane potential and map the conver-
sion of each time step’s inputs and outputs while keeping
performance consistent. However, from the perspective of
global, we find a possible way to approach this goal.

When training SNNs on static datasets like CIFAR-10, a
2D image would be simply repeated T times as input. This
kind of input brings a series of repeated spiking and results
in a spike train with stable spiking frequencies, which we
name as a stabilized spiking flow. She et al. [27] discussed
the dynamic of SNN and found that when taking several
stabilized spiking flows as inputs, neuron of SNNs would
transmit them to another stabilized spiking flow. So when
trained on static datasets, SNNs’ inputs and outputs of each
layer all can be viewed as stabilized spiking flows. Conse-

quently, spiking neurons can be viewed as simple transvert-
ers between different stabilized flows with no need consid-
ering the complex process of membrane potential accumu-
lation inside them. So, if we can build the translation be-
tween these stabilized inputs and outputs, we may skip the
accumulation of membrane potential and reduce the expo-
nential training time cost. Inspired by [22], we implement
it through the whole input and output electricity.

Formally, considering the decay of membrane potential
on each time step, the whole input electricity of a neuron i
in layer l can be formulated as

∑T
t=0 λ

T−tI li [t]. By multi-
plying both sides of Eq. (6) with the attenuation coefficient
and summing over time steps, we get:

T∑
t=0

λT−tuli[t] =

T∑
t=0

λT−tI li [t]

+

T−1∑
t=0

λT−tui[t](1− oli[t]).

(11)

Eq. (11) can be further divided to:

uli[T ](1− oli[T ]) =
T∑
t=0

λT−t(I li [t]− oli[t]uli[t]). (12)

The left side of Eq. (12) means electricity left in neuron
after time step T , while the right side represents the whole
input electricity minus the whole output electricity. Since
the remaining electricity uli[T ](1 − oli[T ]) is less than Vth,
with long enough time steps, we can dismiss it and have:

T∑
t=0

λT−tI li [t] ≈
T∑
t=0

λT−toli[t]u
l
i[t]. (13)

Eq. (13) describes the relationship between the whole
input and output electricity of a neuron. As we mentioned

5985



before, stabilized spiking flow equals to stable input or out-
put electricity each time step, so we define stabilized in-
put electricity FI as a constant satisfying

∑T
t=0 λ

T−tFI =∑T
t=0 λ

T−tI li [t].
For stabilized output electricity, it connects with mem-

brane potential of those time steps generating spikes. How-
ever, uli[t] plays the role of lost electricity when generating
a spike. Meanwhile, spiking flow equals to a series of re-
peated spiking process which includes the same membrane
potential in each time step. So electricity lost in each spik-
ing process can be viewed as a stable valueR, which can be
calculated during inference and used as a constant in back-
ward process. We discussed the effect of R’s precision in
Sec. 4.5. In our method, we define average spiking electric-
ity as R =

∑T
t=0 λ

T−toli[t]u
l
i[t]∑T

t=0 λ
T−tVtholi[t]

and define stabilized output

flow as FO =
∑T

t=0 λ
T−toli[t]∑T

t=0 λ
T−t . R would be generated during

inference and treated as a constant in backward progress,
thoroughly removing the influence of membrane potential.

With these definition and the dynamic of SNN’s neurons,
the transition between FO and FI can be described as:

FO = max(0,
F I

R ∗ Vth
). (14)

Considering that too much electricity lost in each spiking
process may cause information loss, we set a limit to R by
setting ∂FO

∂FI = 0 when R > 2.
Through FO and FI , the whole backward progress can

be described as:

∂L

∂I li [t]
=

∂L

∂FO

∂FO

∂FI

∂FI

∂I li [t]
, (15)

where ∂L
∂FO =

∑T
t=0 λ

T−t ∂L

∂I
l+1
i

[t]∑T
t=0 λ

T−t and ∂FI
∂Ili [t]

= 1 because

input I li [t] naturally experiences T − t time steps’ damping
during inference. As shown in Fig. 2b , we successfully
skip the back-propogation of membrane accumulation with
the help of FO and FI .

3.4. Soft Reset Function

Aside from hard reset, soft reset function is also widely
used in SNN. After generating a spike, soft reset sets mem-
brane potential to u[t] − Vth rather than ureset. Formally,
LIF model using soft reset function can be formulated as:

u[t] = λ

(
u[t− 1]− Vth ∗ o[t− 1]

)
+
∑
j

wjoj [t], (16)

oli[t] = H(uli[t]− Vth). (17)

Our method is compatible with soft reset method too.
With the same process, we can obtain a relationship be-

tween input and output electricity:

uli[T ]− Vtholi[T ] =
T∑
t=0

λT−t
(
I li [t]− Vtholi[t]

)
. (18)

The left part of Eq. (18) stands for electricity remaining in
spiking neurons after time step T , while the right part rep-
resents the whole input electricity minus the whole output
electricity, similar to Eq. (12).

Different from hard reset, left electricity can be much
higher than Vth in Eq. (18), so we can not ignore it. Based
on the idea of stabilized spiking flow, when left electricity is
beyond Vth, stabilized input electricity must exceed Vth in
each time step. In this situation, a spiking neuron will gen-
erate a spike every time step, which means that the output
spike train reaches it’s upper bound and we have no way to
distinguish different input spike trains as they are all beyond
output trains’ representation ability. Specifically, spiking
neuron clamps the whole input electricity to [0, TVth].

Similarly, we define FI =
∑T

t=0 λ
T−tIli [t]∑T

t=0 λ
T−t and FO =∑T

t=0 λ
T−toli[t]∑T

t=0 λ
T−t . R is not necessary as electricity lost in each

spiking process all equals to Vth. Therefore, the relationship
between input and output spiking flows can be derived as:

FO = Clamp(
FI

Vth
, 0, 1). (19)

Other parts of backward process resembles hard reset.

4. Experiments
To validate the effectiveness of our method, we first ap-

ply SSF to four representative frameworks of SG on both
static and neuromorphic datasets. Then we demonstrate
the acceleration advantage of SSF when time steps become
longer. Finally, we perform ablation study on the influence
of average spiking electricity R defined in Sec. 3.3 and the
instantiation of parallel computing.

4.1. Datasets

We evaluate our method on three static datasets, CIFAR-
10 [18], CIFAR-100 [18], Tiny-ImageNet [5] and one neu-
romorphic dataset DVS-CIFAR10 [20].

CIFAR-10 and CIFAR-100 datasets are two widely used
datasets in image classification filed. They both contain
60000 color images of which 50000 are for training and
10000 are for test. CIFAR-10 has 10 classes with 6000 im-
ages each class, while CIFAR-100 has 100 classes with 600
images each class. When training on these two datasets, we
utilize a standard data augmentation strategy same as [34].

Tiny-ImageNet dataset is a subset of ImageNet [5]. It
contains 200 classes with 500 training samples and 50 vali-
dation samples each class. We use a classic transform pro-
cess, which resizes each picture to 224*224 before horizon-
tal flip and normalization.

5986



Table 1. Classification performance on CIFAR-10,CIFAR-100, Tiny-ImageNet and DVS-CIFAR10. For the first three datasets, we divide
the frameworks into 3 classes: ANN, ANN-to-SNN, and SG. Different types of methods are separated by horizontal lines.We carefully
rebuild three representative SG frameworks and accelerate their training process with our method. Classification accuracy and backward
time spent in one epoch are shown. We use a gray background to distinguish accelerated frameworks from original frameworks and
compute speed-up ratios with backward time.

Method Network Time steps Accuracy Backward time (s) Speed-up ratio

C
IF

A
R

-1
0

ANN [22] PreAct-ResNet-18 / 95.41% / /
ANN-to-SNN [13] VGG-16 2048 93.63% / /
ANN-to-SNN [39] VGG-like 600 94.20% / /
ANN-to-SNN [3] ResNet-18 16 95.92% / /
tdBN [41] ResNet-19 20 93.07% 651.8 1.00×
tdBN-ours ResNet-19 20 93.04% 313.3 2.08×
RecDisN [12] PreAct-ResNet-18 20 94.60% 406.3 1.00×
RecDis-ours PreAct-ResNet-18 20 94.30% 155.6 2.62×
TET [7] PreAct-ResNet-18 20 95.00% 402.5 1.00×
TET-ours PreAct-ResNet-18 20 94.90% 143.0 2.81×

C
IF

A
R

-1
00

ANN [22] PreAct-ResNet-18 / 78.12% / /
ANN-to-SNN [6] ResNet-20 400-600 69.82% / /
ANN-to-SNN [13] VGG-16 768 70.09% / /
ANN-to-SNN [39] VGG-like 300 71.84% / /
tdBN [41] ResNet-19 20 69.54% 511.0 1.00×
tdBN-ours ResNet-19 20 69.19% 254.4 2.01×
RecDis [12] PreAct-ResNet-18 20 73.97% 403.4 1.00×
RecDis-ours PreAct-ResNet-18 20 75.48% 153.0 2.62×
TET [7] PreAct-ResNet-18 20 74.41% 429.4 1.00×
TET-ours PreAct-ResNet-18 20 74.87% 154.8 2.77×

Ti
ny

Im
ag

eN
et ANN [33] ResNet-34 / 57.63% / /

ANN-to-SNN [11] DCT-SNN 125 52.43% / /
ANN-to-SNN [30] ResNet-17 5 56.91% / /
SEW [9] SEW-ResNet34 20 58.32% 7231.4 1.00×
SEW-ours SEW-ResNet34 20 58.81% 2250.3 2.95×

D
V

S-
C

IF
A

R
10

tdBN [41] ResNet-19 20 67.0% 196.4 1.00×
tdBN-ours ResNet-19 20 67.4% 97.6 2.01×
RecDis [12] VGG-11 20 74.6% 32.8 1.00×
RecDis-ours VGG-11 20 74.5% 17.3 1.90×
TET [7] VGG-11 20 78.7% 31.2 1.00×
TET-ours VGG-11 20 74.1% 16.4 1.90×
TET-CE-ours VGG-11 20 78.0% 15.1 2.07×

DVS-CIFAR10 dataset is a neuromorphic dataset based
on CIFAR-10. It consists of 10000 event streams in 10
classes which are recorded by event camera .To reduce cal-
culating complexity, we downsample the original 128×128
event streams to 48× 48 and select the last 10% of streams
of each class for test while the remaining 90% for training.

4.2. Implementation Details

We apply SSF to four representative SG frameworks,
namely TET [7], RecDis [12], SEW [9] and tdBN [41].
We rebuild these four frameworks as faithfully as possible
by following each corresponding paper. Specifically, when
SSF is adopted to tdBN, we use the ResNet-19 structure
in all cases. As for TET and RecDis, we utilize the PreAct-
ResNet-18 structure on CIFAR-10 and CIFAR-100 datasets,

while employ the VGG-11 structure on DVS-CIFAR10.
SEW framework is only used in Tiny-ImageNet dataset.
Unless specified, time steps of all experiments are set to
20. More details are shown in supplementary materials.

In addition to comparing the classification accuracy , we
also record two kinds of training time spent in each epoch.
One named as training time, consists of time spent in both
forward and backward process. The other one named as
backward time, only includes time spent in backward pro-
cess. We run 10 epochs and take the average time spent in
each epoch as final results. To ensure the stability of the
environment, all time records are obtained through a sever
with 8 TITAN X GPUs, while the batch size is kept to 32.

5987



(a) Speed up effects of TET frameworks with varying time steps on different datasets.

(b) Speed up effects of different frameworks with varying time steps on CIFAR-10.

Figure 3. Acceleration effect with varying time steps. In (a), we take TET as an example and illustrate the acceleration effect across
different datasets. In (b), all frameworks are evaluated on CIFAR-10 datasets.

Table 2. Experimental results compared to DSR. All experiments
are conducted on PreAct-ResNet-18 network with IF model. DSR-
noF represents DSR removing firing mechanism modification.

Dataset Time Step DSR DSR-noF SSF

CIFAR-10
20 95.4% 92.9% 95.4%
10 94.7% 90.8% 95.3%
5 94.5% 84.0% 95.0%

CIFAR-100
20 78.5% 74.9% 77.5%
10 76.8% 62.7% 76.6%
5 74.4% 53.6% 74.2%

4.3. Comparisons with State-of-the-art

We first quantitatively compare our approach with the
four representative training frameworks in terms of classifi-
cation accuracy and acceleration effect. Results are shown
in Table 1, where ‘*-ours’ means accelerating the training
of framework ‘*’ with SSF.

When training on static datasets, we can find that all
four candidate methods accelerated with SSF consistently
achieve the classification accuracy on par with the original
counterparts. This indicates that our acceleration strategy is
performance-friendly on static datasets. As for neuromor-
phic dataset, SSF method still obtains competitive perfor-
mance in RecDis and tdBN frameworks, but appears a bit
maladjustment to TET method. This is mainly because the
input from DVS-CIFAR10 changes at every time step and is
difficult to approximate with stabilized spiking flow, while
TET highlights the loss of each time step rather than average
output of all time steps. To prove this, we modify the TET
loss function to CrossEntry loss in TET framework and ob-
tain an accuracy of 78%, nearly the same with original TET.

While keeping competitive performance, our method
significantly decreases training time in all cases. Specifi-
cally, on the three static dataset, SSF speeds up the back-

ward process more than twice. In terms of neuromorphic
dataset, though these original training methods spend less
time in the backward process compared with that on static
datasets, SSF can still half the backward time, again demon-
strating the universality and effectiveness of our approach.

To analysis the acceleration characteristic from a global
view, we also record the accuracy curves of RecDis and
RedDis-ours trained on CIFAR-10. Results are shown in
supplyment materials, from which we can observe that
epochs needed to converge are nearly the same between the
original version and the accelerated one.

Our method also works on SNNs with soft reset func-
tion, corresponding experiments are shown in supplyment
materials. However, we notice that the basic theory of SSF
suits hard reset more than soft reset function. As we know,
DSR is one of the most success method using relationship
between input and output electricity accelerating the train-
ing of SNNs with soft reset function. However, the appeal-
ing performance of DSR builds on the basis of combining
firing mechanism modification and threshold training. We
conduct experiments on a network same with DSR, and re-
sults are shown in Tab. 2. DSR-noF stands for DSR without
firing mechanism modification, which fails achieving good
performance. In contrast, SSF doesn’t need any additional
measures to achieve high performance while speeds up the
training process with higher ratio (2.75× for SSF and 2.69×
for DSR with time steps equaling to 20 on CIFAR10).

4.4. Effect of Large Time Steps

As shown in Fig. 4, longer time steps leads to better per-
formance. However, as we derived before, long time steps
brings unacceptably high training time. In this section, we
study the acceleration effect of our method when time steps
grow longer, ranging from 10 to 80.

Fig. 3 illustrates the relationship between training time

5988



Figure 4. Performance with long time steps. All experiments are
conducted in TET framework on CIFAR-100 based on IF model.

and time steps in terms of different methods trained on dif-
ferent datasets. In general, we can find that in classic SG
method, backward time grows rapidly and quickly occupies
the main part of the training time as the number of time
steps increase. By contrast, when accelerating with SSF,
both backward time and training time increase in a very
low speed, making the acceleration advantage of SSF more
meaningful. Specifically, SSF achieves about 10× speed-up
ratio when time steps equal to 80.

Fig. 3a shows the growth of training time in the TET
framework but on different datasets when time steps grow
longer. Across all datasets, the trend that backward time
of the original TET grows exponentially with varying time
steps remains the same. However, on different datasets with
the same exemplar framework, our method can speed up
training consistently. These results show that the accelera-
tion effect of SSF does not depend on datasets.

Fig. 3b depicts the growth of training time as increasing
number of time steps on the same dataset but with differ-
ent frameworks. The exponential growing of training time,
encountered by all methods in the same setting, indicates
the common limitation of SGs on efficient learning. Here
again, our SSF endows all the training process with high
efficiency, regardless of which framework is employed.

4.5. Ablation Study

We first conduct ablation study on the average spiking
electricity R defined in Sec. 3.3. To prove it’s importance,
we remove R from our method by setting R = 1 directly,
which eliminates the influence ofR in Eq. (14). We also in-
vestigate the influence of changeable R with different pre-
cision. In our method, we define R ∈ RB×C×H×W by
default, where B denotes batch size, C represents the num-
ber of channels, H and W stands for the height and width
of character images in each layer. We adjust the precision
of R by reducing it’s dimension. All experiments are con-
ducted with the PreAct-ResNet-18 structure on CIFAR-10
with same hyper-parameters. Results are shown in Table 3.

Table 3. Ablation study on the average spiking electricity. All
experiments are conducted on PreAct-ResNet-18 architecture on
CIFAR-10 dataset with the same hyperparameters.

Setting Accuracy

R = 1 10.00%
R ∈ R 94.41%
R ∈ RB 60.19%
R ∈ RB×C 61.35%
R ∈ RB×C×H×W 95.19%

When setting R as 1, the resultant SNN performs nearly a
random classifier, proving the importance of average spik-
ing electricity. We can also find that among varying preci-
sions, R defined in our methods achieves best performance.
This may manifest that the fine-grained manipulation of the
mapping between FO and FI is beneficial to maintain per-
formance.

We also study the influence of different numbers of
GPUs on SSF’s acceleration ratio. All experiments are per-
formed on a sever with 8 TITAN X GPUs in TET frame-
work on CIFAR-10. We set T to 20 in all experiments.
Batch size is set to 16 for each GPU, which means that the
whole batch size is 16∗n when using n GPUs. As shown in
Table 4, GPU number has little effect on the speed up ratio
of SSF, proving the stability of SSF’s acceleration effect.

Table 4. Effect of different numbers of GPUs.

Num. of GPU 1 2 4 8
Backward time (SG) 2742.5 1432.3 713.2 353.2
Backward time (SSF) 902.1 482.3 239.0 119.2

Speed up ratio 3.04 2.97 2.98 2.96

5. Conclusion

In this paper, we first analyze the backward process of
classic SG method and find that the main reason for it’s high
training time cost is the back-propagation of membrane po-
tential. Based on this discovery, we introduce the SSF
method, which skips membrane potential during backward
by approximating output and input spike trains with stabi-
lized spiking flows and builds relationship between them di-
rectly. Experimental results and analysis show that the pro-
posed method significantly reduces the training time cost of
SG while achieving nearly the same performance, and the
acceleration is more pronounced in training SNNs with long
time steps.

6. Acknowledgment
This work was supported in part by the Major Project

for New Generation of AI (No. 2018AAA0100400),
the National Natural Science Foundation of China (No.
61836014, No. U21B2042, No. 62072457, No. 62006231,
No. U21A20515, No. U2003109), and the InnoHK pro-
gram.

5989



References
[1] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-

backpropagation in temporally encoded networks of spiking
neurons. Neurocomputing, 48(1-4):17–37, 2002. 2

[2] Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Op-
timized potential initialization for low-latency spiking neural
networks. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, pages 11–20, 2022. 2

[3] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu,
and Tiejun Huang. Optimal ann-snn conversion for high-
accuracy and ultra-low-latency spiking neural networks.
In International Conference on Learning Representations,
2021. 2, 6

[4] Yi Chen, Hong Qu, Malu Zhang, and Yuchen Wang. Deep
spiking neural network with neural oscillation and spike-
phase information. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 7073–7080,
2021. 2

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 248–255,
2009. 5

[6] Shikuang Deng and Shi Gu. Optimal conversion of conven-
tional artificial neural networks to spiking neural networks.
In International Conference on Learning Representations,
2021. 6

[7] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu.
Temporal efficient training of spiking neural network via gra-
dient re-weighting. In International Conference on Learning
Representations, 2022. 1, 2, 3, 6

[8] Peter U Diehl and Matthew Cook. Unsupervised learning
of digit recognition using spike-timing-dependent plasticity.
Frontiers in Computational Neuroscience, 9:99, 2015. 2

[9] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée
Masquelier, and Yonghong Tian. Deep residual learning in
spiking neural networks. Advances in Neural Information
Processing Systems, 34:21056–21069, 2021. 6

[10] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2661–2671, 2021. 2

[11] Isha Garg, Sayeed Shafayet Chowdhury, and Kaushik Roy.
Dct-snn: Using dct to distribute spatial information over time
for low-latency spiking neural networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 4671–4680, 2021. 6

[12] Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xi-
aode Liu, Zhe Ma, and Xuhui Huang. Recdis-snn: Recti-
fying membrane potential distribution for directly training
spiking neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 326–335, 2022. 2, 3, 6

[13] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy.
Rmp-snn: Residual membrane potential neuron for enabling

deeper high-accuracy and low-latency spiking neural net-
work. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13558–13567,
2020. 2, 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016. 1

[15] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, and
Timothée Masquelier. Bio-inspired unsupervised learning of
visual features leads to robust invariant object recognition.
Neurocomputing, 205:382–392, 2016. 2

[16] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J
Thorpe, and Timothée Masquelier. Stdp-based spiking deep
convolutional neural networks for object recognition. Neural
Networks, 99:56–67, 2018. 2

[17] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh
Yoon. Spiking-yolo: spiking neural network for energy-
efficient object detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 11270–
11277, 2020. 2

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[19] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-
ing deep spiking neural networks using backpropagation.
Frontiers in Neuroscience, 10:508, 2016. 2

[20] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and
Luping Shi. Cifar10-dvs: An event-stream dataset for ob-
ject classification. Frontiers in Neuroscience, 11:309, 2017.
5

[21] Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang,
and Li Jiang. Spikeconverter: An efficient conversion frame-
work zipping the gap between artificial neural networks and
spiking neural networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pages 1692–1701,
2022. 2

[22] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang,
Zhouchen Lin, and Zhi-Quan Luo. Training high-
performance low-latency spiking neural networks by dif-
ferentiation on spike representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12444–12453, 2022. 2, 3, 4, 6

[23] Yoshifumi Nishi, Kumiko Nomura, Takao Marukame, and
Koichi Mizushima. Stochastic binary synapses having sig-
moidal cumulative distribution functions for unsupervised
learning with spike timing-dependent plasticity. Scientific
Reports, 11(1):1–12, 2021. 2

[24] Wachirawit Ponghiran and Kaushik Roy. Spiking neural net-
works with improved inherent recurrence dynamics for se-
quential learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8001–8008, 2022. 2

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in Neural Information Pro-
cessing Systems, 28, 2015. 1

[26] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda.
Towards spike-based machine intelligence with neuromor-
phic computing. Nature, 575(7784):607–617, 2019. 1

5990



[27] Xueyuan She, Saurabh Dash, and Saibal Mukhopadhyay. Se-
quence approximation using feedforward spiking neural net-
work for spatiotemporal learning: Theory and optimization
methods. In International Conference on Learning Repre-
sentations, 2021. 4

[28] Weihao Tan, Devdhar Patel, and Robert Kozma. Strategy and
benchmark for converting deep q-networks to event-driven
spiking neural networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 9816–9824,
2021. 2

[29] Guangzhi Tang, Neelesh Kumar, and Konstantinos P Mich-
mizos. Reinforcement co-learning of deep and spiking neural
networks for energy-efficient mapless navigation with neuro-
morphic hardware. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 6090–6097,
2020. 2

[30] Jianxiong Tang, Jianhuang Lai, Xiaohua Xie, Lingxiao Yang,
and Wei-Shi Zheng. Snn2ann: A fast and memory-efficient
training framework for spiking neural networks. arXiv
preprint arXiv:2206.09449, 2022. 6

[31] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kher-
adpisheh, Timothée Masquelier, and Anthony Maida. Deep
learning in spiking neural networks. Neural Networks,
111:47–63, 2019. 1

[32] John J Wade, Liam J McDaid, Jose A Santos, and Heather M
Sayers. Swat: A spiking neural network training algorithm
for classification problems. IEEE Transactions on Neural
Networks, 21(11):1817–1830, 2010. 2

[33] Zenghui Wang and Jun Zhang. Incremental pid controller-
based learning rate scheduler for stochastic gradient descent.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 6

[34] Hao Wu, Yueyi Zhang, Wenming Weng, Yongting Zhang,
Zhiwei Xiong, Zheng-Jun Zha, Xiaoyan Sun, and Feng Wu.
Training spiking neural networks with accumulated spiking
flow. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10320–10328, 2021. 2, 3, 5

[35] Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou
Li, and Kay Chen Tan. A tandem learning rule for effective
training and rapid inference of deep spiking neural networks.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021. 2

[36] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-
ing Shi. Direct training for spiking neural networks: Faster,
larger, better. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 33, pages 1311–1318, 2019. 2,
3

[37] Shuiying Xiang, Zhenxing Ren, Yahui Zhang, Ziwei Song,
Xingxing Guo, Genquan Han, and Yue Hao. Training a
multi-layer photonic spiking neural network with modified
supervised learning algorithm based on photonic stdp. IEEE
Journal of Selected Topics in Quantum Electronics, 27(2):1–
9, 2020. 2

[38] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision, pages 418–434, 2018. 1

[39] Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless
transfer learning for spiking neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35,
pages 10577–10584, 2021. 2, 6

[40] Zhixuan Zhang and Qi Liu. Spike-event-driven deep spiking
neural network with temporal encoding. IEEE Signal Pro-
cessing Letters, 28:484–488, 2021. 2

[41] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11062–11070, 2021. 2, 6

[42] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chan-
drasekaran, and Arindam Sanyal. Temporal-coded deep
spiking neural network with easy training and robust perfor-
mance. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11143–11151, 2021. 2

5991


