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Abstract

Partially annotated images are easy to obtain in multi-
label classification. However, unknown labels in partially
annotated images exacerbate the positive-negative imbal-
ance inherent in multi-label classification, which affects
supervised learning of known labels. Most current meth-
ods require sufficient image annotations, and do not focus
on the imbalance of the labels in the supervised training
phase. In this paper, we propose saliency regularization
(SR) for a novel self-training framework. In particular, we
model saliency on the class-specific maps, and strengthen
the saliency of object regions corresponding to the present
labels. Besides, we introduce consistency regularization to
mine unlabeled information to complement unknown labels
with the help of SR. It is verified to alleviate the negative
dominance caused by the imbalance, and achieve state-of-
the-art performance on Pascal VOC 2007, MS-COCO, VG-
200, and Openlmages V3.

1. Introduction

The multi-label classification task is a practical vision
task that has received much attention. It is widely used in
applications such as image retrieval and recommendation
systems. In recent years, significant progress has been made
in multi-label classification with the development of deep
neural networks [20, 30, 15, 11]. These efforts benefit from
network structure construction [35, 7, 8] and optimization
function design [38, 28, 14]. Meanwhile, the excellent per-
formance of a model is inseparable from a large-scale and
high-quality dataset. However, as the number of samples
and semantic concepts increases significantly, annotating all
possible labels for each image is very difficult. Thus, anno-
tating a large-scale multi-label benchmark with full labels
is very laborious and time-consuming, which poses chal-
lenges for multi-label classification. Collecting a partially
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Figure 1. Probability distribution of prediction on the MS-COCO
validation set from ResNet101 trained by BCE with (a) 10%, and
(b) 50% known labels on its training set. The y-axis represents
the number of all class ground-truths in each probability interval.
The positive-negative ratio of samples is same in the training sets
with different known proportions. It is obviously observed that the
number of misclassified positive labels in the interval [0,0.5] is
significantly higher when 10% known labels.
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annotated multi-label dataset is an alternative and feasible
strategy to solve the problem. For a partially annotated im-
age, a small subset of its labels is annotated by positive and
negative labels, and the rest labels are unknown. Partial
labeling saves time and labor costs considerably. This pa-
per focuses on how to learn deep neural network models on
multi-label datasets with partial labels.

To simplify the classification problem of partial label-
ing, unknown labels are ignored or treated as negative la-
bels [32, 17]. However, the mode of ignoring unknown la-
bels leads to higher entropy of unlabeled data and weakens
the generalization of the trained model. Treating unknown
labels as negative may reduce the entropy of unlabeled data,
which also introduces label noise into model training. The
self-training (ST) framework is proposed to deal with the
problems of generalization and label noise. Known labels
are utilized for training a model first, then the trained model
is used to generate pseudo-labels for unknown labels, and
at last, the model is trained by all labels again. The works
[12, 16, 6] exploit known labels to supervise training and
mine label correlations or instance similarities to comple-
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ment the unknown labels. The method [1] is based on class
distribution estimated by the trained model and label like-
lihood to select negative pseudo-labels for unknown labels.
These methods achieve remarkable performance in settings
with large proportions (e.g., >50%) of known labels. How-
ever, it is hard to capture label correlation and instance sim-
ilarity when the proportion of known labels is small (e.g.,
<30%) for the works [12, 16, 6]. The number of positive
labels is small in a low known proportion (e.g., 10%), and
the increase of negative pseudo-labels may exacerbate the
positive-negative imbalance of samples for the work [1].

Supervised learning with limited known labels, espe-
cially low known proportions, is important for self-training.
It determines the direction of model optimization and af-
fects the reliability of the generated pseudo-labels. The
known labels of each image in the training set contain fewer
positive labels and more negative labels, thus the classifier
of each class excels at classifying negative samples rather
than positive samples. As shown in both Fig. 1a and Fig. 1b,
negative samples are misclassified much less than positive
samples. Meanwhile, the error rate of positive samples is
higher in a low known proportion under the same positive-
negative ratio, namely, more unknown labels exacerbate the
imbalance in Fig. 1. The imbalance of label level makes
the spatial object regions of the present labels get less at-
tention, namely, the activation outputs of the object regions
are suppressed. Few works [1, 41] focus on the positive-
negative imbalance of the label level to improve supervised
learning. Through increasing the saliency of object regions
corresponding to the present labels at the spatial level, we
alleviate the negative dominance caused by the imbalance.

In this work, we design a novel ST framework based on
saliency regularization (SR), including supervised and un-
supervised learning modules. We model the saliency on
the class-specific maps (CSM). To alleviate the negative
dominance, we boil down an optimization problem about
strengthening the saliency of object regions corresponding
to the present labels. We transform the optimization prob-
lem into a regularization of logit space and prove that such
an operation can address the imbalance of easy and hard
samples. We introduce consistency regularization (CR) to
mine unlabeled information. SR will enlarge the probabili-
ties of possible positive labels from the weak augmentation
of an image, which helps to complement the unknown la-
bels for its strong augmentation. Our contributions can be
summarized as 1) We build a novel end-to-end ST frame-
work, which introduces CR to eliminate the restrictions
of pre-trained models and improves supervised learning to
adapt the model to different known label proportions. 2)
We propose SR to mitigate the negative dominance dur-
ing training, which is also verified to address the imbalance
of easy and hard samples. 3) Extensive experiments con-
ducted in simulated and real multi-label datasets show that

our method alleviates the negative dominance and achieves
state-of-the-art (SOTA) performance.

2. Related Work

Conventional methods. Due to the difficulty of annotating
multi-label data, the task of multi-label classification with
partial labels is getting more attention. Some early works
[33, 3, 36] design an independent binary classifier for each
class or treat unknown labels as negative labels. However,
these methods ignore correlations between labels and be-
tween instances, and are more likely to introduce false neg-
ative. Correlations are the key points for multi-label clas-
sification, thus several works are proposed to model corre-
lations of known labels to transfer information to unknown
labels. Low-rank regularization [39, 40] on the label matrix
is exploited to describe label-label correlations implicitly.
FastTag [4], and SSWL [10] learn a linear transformation
on the known label matrix for label-label correlations to re-
construct the complete labels. A mixed graph [37] is used
to construct a network of label dependencies, which is asso-
ciated with instance similarity, class co-occurrence, and se-
mantic hierarchy. Probabilistic models utilize dependencies
of latent variables to implicitly build relationships between
labels. [18] based on Bayesian networks, and [9] based on
sequential generative model exploit posterior inference to
predict unknown labels, where unknown labels are treated
as latent variables. It is difficult to integrate these methods
with deep neural networks to fine-tune the model.
Deep learning methods. Deep neural network models for
partial annotations are gradually being proposed. Durand
et al. [12] proposes the partial-BCE loss normalized by the
proportion of known labels to perform supervised training,
and introduce a Graph Neural Network (GNN) to model the
correlations between the categories. The pre-trained model
generates pseudo-labels through the curriculum learning
strategy. In [21], the image and label similarities based on
features from the pre-trained model are mined to measure
the closeness between each unknown label and annotated la-
bel. According to the closeness, pseudo-labels are assigned
for the unknown labels. As revealed in an interactive learn-
ing framework proposed by Huynh et al. [16], CNN training
and similarity learning of labels and images alternate with
each other and jointly promote model optimization. Sim-
ilarity learning provides pseudo-labels of unknown labels
for CNN training. Structured semantic transfer [60] learns
within-image label co-occurrence relationships and cross-
image feature similarities to generate pseudo-labels for un-
known labels. Decoupling semantic-aware features need
the pre-trained model. These methods depend on sufficient
known annotations, while relationships are difficult to cap-
ture when low proportions of known labels.
Semantic-aware representation blending [26] performs
the mixup [34] operation at the feature level after decou-
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Figure 2. An overall illustration of the proposed ST framework. Different data augmentations are fed into the Encoder to extract feature
maps, then go through Classification Head to obtain the class-specific maps (CSM). The Topk(-) operator is used to select the k maximum
values for each CSM as a regularizer which is added to the logits produced by global average pooling (GAP). Known labels and corre-
sponding possibilities are used for supervised learning. Based on the weak augmentation, pseudo-labeling (PL) is utilized to complement
unknown labels of the strong augmentation in the unsupervised learning.

pling the features of multiple categories from an image, us-
ing data augmentation to complement unknown labels. In
this work, we generate pseudo-labels for unknown labels
according to different augmentations of an image. As the
number of unknown labels increases, the positive-negative
imbalance in multi-label data is exacerbated [41]. This is
the focus of our work. Most of these works do not pay atten-
tion to the imbalance when training the model with known
labels. [1] adopts the asymmetric loss [28] to deal with the
imbalance, which considers the imbalance at the label level.

Our self-training framework is consistent with associ-
ated paradigms, including supervised training with known
labels and unsupervised training with pseudo-labels. Differ-
ent from these works, we propose saliency regularization to
alleviate the negative dominance on the spatial region, and
prove that such operation can address the imbalance of easy
and hard samples, which adapts to any known label propor-
tion. Meanwhile, we introduce consistency regularization
[31, 2] to complement unknown labels without pre-trained
models. Our supervised and unsupervised learning share
different data augmentations.

3. Self-Training for Partial Annotations
3.1. Problem Setting

In the setting of the partial-label problem of multi-label
learning, let D = {(I', y1), ..., (I, y™)} be a training set
which is partially annotated, where I’ is the i-th image and
y* represents its label vector. For each image, only a small
number of positive and negative labels can be observed,
many possible labels are missing. We denote the label vec-
tor of the i-th image by y* = {y%,...,y5} € {-1,0,1}¢,
in which C'is the number of categories and ¥’ is the label
of category c on image I*, y¢ € {—1,0, 1} means the label
is present (1), absent (-1), or unknown (0).

3.2. Motivation of Saliency Regularization

If the prediction bias of a true positive sample is gen-
erated by the negative dominance, then the activation of
the corresponding region in the spatial dimension is sup-
pressed. Meanwhile, under the condition of a low pro-
portion of known labels, a small number of positive labels
may lead to the regional overfitting of a class on some spe-
cific spatial regions. Limited generalization makes pseudo-
labels of unknown labels more likely to bias towards nega-
tive predictions. We expect to increase the saliency of object
regions as much as possible to mitigate the negative domi-
nance and enhance generalization during training. Namely,
reinforcing the activation of the object region correspond-
ing to a present label is desired, thus we use heat maps to
model the saliency of the object region.

3.3. Saliency Regularization

As shown in Fig. 2, different from traditional network
architectures [30, 15], the features from the feature encoder
go through a 1 x 1 convolution classification head before
performing the pooling operation, which is for getting class-
specific maps (CSM). Each pixel on a CSM is the score of
the current category. The output of the feature encoder on
image I is denoted as f € RW>*#*D in which D is the
number of channels, W and H are the width and the height.
We feed f into the classification head to extract the common
heat map M, € R" < of category c as follows:

Relu(A,) T
Mi=—F—F—F+F— A . =0_f 1
¢ max(Relu(A.))" bet, M

where 6, is the c-th classification head weights and A, €
RW>*H js the CSM of category c. M., is based on CAM
m. = Relu(A.) [42], where m, indicates the discrimina-
tive object region for category c. It is normalized to [0, 1]
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by the maximum value of m, to represent the importance
of each pixel for category c.

The corresponding object region should be salient (i.e.,
the object region is activated) if a label is present, while
suppressive (i.e., all-zero on the heat map) if the label is
absent. The resulting optimization problem is as

H%in | Relu(Ac)1, ye = —1,

Jo = 2)
max [[Relu(Ad)r, ye = 1,

where 6 is the parameters of whole model. To simplify the
problem, we only optimize values selected by the Topk(-)
operator (i.e., selecting £ maximum values) on A, Jy is as

1
Se = k z;:laC,whv Qewh € Topk(A.),

min s¢, Y. = —1, 3)
Jo=1 °

max Sc, Yo = 1,

where a. ., 1 the value of A, at spatial position (w, h).
Because of different label cases, we consider incorporating
Jp into the optimization of L., where L. goes for L or L_
based on known y. (L+ = —log(p.), L— = —log(1—p¢)).
Predicted probability p. can be computed by

1
Pc = J(ac)v Qe = W < H Z;ac,wha Qc,wh € Aca 4)

where o(+) is Sigmoid activation function. When y, is 1,
pc is optimized towards 1, and a. is close to the positive
infinity direction, which is consistent with the optimization
direction of Jy. When y. is -1, p. is optimized towards O,
and a. is close to the negative infinity direction, which is
also consistent with the optimization direction of Jy. Thus,
we simplified the optimization of Jy, as follows:

Pe = 0(ac + ase), )

where « is a scalar parameter to control the contribution of
s¢c. We call s, the saliency regularizer. The optimizations of
a. and s, from the same A . are correlated (a. < s.). When
optimizing L. according to p., it implicitly optimizes Jy.

For balancing easy and hard samples, Focal loss [23] and
Asymmetric loss [28] add the exponential weight regarding
peto Le (Ly = —(1 = pe)7*log(pe), L = —pl~log(1l —
De)s V4> Y- are the focusing parameters) as a modulating
factor to adjust the contributions of hard and easy samples.
Differently, as in Eq. (5), adding the saliency regularizer s,
to the logit a. can also address the imbalance of easy and
hard samples, which is proved in Proposition 1.

Proposition 1 (Logit shifting). A sample with |y, — p.| —
0 is easy to classify and |y, — p.| — 1 is hard to classify,

where y!, = 1 for y. = 1, and y. = 0 for y. = —1. s. as an
adaptive margin on the logit a. adjusts g{;f' of category c,

thus addressing the imbalance of easy and hard samples.

Due to the impact of the modulating factor, Focal loss
pays more attention to hard samples (e.g.,y. = 1,p. €
[0,0.2]) and less attention to a large proportion of semi-
hard samples [41] (e.g.,y. = 1,p. € [0.3,0.5]) when
Y+ = v— = 2. Generally, when a hard positive sample
is easily classified by the model, s. < 0 (p. — 0) changes
to s > 0 (p. — 1). s. as a margin is dynamically adjusted
in Eq. (5), which makes the gradient change smoothly from
large to small. For semi-hard positive samples, object re-
gions may be not activated or not significantly activated,
such that s, is less than O or a small positive value. Their
contribution to the loss remains significant, thus they are
more likely to be correctly identified by the model. It is
verified in Fig. 5.

In general, the object regions of a present class are dis-
tributed in different pixel locations because of different
parts or multiple objects. It is reasonable that the top &
values are selected to help SR focus on more locations of
an image. The multi-region saliency enhancement allevi-
ates the negative dominance and regional overfitting phe-
nomenon. We prove that SR makes the saliency enhance-
ment different between non-object and object regions from
the perspective of gradient, as detailed in Proposition 2.

Proposition 2 (Gradient differentiation). For a conven-
tional loss L. (i.e., BCE, Focal loss or Asymmetric loss)
of category c, it propagates the same gradient % to
each location (w, h) on the c-th CSM. Whereas SR makes
the gradient of a location (w,h) € Q. = {(w, h)|acwn €

Topk(A.)} discriminative with other locations.

The detailed proofs of Proposition 1 and Proposition 2
are presented in the supplementary material.

3.4. Consistency Regularization

In partial-label learning, the predictions of unlabeled
data are highly uncertain, thus the density of data points
near the decision boundaries is greater. To minimize the
density of unlabeled data points near the decision bound-
aries, pseudo-labeling (PL) is a standard method. It selects
training targets based on the high confidence of prediction
of the model for unlabeled data. In a single-label classi-
fication task, the class with the largest predicted probabil-
ity is selected to generate a pseudo-label for a given image.
However, for the multi-label case, the generation of pseudo-
labels is determined by a threshold.

PL is used to complement unknown labels of several
multi-label datasets in the works [12, 29]. Their methods
can be formalized as

e = Lu(pe) > 7] = Lu(l - pc) > 7], (0)
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where the c-th class is unknown and w(-) is a mapping
function with respect to p., such as identity transformation,
certainty measure and others. 1[-] is an indicator function
whose value is 1 if the condition is established and is O oth-
erwise. 7 is a threshold to determine whether unknown la-
bels are positive, negative, or unknown. The model’s perfor-
mance is poorly improved when u(-) is identity transforma-
tion. In order to select correct pseudo-labels, the threshold
T is set to be very large so that the selected pseudo-labels
optimize the model to a lesser extent. Meanwhile, training
on self-generated labels can easily lead to overfitting.

Following the semi-supervised work [31], the assump-
tion that different data augmentations of the same image
should be consistent in the label space is proposed. We use
both consitency regularization (CR) and PL to complement
the unknown labels. The unknown label with y. = 0 is
assigned as

e =1lpd 2 7] = 1[1 —p = 7], )

which depends on the relationship between the threshold 7
and the probability p? of the weak augmentation A,,(I).
The value of . is zero when ¢ belongs to N' = {c|y.. # 0}.
The strong view A, (1) is fed into the neural network, then
its output is supervised by y for consistency training. Be-
cause the network outputs of strong and weak augmenta-
tions from the same image are discriminative, the gener-
ated pseudo-labels drive further model optimization. Mean-
while, due to the use of data-augmented variants, the phe-
nomenon of overfitting is alleviated.

For unknown labels of weak augmentation, the negative
dominance makes it easier to predict possible negative la-
bels, while possible positive labels are more difficult to pre-
dict. More negative pseudo-labels may worsen the imbal-
ance. Saliency regularization (SR) will enlarge the proba-
bilities to help complement possible positive labels. If an
object exists on the image, s. > 0 is very likely to hold,
so that a larger p. (P. = m) is obtained. The
saliency regularizer s, may allow more positive labels to be
selected. The pseudo-label . is further expressed as

Je = 1[py > 7] — 1[1 — p¥ > 7]. ®)

3.5. Optimization

The optimization of the model is based on the mini-
mization of two losses, including a supervised loss £, on
known labels, and an unsupervised loss £, on unknown
labels. Data augmentation A(-) includes weak augmenta-
tion A, (-) and strong augmentation A(-). Different data
augmentations are shared by supervised and unsupervised
learning. Given an image I%, let p* = p(y|.A(I?)) be the
predicted conditional probability distribution on the aug-
mented image. p’, is the c-th element of the distribution p'.

Following previous work, I(p?, y*) is defined as

C

1 .
S [y log(p)
S Tyl ; v )

+ Lpyi=—1log(1 — pL)],

I(p',y') =

which is the binary cross entropy (BCE) loss between the
predictions of the model and partial ground-truth labels.
Saliency regularization (SR) is introduced, so that the su-
pervised loss L is defined as

N
Lo=Y 10"y (10)
1=1

The pseudo-label hard vector 3 is computed from the pre-
dicted vector p>* according to Eq. (8). The unsupervised
loss £, is defined as

L,=) 1",9"), (11)

i=1

where p** and p** are the predicted vector of A, (I*) and
A,(I?). Finally, the overall optimization objective is

L=Ls+ L, (12)

4. Experiments
4.1. Experimental Setting

Datasets. Following previous works [12, 6, 26], we exper-
iment on the Pascal VOC 2007 [13], MS-COCO [24], and
Visual Genome [19]. The datasets above are fully anno-
tated, while this work focuses on partially annotated multi-
label. Thus we follow the earlier works to randomly drop a
certain proportion of labels to simulate partial annotations.
The proportions of dropped labels are set from 90% to 10%,
thus 10% to 90% labels are known. At the same time,
we also conduct experiments on the real partially annotated
dataset Openlmages V3 [22]. The details of all datasets are
shown in the supplementary material.

Evaluation metrics. The mean average precision (mAP)
over all categories is adopted to evaluate the performance
for different proportions of known labels. To visually com-
pare the performance of different methods, we compute the
average mAP of different proportions of known labels, sim-
ilar to [0, 26]. We also use other standard multi-label clas-
sification metrics to evaluate the performance of a method
more comprehensively, including overall and per-class pre-
cision, recall, and F1-measure (i.e., OP, CP, OR, CR, OF1,
CF1). The calculation of these metrics and detailed results
are shown in the supplementary material.

Implementation details. For a fair comparison with pre-
vious methods, we employ ResNet-101 [15] pre-trained on
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Figure 3. The mAP of our self-training (ST) framework and previous SOTA methods for multi-label classification with partial labels at
known labels of 10% to 90% on the (a) MS-COCO, (b) VG-200, and (c) Pascal VOC 2007.

Methods MS-COCO VG-200 Pascal VOC 2007
Avg. mAP(1)  Avg. OF1(f) Avg. CFI(1) [ Avg. mAP(f) Avg. OF1(f) Avg. CFI(1) [ Avg. mAP(f) Avg. OF1(f) Avg. CFI(})

SSGRLI[7] 74.1 73.9 68.1 39.7 37.8 26.1 89.5 87.7 84.5
GCN-ML[8] 74.4 73.1 68.4 39.3 38.7 25.6 88.9 87.3 84.6
PLCL[12] 75.5 74.9 70.2 44.1 45.8 39.3 924 88.3 86.0
SPLC[41] 74.9 68.1 66.6 45.1 439 41.1 90.4 83.2 81.6
SST[6] 76.7 75.8 71.2 41.8 39.9 30.8 90.4 88.2 85.6
HST[5] 77.9 76.7 72.6 44.8 46.3 37.9 90.9 88.4 86.1
SARB[26] 77.9 76.5 72.2 45.6 45.0 374 90.7 88.4 859
SARB*[27] 78.4 76.8 72.7 46.0 45.1 37.7 91.5 88.3 86.0
CSL[!] 76.3 75.1 71.5 46.0 54.0 48.0 91.7 85.9 84.1
Ours 81.0 79.0 75.7 49.2 514 45.1 93.7 88.9 86.2

Table 1. The average mAP, OF1, and CF1 of our ST framework and previous SOTA methods under the partial-label setting on the MS-
COCO, VG-200, and Pascal VOC 2007 datasets. The best results are marked in bold, and the second-best results are underlined.

ImageNet as the feature encoder to extract feature maps.
The classification head is initialized randomly. We use SGD
with momentum 0.9 and weight decay of 0.0001, set batch
size to 32. We set « = 0.5, k = 5, 7 = 0.6. Wider applica-
tions (e.g., fully-supervised mode, semi-supervised mode,
and other architectures) and more details are shown in the
supplementary material.

4.2. Performance Comparison

To evaluate the effectiveness of the proposed ST frame-
work, we compare it with the previous full-label approaches
and the current partial-label methods. The typical full-label
approaches include SSGRL [7] and GCN-ML [8]. They
use GNN to model label correlations. The adjacency matrix
is counted from the co-occurrence information of a multi-
label training set with partial labels. Following [6, 26], their
performance is reported under the partial-label setting. The
partial-label methods include Partial Loss and Curriculum
Labeling (PLCL) [12], SPLC [41], SST [6], SARB [26] and
CSL [1]. HST [5] and SARB* [27] are extensions of SST
and SARB respectively. PLCL and SPLC are similar to our
pseudo-labeling, but differ in the labeling strategies. PLCL
and SPLC generate pseudo-labels on the weak augmenta-
tion of an image, one for intervalic labeling and the other
for immediate labeling. Our strategy is immediate labeling
based on different augmentations from the same image.

Performance on MS-COCO. Performance comparisons
on MS-COCO are presented in Fig. 3a and Tab. 1. As shown
in Fig. 3a, the mAP obtained by our method is significantly
better than the other methods for different known label pro-
portions, especially the low proportions. We use additional
metrics to evaluate the effectiveness of different methods in
Tab. 1. Obviously, our method obtains the average mAP,
OF1, and CF1 of 81.0%, 79.0%, and 75.7%, outperforming
the best partial-label method SARB* by 2.6%, 2.2%, and
3.0%. In Fig. 3a, SSGRL and GCN-ML achieve better per-
formance when the proportion of known labels is greater
than 50%. However, they perform poorly in low propor-
tions, and the main reason may be the difference between
the adjacency matrix counted on the partial labels with the
co-occurrence relationships inherent in the dataset. It also
shows that the full-label approaches are not very suitable for
solving the partial-label problem.

Performance on VG-200. We can see from Fig. 3b that
there are significant differences in the performance of the
different methods with various known label proportions.
Our method has significant performance advantages regard-
ing the mAP over different known proportion settings. As
shown in Tab. 1, the average mAP of our method is 49.2%,
which is 3.2% higher than the existing SOTA method
SARB* and CSL. Our method performs not as well as the
CSL on both OF1 and CF1, but is still far better than the
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Known S-BCE BN-BCE PL CR(w/0SR) SR CR(w/SR) mAP(1) OFI(t) CFI(1)

v 617 643 535 T 0% 8.5
v 70.7 707 659 0%
v v 70.8 70.4 65.2 81 78.0
10% v v 72.4 73.2 68.0 775
v ' 75.8 73.8 69.4 80 ’
v v v 76.2 758 712 % % 77.0 %
v v v 772 766 721 E oo £ es 0%
' 73.1 734 68.0
v 760 752 707 78 6.0
v v 762 751 705 5.5 '//’\‘\,\‘
30% v v 77.3 76.6 72.1 77
v v 79.7 78.1 74.2 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9
v v v 79.3 711 731 <« T
v v v 80.3 78.6 74.7 (a) (b)
v , s e e Figure 4. Analysis of (a) hyperparamater «, and (b) hyperpara-
v v 774 760 713 mater 7 on MS-COCO with 20% and 50% known labels.
50% v v 78.6 77.4 72.9
v v 81.3 79.0 76.2
' v ' 80.8 185 755 .
v v v sL8 794 767 Known Proportion 1 2 3 4 5
. S. .
T, L 20% 7843 78.55 78.59 78.70 78.73
oY 780 763 719 50% 80.90 81.27 81.21 81.27 81.25
70% v v 79.1 77.8 73.4 . _
5 . j gig ;gg ;gz Table 3. Analysis of hyperparameter £ on MS-COCO with 20%
v v v 821 7198 767 and 50% known labels when o = 0.5.
v 77.7 76.6 72.2
' 78.1 76.9 72.3
' ' 78.3 76.9 722 . . 3 . . .
90% v v , P2 e T4 ization (SR) and consistency regularization (CR) illustrates
v v v 821 794 766 the validity of our novel self-training framework. Also, we
' ' v 82.7 80.0 714

Table 2. Ablation study on MS-COCO with different proportions
of known labels. CR (w/o SR) and CR (w/ SR) respectively repre-
sent our framework containing CR without SR and with SR.

other methods. Our method outperforms PLCL by 5.1%,
5.6%, and 5.8%, and outperforms SPLC by 4.1%, 7.5%,
and 4.0% on average mAP, OF1, and CF]1, respectively.
Performance on Pascal VOC 2007. As shown in Fig. 3c,
the methods described above all achieve impressive perfor-
mance with more than 40% known labels. When the known
proportion is 10%, the performance degradation of these
methods is obvious. However, the performance degradation
of our method is not significant, not much different from the
performance of 90% known labels. This fully demonstrates
the effectiveness of our method in different known propor-
tions. Our method achieves good results on the additional
metrics average mAP, OF1, and CF1 in Tab. 1.

4.3. Method Analysis

In this section, we perform ablative studies on MS-
COCO with the various proportions of known labels. In
Tab. 2, the performance of ResNetl01 with standard bi-
nary cross entropy (S-BCE) is used as the baseline. S-BCE
is normalized by the number of classes, which makes the
back-propagated gradient small. To overcome this problem,
we perform batch normalization for BCE (BN-BCE) by the
number of known labels from a batch. BN-BCE is differ-
ent from partial-BCE [12] normalized by the proportion of
known labels and Asymmetric Loss [ 1] summed by the en-
tire batch loss. The combination of BN-BCE and pseudo-
labeling (PL) shows the contribution of the conventional
self-training framework. The analysis of saliency regular-

analyze the effect of hyperparameters of both on the per-
formance. The choice of hyperparameters is based on a
comprehensive consideration of the performance with two
known proportions. The probability distribution is exploited
to analyze SR in depth.

Saliency regularization analysis. We analyze the contri-
bution of SR to supervised learning. As shown in Tab. 2,
SR is compared with BN-BCE at the known proportion of
10%, 30%, 50%, 70%, and 90%. SR increases sequentially
by 5.1%, 3.7%, 4.0%, 4.0%, and 4.5% for mAP in differ-
ent proportions. The performance gain of SR continues to
be significant for different known proportions. The gain of
SR is the largest when the known proportion is 10%. It is
verified that SR can alleviate the negative dominance exac-
erbated by more unknown labels and improve the general-
ization of the model. The same is true for the other metrics
(i.e., OF1, CF1). This fully reflects the fact that our SR
adapts to arbitrary known proportions.

The hyperparameters « and k are critical for SR. « deter-
mines the importance of SR in the logit space. k determines
the extent of saliency region optimization over the CSM.
With the settings of 20% and 50% known labels, we conduct
experiments in the range of 0.1 to 0.5 for the variation of .
As shown in Fig. 4a, we set a to 0.5 after balancing the per-
formance of two known proportion settings. We explore the
effect of k in the range of 1 to 5 on the model performance
with « = 0.5. As shown in Tab. 3, with k increasing, mAP
increases at 20% known proportion, however, mAP gain is
stable for 50%. Focusing on larger regions in low known
proportions favors increased generalizability. Considering
comprehensively, it is appropriate to choose k = 5.
Consistency regularization analysis. We use CR to com-
plement the unknown labels. As shown in Tab. 2, com-
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Figure 5. Probability distributions of predictions from different
methods on the COCO-10% (MS-COCO with 10% known labels)
training set (left) and MS-COCO validation set (right). Note that
(a) and (b) are obtained from the model trained with BN-BCE,
(c) and (d) are obtained from the model trained with Focal loss,
and (e) and (f) are obtained from the model trained by SR with
BN-BCE. The y-axis represents the number of ground-truths from
whole dataset in each probability interval. Due to an order of mag-
nitude difference, the number of missing (unknown) labels corre-
sponds to the right axis, and the number of positive and negative
labels corresponds to the left axis in (a), (c), and (e).

pared with BN-BCE, CR (w/o SR) increases by 1.7%, 1.3%,
1.3%, 1.3%, 1.1% on mAP with the increase of the known
proportion. OF1 and CF1 increase by 2.5%, 2.1% at 10%
known proportion, respectively. CR is more effective with
a lower known proportion, because it improves overfitting
caused by a few known labels. To illustrate the benefit
of SR to CR, CR without SR and with SR are explored
in unsupervised learning. Compared with the performance
of SR, the addition of CR (w/o SR) degrades performance
under the majority of known proportions, where pseudo-
labeling provides more negative labels and limited positive
labels leading to weakened model generalization. With dif-
ferent known proportions, the addition of CR (w/ SR) im-
proves performance, where it makes more true positive la-
bels recalled and reduces prediction bias for unknown la-
bels. Meanwhile, we observe that CR (w/ SR) has less and
less impact on the overall performance with the decline of

Methods ‘ Gl G2 G3 G4 G5 AlGs

Latent Noise [25] | 69.4 704 748 79.2 85.5 75.9
CNN-RNN [35] | 68.8 69.7 742 785 846 752
Curriculum [12] | 704 713 762 805 868 77.1
IMCL [16] 71.0 726 776 81.8 873 78.1
CSL[1] 746 758 77.6 81.8 90.1  80.0
Ours 760 777 795 831 912 815
Table 4. Results on Openlmages V3. Comparing the mAP score
based on our framework and existing methods with partial labels.

unknown proportions.

The hyperparameter 7 is an important threshold for CR.
Setting it too small may introduce label noise, and setting
it too large may miss many true labels. In order to select
the appropriate threshold, we conduct experiments in two
different known proportions. The performance of 7 from
0.5 to 0.9 is shown in Fig. 4b. The trend of mAP is gener-
ally consistent when 20% and 50% known labels. The best
performance is obtained when 7 = 0.6.

Probability distribution analysis. To further demonstrate
the effectiveness of SR, we use its probability distribu-
tions on the COCO-10% training set and the validation set
to compare with BN-BCE and Focal loss. From Figs. 5a
and Se, SR recalls more positives than BN-BCE. This phe-
nomenon is also the same in Figs. 5b and 5f, which ver-
ifies the ability of SR to alleviate the negative dominance
caused by label imbalance. Comparing Figs. 5a and 5c, Fo-
cal loss decreases the number of hard positives and nega-
tives (p < 0.2 and p > 0.8, p denotes the variable proba-
bility). Like Focal loss, SR also decreases hard positives
and negatives in the training in Fig. Se, while obviously
decreasing more semi-hard positive and negative samples
(p€[0.2,0.5] and p€[0.5, 0.8]) than Focal loss. SR slightly
reduces hard samples than BN-BCE in Fig. 5f. For missing
labels, we only focus on the results of the training set. As
shown in Fig. 5c, missing labels are not well divided on the
model trained with Focal loss. The SR-based trained model
can better distinguish missing labels in Fig. Se. This fa-
cilitates learning better decision boundaries and performing
well PL for unknown labels. It is also verified that SR ob-
tains the best differentiation on the validation set in Fig. 5f.

4.4. Results on Openlmages V3

Following the work [16], we use the same experimental
setup, including the ResNet-101 [15] backbone and evalu-
ation metrics, to make a fair comparison with the existing
results. We select several typical methods as baselines to
compare with our approach. These methods include Latent
Noise [25], CNN-RNN [35], Curriculum [12], IMCL [16],
and CSL [ 1], which cover label dependency modeling, label
correcting, intervalic labeling, and selective labeling. Open-
Images V3 contains few known labels, and it is not friendly
to CNN-RNN and IMCL based on label dependency model-
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ing. Latent Noise based on label correcting and Curriculum
Labeling based on intervalic labeling do not consider the
imbalance, easily introducing noise for labeling unknown
labels. Our method and CSL consider the positive-negative
imbalance for supervised learning with known labels, both
achieving better performance in Tab. 4. A more comprehen-
sive comparison of results is detailed in the supplementary
material.

5. Conclusion

In this paper, we design a novel self-training framework,
which consists of saliency regularization to alleviate the
negative dominance caused by label imbalance in super-
vised learning, and consistency regularization to mine unla-
beled information to complement unknown labels with the
help of saliency regularization for unsupervised learning.
We perform extensive experiments on the simulated multi-
label datasets with partial labels (i.e., MS-COCO, VG-200,
VOC 2007) and the real large-scale dataset Openlmages V3
to demonstrate the effectiveness of our method.
Limitation. Our method is applicable to the setting where
the known labels are positive and negative, and not to the
setting where the known labels are only positive. Label cor-
relation and instance similarity are also not considered.
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