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Abstract

Robust 3D perception under corruption has become an
essential task for the realm of 3D vision. While current data
augmentation techniques usually perform random transfor-
mations on all point cloud objects in an offline way and
ignore the structure of the samples, resulting in over-or-
under enhancement. In this work, we propose an alter-
native to make sample-adaptive transformations based on
the structure of the sample to cope with potential corrup-
tion via an auto-augmentation framework, named as Adapt-
Point. Specially, we leverage a imitator, consisting of a
Deformation Controller and a Mask Controller, respec-
tively in charge of predicting deformation parameters and
producing a per-point mask, based on the intrinsic struc-
tural information of the input point cloud, and then con-
duct corruption simulations on top. Then a discriminator
is utilized to prevent the generation of excessive corrup-
tion that deviates from the original data distribution. In
addition, a perception-guidance feedback mechanism is in-
corporated to guide the generation of samples with appro-
priate difficulty level. Furthermore, to address the paucity
of real-world corrupted point cloud, we also introduce a
new dataset ScanObjectNN-C, that exhibits greater simi-
larity to actual data in real-world environments, especially
when contrasted with preceding CAD datasets. Experi-
ments show that our method achieves state-of-the-art results
on multiple corruption benchmarks, including ModelNet-C,
our ScanObjectNN-C, and ShapeNet-C.

1. Introduction

3D vision has gained attention for its potential applica-

tions in robotics and autonomous driving. Existing meth-

ods [14, 15, 22, 16] primarily focused on clean data [26, 1]

with few corruptions, whereas practical applications often

entail numerous corruptions. Consequently, these models

exhibit poor performance in such scenarios. As such, im-
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Figure 1. Workflow of AdaptPoint. The AdaptPoint framework

involves a co-evolving strategy where the imitator, discriminator,

and point cloud classifier are jointly trained. During the training

process, the imitator is trained to transform clean data into real-

istic corruptions while receiving feedback and guidance from the

classifier and discriminator, respectively.

proving the robustness of point cloud models against cor-

ruption remains a crucial but challenging problem.

To enhance the model’s resistance to corruption, a fre-

quently employed technique in prior studies is data augmen-

tation [7, 9, 18]. Despite their effectiveness, these methods

are subject to two common limitations. Firstly, these offline

methods fail to consider the structure of the classifier, which

may lead to the generation of samples that are not benefi-

cial for enhancing model robustness. Additionally, they of-

ten overlook intrinsic features of the data and apply random

transformations to all samples, resulting in augmentations

that are either overly difficult or overly simplistic.

To tackle the issues at hand, we introduce a new auto-

augmentation framework, AdaptPoint, that is specifically

tailored to generate augmented samples that consider the

inherent structure of input point cloud. At the heart of our

proposed method lies the sample-adaptive imitator network,

which is designed to generate point cloud that are represen-

tative of real-world scenarios. It first extracts local geomet-

ric features from the input point cloud, resulting in a subset

of points that encode these features. Subsequently, the imi-

tator network is divided into two branches, namely the De-
formation Controller and the Mask Controller. The for-

mer module, is tasked with modifying the point cloud struc-
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ture by incorporating the interactions between local regions

and predicting the deformation parameters for specific local

areas. On the other hand, the Mask Controller, is responsi-

ble for selectively removing certain points by leveraging the

overall structural information of the point cloud and gener-

ating a per-point mask. Finally, the deformation and mask

parameters are fed into a corruption simulator to generate a

corrupted point cloud. The design of the deformation and

mask mechanisms endows the imitator with the ability to

simulate most real-world corruptions.

The sample-adaptive imitator designed has an impres-

sive capability to generate samples that closely resemble

real-world corruptions. The following problem to be con-

sidered is how to provide sufficient guidance to the imitator

network to ensure: i) the generated samples conform to the

real point cloud distribution; and ii) generating the samples

with appropriate difficulty for classifier training. To achieve

these objectives, we introduce a discriminator and a classi-

fier. The discriminator is used to distinguish between the

distributions of clean and augmented samples, thereby pre-

venting the generation of excessive corruption that deviates

from the original data distribution. On the other hand, the

classifier is employed to provide classification error feed-

back to guide the imitator network in generating samples

with an appropriate level of difficulty. These three key com-

ponents are integrated into the proposed AdaptPoint frame-

work, as illustrated in Fig. 1. By jointly optimizing the im-

itator with a point cloud discriminator and classifier, our

framework progressively generates corrupted data, thereby

enhancing the model’s robustness against corruption.

Current datasets for point cloud corruption evalua-

tion [18, 17] are largely limited to CAD models, which fail

to capture the variety of real-world corruptions encountered

in practice and may hinder research progress in point cloud

robustness. To bridge this gap, we present a new point cloud

corruption dataset, namely ScanObjectNN-C, which is cu-

rated by collecting real-world point clouds from ScanOb-

jectNN [20] dataset, along with corresponding annotations

and five types of corruptions: “Jitter”,“Drop Global/Local”,

“Add Global/Local”, “Scale”, and “Rotate” [18].

The effectiveness of AdaptPoint is validated through

extensive experimentation on diverse datasets such as

ModelNet-C [18], ShapeNet-C[17], and our more challeng-

ing ScanObjectNN-C. Our proposed AdaptPoint achieves

state-of-the-art results on these datasets, indicating its ca-

pability to alleviate the negative influence of data corrup-

tions on point cloud perception performance. Furthermore,

our method achieves competitive results in defending point

cloud attacks, indicating its generality and effectiveness in

handling different types of corruption scenarios.

The main contributions of our work are as follows:

• We present a new auto-augmentation framework,

AdaptPoint, which is tailored for point cloud recog-

nition in the presence of real-world corruptions.

• We propose a novel sample-adaptive imitator network

that can simulate various types of realistic corruptions

by leveraging the intrinsic characteristics of input.

• We construct a real-world point cloud corruption

dataset ScanObjectNN-C, which can facilitate research

on real-world point cloud corruption.

• We establish new state-of-the-art results on several

corruption benchmarks.

2. Related Work
Deep Learning on Point Cloud Corruption. Despite the

efficacy of existing models in point cloud perception [14,

15, 12, 16, 24, 29, 22], they remain vulnerable to corruption.

Recent research has highlighted the increasing importance

of mitigating point cloud corruption [18, 17, 7, 9]. Kim

et al.[7] proposed PointWolf, which enhances point cloud

model robustness using non-rigid deformation, while Lee

et al.[9] proposed RSMix, which generates mixed samples

by rigidly transforming two point clouds. Ren et al.[18] pro-

posed WOLFMix, which combines PointWOLF and RSmix

to further enhance model robustness. Additionally, Ren et

al.[17] proposed an attention-based backbone RPC for point

cloud corruption. Although these methods have shown im-

provement in model robustness against corruption to some

extent, they may not perform well on real-world datasets.

Our proposed online auto-augmentation framework, Adapt-

Point, provides a solution to this vulnerability.

Data Augmentation on Point Cloud. Data augmentation

has become widely accepted in the deep learning com-

munity for enhancing the generalization performance of

deep neural networks. However, traditional data augmen-

tation techniques such as random scaling, rotation, and jit-

ter have limitations in improving the capability of mod-

els for point cloud analysis. To overcome this, advanced

data augmentation techniques have been proposed in recent

studies, such as PointAugment [10], PointMixup [2], and

PointWOLF [7]. Nevertheless, PointMixup [2] and Point-

WOLF [7] primarily perform pre-defined transformations,

and PointAugment [10] only learns sample-wise global

transformations while neglecting the significance of local

geometry in point cloud. In this paper, we introduce a

novel auto-augmentation framework for combating corrup-

tions that can adjust augmentations according to both global

and local features of point clouds, as well as the current ca-

pability of the model.

2D and 3D Robustness Benchmarks. Deep neural net-

works are known to be susceptible to corruption in data. To

improve the robustness of these networks, ImageNet-C [6]

was introduced, which corrupts the test set of ImageNet [3]

using simulated corruptions such as motion blur. Simi-

larly, two benchmarks for robust point cloud recognition un-

der corruptions were introduced with ModelNet-C [18] and
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Figure 2. The overall architecture of sample-adaptive Imitator. It initially leverages a Feature Extractor to extract local geometric

features from the input point cloud. Subsequently, the Deformation Controller and Mask Controller modules are employed to predict

deformation parameters specific to multiple anchors and generate a mask for the entire point cloud, respectively. A Corruption Simulator

is then employed to apply corresponding transformations and masks to the input point cloud, resulting in an augmented point cloud.

ShapeNet-C [17]. However, these two datasets are largely

limited to CAD models, which fail to capture the variety of

real-world corruptions encountered in practice and may hin-

der research progress in point cloud robustness. To bridge

this gap, we present a novel point cloud corruption dataset,

namely ScanObjectNN-C.

3. Method
Given an input point cloud P ∈ R

N×3, our AdaptPoint

aims to produce a corresponding corrupted point cloud P ′ ∈
R

N×3 based on the structural characteristics of P for im-

proving the robustness of the classifier against corruptions.

This is made possible through introducing a corruption imi-

tator, which is jointly optimized with a discriminator along-

side the classifier. Specifically, the imitator simulates com-

mon operations of corruptions in most real-life scenarios to

ensure the plausibility. The discriminator helps weaken the

generation of excessive corruption which is far away from

raw data distribution. The classifier provides instant feed-

back and guide imitator to generate samples with suitable

difficulty. These three key components are integrated into a

self-contained framework and co-evolve as the training pro-

ceeds. With raw clean data as input, AdaptPoint progres-

sively generates and refines corresponding corrupted data

and robust classifier, which in turn reinforces all compo-

nents in the loop.

3.1. Sample-adaptive Imitator

The proposed sample-adaptive imitator workflow is pre-

sented in Fig. 2, consisting of four key modules: i) the Fea-

ture Extractor, implemented by PointNet++, captures local

geometric features from the input point cloud P , and out-

puts N ′ sampled points G ∈ R
N ′×3 with corresponding

features F = {fj |j = 1, ..., N ′} ∈ R
N ′×C ; ii) the Defor-

mation Controller that responsible for capturing the interac-

tions between selected anchor points and predicting defor-

mation parameters specific to each anchor point, (iii) the

Mask Controller that takes into consideration the overall

structural information of the point cloud and predicts a per-

point mask, and (iv) the Corruption Simulator that utilizes

the predicted parameters and mask to apply transformations

and occlusions to the input point cloud.

3.1.1 Deformation Controller

The Deformation Controller takes point cloud P and ex-

tracted feature F as input, captures region features and

enables multiple region transformations, thus generat-

ing deformation for point cloud by a convex combina-

tion of multiple locally-defined transformations. To this

end, we first select M anchor points from P and ag-

gregate local features centered on these anchor points,

then establish the inner connections between them, fi-

nally predict deformation parameters, specifically for scal-

ing γsca =
{
γi
sca|i = 1, ...,M

} ∈ R
M×3, rotation γrot ={

γi
rot|i = 1, ...,M

} ∈ R
M×3 and translation γtrl ={

γi
trl|i = 1, ...,M

} ∈ R
M×3 .

Per-anchor Feature aggregation. In this step, a set of M
anchor points D ∈ R

M×3 are initially selected from P , us-

ing the Farthest Point Sampling (FPS) algorithm, serving as

the basis for the subsequent anchor-wise deformation pro-
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cess, where each anchor is independently transformed. For

the i-th anchor, we select its K-nearest neighbors from G
and learns its local feature representation:

hi = A
j=1,··· ,K

{Φ (fi,j)} ∈ R
1×C , (1)

where fi,j is the j-th neighbor point feature of i-th an-

chor point. Φ(·) is implemented by multi-layer perceptron

(MLP). A(·) denotes a symmetric function, e.g., max pool-

ing, to aggregate encoded point features. As a result, anchor

features H = {hi|i = 1, ...,M} ∈ R
M×C are obtained.

Cross-anchor Feature Interaction. In pursuit of maintain-

ing the cohesion of the comprehensive deformation, the mu-

tual correlation of local transformations corresponding to

each anchor set holds substantial relevance. A juxtaposi-

tion of myriad disconnected transformations may instigate

a considerable disruption to the input. To counteract such

unwelcome implications, it is essential to highlight the inte-

gration of anchor sets, along with building their connection.

Therefore, a transformer network with multi-head-

attention is utilized to maintain structural information of an-

chor sets. Given anchor features H with anchor coordinates

D, we first get query (Q), key (K) and value (V ) as:

Q,K, V = HWQ, HWK , HWV , (2)

where WQ,WK ,WV ∈ R
C×C are learnable linear pro-

jections. Next, we obtain updated anchor features H ′ =
{h′

i|i = 1, ...,M} ∈ R
M×C as:

H ′ = MHA(Q,K, V, PE(D)), (3)

where MHA represents a multi-head attention [21] and

PE(·) denotes the position embedding.

Anchor-wise Deformation Prediction. Predicting defor-

mation requires not only connection between anchor sets,

but also global information to complement and constrain

the overall shape of the object. Hence, the global structural

information of all the anchors is encoded as

g = A
i=1,··· ,M

{φ (hi)} ∈ R
1×C , (4)

where φ is a point-wise feature embedding and A denotes

max pooling, respectively.

The subsequent step involves predicting deformation pa-

rameters for each anchor point.This is achieved by employ-

ing multiple linear layers with different activation functions

for each deformation type:

γj
k = αk(ψk([h

′
j , g])), k ∈ {sca, rot, trl} (5)

where [·, ·] denotes the concatenation operation. α is the ac-

tivation function and the mapping function ψ is a point-wise

feature transformations, such as linear projections or MLPs.

Specifically, Sigmoid activation function is used for scaling

and Tanh activation function for rotation and translation.

3.1.2 Mask Controller

Occurrence of corruption leads to alterations not only in

the geometric structure of the point cloud, but also results

in partial omissions of certain parts to some extent. The

Mask Controller accounts for the overall structure of the

input point cloud and the interactions between all points,

further predicting a point-wise mask to emulate the absence

of points in the real world. The presented module oper-

ates by initially getting point-wise feature at raw resolution,

E ∈ R
N×C , from F ∈ R

N ′×C through simple trilinear

interpolation. It subsequently performs feature interaction

across distinct points. The final output of this module is a

point-wise mask γmask =
{
γj
mask|j = 1, ..., N

}
∈ R

N×1.

Cross-point Feature Interaction. For improved point-

wise mask prediction and mitigation of large-scale omis-

sions that may distort the output samples, an approach

that accounts for point-to-point connectivity is essential.

We employ multi-head attention, similar as that used in

the deformation controller, to model the relationships be-

tween points and get the updated point features E′ ={
E′

j |j = 1, ..., N
} ∈ R

N×C .

Point-wise Mask Prediction. The accurate prediction of a

point-wise Mask necessitates the utilization of both inter-

point characteristics and holistic object structure. To this

end, we first extract a global point feature z ∈ R
1×C by fol-

lowing the similar process as used in the deformation con-

troller. Then we utilize the complementary local and global

point features to predict the parameters of the mask:

γj
mask = σ(ρ([E′

j , z])) ∈ R
1×1, (6)

where ρ denotes a point-wise feature embedding learned by

a MLP. σ represents a normalization function implemented

by gumbel-softmax.

3.1.3 Corruption Simulator

This module utilizes the predicted deformation parameters

{γsca, γrot, γtrl} and mask γmask to perform transforma-

tions input on point cloud. The resultant point cloud ex-

hibits structural modifications and partial point loss, effec-

tively simulating the characteristics of real-world corrupted

point clouds.

Per-anchor deformation. To introduce local deformations

in point clouds, we utilize a combination of scaling, rota-

tion, and translation transformations with parameters pre-

dicted by the Deformation Controller module. Firstly, we

normalize the input point cloud P using each anchor points

in D to obtain a set of normalized point clouds Q = {qi ∈
R

N×3|i = 1, ...,M} ∈ R
M×N×3. Then, for the i-th nor-

malized point cloud qi, we apply a transformation based

on the predicted deformation parameters, resulting in a de-

formed point cloud set Q′ =
{
q′i ∈ R

N×3|i = 1, ...,M
} ∈
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R
M×N×3. Specifically, we apply the scaling, rotation, and

translation transformations as follows:

q′i = (qi · γi
sca)R(γi

rot) + γi
trl, (7)

where R(·) represents the rotation matrix. This process re-

sults in diverse local transformations for the deformed point

cloud sets, with each set corresponding to a anchor.

Anchor-Sets Fusion. We assemble the set of locally de-

formed point clouds Q′ into a whole point cloud P ∈ R
N×3

through anchor-sets fusion strategy [7]. To smoothly inter-

polate the local transformations in the 3D space, we employ

the Nadaraya-Watson kernel regression inspired by the op-

eration of Smooth deformations [7].

Per-point Masking. This step involves applying the pre-

dicted mask γmask ∈ R to the fused point cloud P . The

masked point cloud P ′ is obtained as

P ′ = P � γmask ∈ R
N×3. (8)

Here, � denotes element-wise multiplication. The purpose

of mask is to imitate the effect of sensor noise or data miss-

ing that can occur during data acquisition. The resulting P ′

is taken as the final output augmented point cloud.

3.2. Learning Objectives

We present the AdaptPoint framework that leverages a

sample-adaptive imitator along with a discriminator and

classifier. The loss function comprises of the discrimina-

tor loss, Ladv , and the feedback loss, Lfeed, combined to

form the complete loss function:

L = Ladv + λLfeed, (9)

where λ is a balancing weight, set as 1 in our experiments.

Feedback Loss. To ensure the augmented data utilized

for model training is more arduous than the original data

yet not impractical due to excessive difficulty, inspired by

PoseAug [4], we introduce a feedback loss function. The

feedback loss is designed to constrain the difference be-

tween the classification loss on augmented and original data

within a proper range as follows:

Lfeed = |1− exp[LC(P ′)− βLC(P)]|. (10)

where LC , the cross-entropy loss between predicted labels

and ground truths, is used as the classifier loss metric. Here,

the parameter β > 1 controls the difficulty level of aug-

mentation, ensuring that the value of LC(P ′) stays within a

certain range relative to LC(P). As the classifier’s ability

improves over time, we gradually increase the value of β to

elevate the degree of augmentation.

Discriminator loss. Merely striving for augmentations that

maximize errors may spawn unfeasible training instances

that infringe upon the structure of the point cloud, conse-

quently inflicting detriment upon model performance. To

Figure 3. Some samples in ModelNet-C and ScanObjectNN-C.

alleviate such a concern, we incorporate a point cloud dis-

criminator module within the point cloud’s structure to fa-

cilitate the training of the augmentor, thereby confirming

the plausibility of the augmented samples without under-

mining the diversity. Specially, we adopt PointNet++[15]

as the discriminator. The adversarial loss is:

Ladv = Ex∼P(P)[log(D(I(x)))], (11)

where x is sampled from the probability distribution of the

input point cloud data P . I(·) denotes the mapping func-

tion learned by the imitator. D(I(x)) is the discriminator’s

estimate of the probability that the augmented data sample

I(x) is clean.

4. ScanObjectNN-C Dataset
Current point cloud corruption ModelNet-C [18] and

ShapeNet-C [17] are both from current point cloud perce-

tion dataset [26, 1], where the objects in that are simulated

rather than scanned from real-world objects, may not ade-

quately reflect a classifier’s ability in realistic scenarios.

To evaluate real-world robustness, We build a point

cloud corruption dataset, dubbed as ScanObjectNN-C,

which is more in line with the real-world corruption. We

collect point cloud from the test set of the most challeng-

ing variant of ScanObjectNN [20], PB-T50-RS, then pro-

cess them by seven types of corruptions, “Jitter”, “Drop

Global/Local”, “Add Global/Local”, “Scale” and “Ro-

tate”, with five levels of severity to provide a comprehen-

sive robustness evaluation. Specifically, objects from the

ModelNet-C are derived from CAD models, whereas sam-

ples from ScanObjectNN-C are captured from real-world

environments, often exhibiting occlusions, partiality, and

complex backgrounds. The presented Fig. 3 evidences the

distinction between objects from the ModelNet-C dataset

and samples from ScanObjectNN-C, indicating that the

corrupting influence present in the ScanObjectNN-C more

closely approximates the realistic conditions encountered in

the real world, in comparison to ModelNet-C.

5. Experiments
We evaluate AdaptPoint on several point cloud corrup-

tion datasets and also test it for point cloud attack defense.
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Table 1. Classification results of mCE(%) on ModelNet-C.

Method mCE(↓) Sca Jit Drop-G Drop-L Add-G Add-L Rot

DGCNN [23] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PointNet [14] 142.2 126.6 64.2 50.0 107.2 298.0 159.3 190.2

RSCNN [11] 113.0 107.4 117.1 80.6 151.7 71.2 115.3 147.9

SimpleView [5] 104.7 87.2 71.5 124.2 135.7 98.3 84.4 131.6

GDANet [30] 89.2 83.0 83.9 79.4 89.4 87.1 103.6 98.1

CurveNet [28] 92.7 87.2 72.5 71.0 102.4 134.6 100.0 80.9

PAConv [29] 110.4 90.4 146.5 100.0 100.5 108.5 129.8 96.7

PointNet++ [15] 107.2 87.2 117.7 64.1 180.2 61.4 99.3 140.5

+ PointWolf [7] 82.5 81.9 135.1 67.3 130.4 43.1 68.4 51.2

+ Rsmix [9] 86.3 89.4 164.9 48.4 73.9 26.1 32.7 168.4

+ Wolfmix [18] 64.1 94.7 137.0 46.0 61.4 29.8 29.5 50.7

+ AdaptPoint 63.7 109.6 102.2 36.7 66.7 30.5 40.0 60.5

PointNeXt [16] 85.6 90.4 129.7 84.7 95.7 25.1 27.6 146.0

+ PointWolf [7] 79.5 88.3 144.9 113.7 103.9 26.4 28.0 51.2

+ Rsmix [9] 87.9 100.0 159.2 86.7 54.1 23.1 26.5 165.6

+ Wolfmix [18] 74.0 84.0 156.0 119.4 56.5 23.7 25.1 53.0

+ AdaptPoint 67.7 101.1 116.8 60.5 69.1 29.5 32.4 64.2

RPC [18] 86.3 84.0 89.2 49.2 79.7 92.9 101.1 107.9

+PointWolf [7] 70.2 88.3 107.3 80.2 104.8 27.1 29.1 54.4

+Rsmix [9] 71.0 98.9 100.9 72.2 62.3 26.4 29.1 107.4

+Wolfmix [18] 60.1 101.1 96.8 42.3 51.2 33.2 48.0 47.9
+AdaptPoint 56.5 93.6 77.5 36.3 72.9 27.5 29.1 58.6

5.1. Results on ModelNet-C

Data and Setup. We train models on the clean Model-

Net40 [26] dataset and evaluate them on the ModelNet-

C [18] corruption test suite. The imitator and discriminator

are optimized using the Adam optimizer [8] and learning

rates of 0.0001 and 0.0004, respectively. Mean Corruption

Error metric (mCE, %, ↓) is taken as the main evaluation

matrix. More details are in the supplementary materials.

Results. In our experiments, PointNet++ [15] and RPC [18]

are adopted as the baseline models. Tab. 1 presents the

results of various methods on the robustness against cor-

ruption. Our proposed AdaptPoint outperforms all other

methods and achieves the state-of-the-art mCE. The incor-

poration of AdaptPoint brings substantial improvements in

model performance, as both PointNet++ [15] and RPC [18]

equipped with our method achieve an mCE of 63.7% and

56.5%, respectively, surpassing models without AdaptPoint

by a large margin of over 20%. Notably, our method im-

proves the performance of nearly all categories, and ex-

hibits the most significant improvements in drop-local and

add-local, which evaluates the effectiveness of local defor-

mation. Compared with PointWOLF [7] and Rsmix [9],

our method achieves a significant increase in mCE for jit-

ter, over 30% on both baselines, which bears testament to

AdaptPoint’s efficacy in amplifying the local geometric nu-

ances of the point cloud, thereby effectuating minor yet con-

sequential modifications to the local structure.

Visualization of Augmented Samples. Fig. 4 showcases

the visualization of both clean and augmented data gener-

ated by two distinct techniques, PointWOLF and Adapt-

Point. This figure reveals that the augmented samples gen-

erated by AdaptPoint exhibit superior diversity compared

Clean PointWOLF AdaptPoint
Figure 4. Examples of augmented samples by AdaptPoint.

Clean PointWOLF AdaptPointCorrupted

Figure 5. Visualization of data distribution of raw data from Mod-

elNet40, corrupted data by a commonly employed corruption tech-

nique (i.e., Drop-Global), and augmented data from PointWOLF

and AdaptPoint. Our AdaptPoint outperforms the other methods

in terms of generating diverse results.

to those generated by PointWOLF, thereby aligning better

with real-world scenarios of corruption. This signifies that

our model induces a more intricate transformation in the

geometry of the point cloud beyond just elementary distor-

tions or absences. This advanced level of geometric modu-

lation imparts robustness to the classifier model, as substan-

tiated by the perceived enhancements in the quality of the

produced samples.

Visualization of Data Distribution. To showcase the ef-

ficacy of AdaptPoint in augmenting data diversity, we con-

duct an analysis on the distribution of point cloud positions.

As illustrated in Fig. 5, we compare the point position distri-

butions of ModelNet40 with data corrupted by a commonly

used corruption,(i.e., Drop-Global), data augmented by[7]

and our method. Our findings reveal that the distribution in

the original ModelNet40 dataset are concentrated near the

origin of coordinates and have a limited range, which may

explain why the models trained on this dataset exhibit poor

generalization to corrupted scenarios. Furthermore, we ob-

serve that the point position distribution of the augmented

data generated by [7] has a limited degree of divergence,

indicating that the improvements made through the use of

handcrafted rules are constrained. In contrast, our Adapt-

Point method leverages a learnable augmentor to generate

more diverse and realistic point positions, resulting in a

greater degree of data augmentation.

Visualization of Salient Geometry. In order to gain deeper

insights into the impact of the imitator on clean data, we

conducted a comparative analysis of the features attended
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Figure 6. Visualization of salient geometry learned by the classi-

fier. Points with high / low scores are in red / blue.

to by the classifier on clean and augmented data. Fig. 6 pro-

vides a visual representation of the focus of the classifier’s

first perception layer. We computed the average features of

the points and utilized them to represent their contribution

to the classifier. Points that contributed more to the classi-

fier were assigned higher scores in color, with red indicating

high scores and blue indicating low scores. The illustration

exposes that, despite significant transformations in the mor-

phology of the augmented data, it still maintains the cru-

cial local prototypes and continues to supply the perception

model with equivalent semantic information.

5.2. Results on ScanObjectNN-C

Data and Setup. Objects in ScanObjectNN are scanned

from real-world objects, and performance on ScanOb-

jectNN may better reflect classifier ability in realistic sce-

narios. We train models on ScanObjectNN dataset and eval-

uate them on ScanObjectNN-C corruption test suite. We

train the model for 250 epochs using the Adam optimizer

with a learning rate of 0.002.

Results. Tab. 2 presents the experimental results of our

proposed method. Our method achieves mCE of 78.3%

on PointNeXt-S, outperforming the current state-of-the-art

method WOLFMix [18]. Across all models evaluated,

our method achieved a lift of approximately 18% in aver-

age mCE performance, which significantly surpassed the

previous state-of-the-art method’s improvement of 5.6%

in WOLFMix. Meanwhile, our method achieves overall

accuracy (OA) of 88.45% on ScanObjectNN, which is a

highly competitive result surpassing many advanced meth-

ods [16, 12]. These results demonstrate the generalizability

of our proposed method and its potential for improving the

performance of various models.

5.3. Results on Shapenet-C

Data and Setup. We conduct part segmentation experi-

ment on ShapeNet-C [17]. We employed PointMAE [13]

as the baseline and trained the model for 300 epochs with

the AdamW optimizer. The learning rate was set to 0.0002.

Results. Tab. 3 demonstrates that our method achieves a

score of 76.9% mCE and outperforms the state-of-the-art

Table 2. Classification results of mCE(%) on ScanObjectNN-C.

Method OA(↑) mCE(↓) Sca Jit D-G D-L A-G A-L Rot

DGCNN [23] 85.8 100.0 100.0100.0100.0100.0100.0100.0100.0

+PointWOLF 85.6 99.6 89.5 104.6104.1 98.3 98.0 100.9101.6

+RSMix 86.5 96.9 103.1 97.4 91.2 85.3 104.8 98.7 97.6

+WOLFMix 87.2 92.3 92.1 102.6 92.6 85.3 96.2 85.7 91.5

+AdaptPoint 84.4 90.2 90.6 107.5 72.3 73.0 93.3 93.3 101.4

PointNet++ [15] 86.2 96.9 89.7 110.3 55.0 127.7 94.7 90.5 110.7

+PointWOLF 86.6 96.4 84.0 108.7 70.5 156.6 87.7 90.9 76.1

+RSMix 87.3 91.9 89.0 100.7 55.6 99.0 94.6 89.1 114.9

+WOLFMix 87.5 87.8 79.6 109.0 64.2 117.7 88.1 79.8 76.2

+AdaptPoint 86.7 84.6 86.1 112.4 44.2 77.4 92.3 86.4 93.3

RPC [18] 74.7 132.6 131.7107.3145.5130.5114.2158.7140.2

+PointWOLF 71.0 141.5 132.9113.1142.1133.7135.1173.2160.5

+RSMix 65.7 146.9 149.3 94.8 127.0133.2153.6208.8161.3

+WOLFMix 79.7 120.2 108.5117.4122.3107.2123.3124.6138.1

+AdaptPoint 83.5 96.5 106.4 100.5 66.9 77.8 107.3 105.9 110.9

PointNeXt [16] 87.3 92.1 80.3 107.9 80.7 94.2 94.4 87.5 99.5

+PointWOLF 87.4 89.5 81.4 112.9 89.8 92.3 95.0 83.7 71.1

+RSMix 88.1 88.2 83.9 107.3 74.9 73.3 96.2 82.9 99.1

+WOLFMix 87.7 86.9 81.9 119.3 89.7 78.0 89.3 80.0 70.0
+AdaptPoint 88.5 78.3 81.0 103.0 50.8 62.8 91.1 82.4 76.7

Table 3. Segmenatation results of mCE (%) on ShapeNet-C

Method mCE(↓) Sca Jit Drop-GDrop-LAdd-G Add-L Rot

DGCNN [23] 100.0 100.0100.0 100.0 100.0 100.0 100.0 100.0

PointNet [14] 117.8 108.2105.0 98.3 113.2 138.6 117.3 143.8

PointNet++ [15] 111.2 95.0 108.1 85.6 198.3 88.6 108.3 94.7

PAConv [29] 92.7 92.7 107.2 92.5 92.7 74.3 94.8 94.8

GDANet [30] 92.3 92.2 101.2 94.2 94.6 71.2 95.7 96.9

PT [33] 104.9 107.6107.2 103.2 108.1 111.2 106.6 90.7

Point-MLP [12] 97.7 96.5 113.2 88.7 99.1 92.9 106.1 87.6

Point-BERT [32] 103.3 93.8 109.8 87.3 92.7 117.0 119.9 102.5

Point-MAE [13] 92.7 90.8 103.5 85.2 88.2 77.6 103.1 100.3

+AdaptPoint 76.9 95.2 104.8 84.5 92.1 41.1 42.6 78.1

PointMAE method by a margin of 15.4% . It is worth men-

tioning that PointMAE is a MAE model, and the significant

improvement provided by our AdaptPoint suggests its ef-

fectiveness in enhancing the performance of self-supervised

models, beyond being limited to fully supervised models.

In addition to its efficacy in classification, our proposed

AdaptPoint augmentation technique showcases its potential

on ShapeNet-C dataset by achieving favorable performance.

Remarkably, our method achieved these results while pre-

serving the integrity of the semantic information, attesting

to its robustness and practicality. demonstrating superiority

of our approach in downstream tasks

5.4. Results on Point Cloud Attack Defense

Setup. Motivated by the remarkable performance of the

AdaptPoint method against corruption, we explore its appli-

cation in point cloud defense. We evaluate the performance

of PointNet++ [15] trained using the AdaptPoint method on

point perturbation attack [27], individual point adding at-

tack [27], kNN attack [19] and point dropping attack [34].

Results. Based on the results presented in Tab. 5, it is

observed that our AdaptPoint consistently outperforms all

other defense methods for two-point dropping and adding

attacks. The accuracy improvement can be as high as 4.5%
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Table 4. Ablation studies

Feedback Adv mCE(↓)

� � 82.1

� � 83.2

� � 78.3

(a) Effect of loss functions.

Deformation Mask mCE(↓)

� � 92.1

� � 86.4

� � 87.1

� � 78.3

(b) Effect of imitator components.

Anchor mCE(↓)

2 79.9

4 78.3
8 80.2

16 81.4

(c) Effect of anchor number.

λ mCE(↓)

0.5 78.7

1 78.3
2 79.0

(d) Impact of loss weight λ.

Table 5. Results on point cloud attack defense (OA, %).

Method Perturb Add-CD Add-HD kNN Drop-100 Drop-200

NoDefense - 7.24 6.59 - 80.19 68.96

SRS [31] 73.14 65.32 43.11 49.96 64.51 39.60

SOR [35] 77.67 72.90 72.41 61.35 74.16 69.17

SOR-AE [35] 78.73 73.38 71.19 78.73 76.66 68.23

Adv Training 20.03 12.27 10.06 8.63 80.39 67.14

DUP-Net [36] 80.63 75.81 72.45 74.88 76.38 72.00

IF-Defense [25] 86.99 80.19 76.09 85.62 84.56 79.09

AdaptPoint 86.75 80.83 77.03 77.67 86.55 83.59

in the Drop-200 attack, indicating the scalability and ef-

fectiveness of the approach. Even with the Perturb at-

tack, which introduces very fine perturbations leading to a

chaotic point cloud, AdaptPoint achieves the second-best

performance, closely approaching the state-of-the-art de-

fense method [25]. The above analysis leads to the con-

clusion that our method has a strong generalization ability

across various point cloud attack algorithms.

5.5. Ablation Studies

PointNeXt [16] is taken as the classifier in ablations.

More implementation details and ablations on hyperparam-

eters are available in supplementary materials.

Effect of Feedback and Adversarial Loss. To ascertain

the impact of feedback loss, we conducted an ablation study

by removing feedback loss. Tab. 4a, unequivocally demon-

strate that removing feedback loss led to a dramatic drop

(4% ↓) in model performance, underscoring it critical im-

portance. Besides, we also illustrate the effectiveness of

plausibility guidance from the discriminator. The remove of

Adversarial loss leads to 4.9% performance drop, demon-

strating the crucial role of point cloud plausibility in en-

hancing classifier performance, with the discriminator play-

ing a pivotal role in the process.

Effect of Deformation and Mask Controller. We con-

ducted an investigation into the efficacy of the Deforma-

tion and Mask controller. Tab. 4b presents the results ob-

tained by adding each component to a base pipeline. The

performance gains achieved by incorporating each compo-

nent alone were limited. Notably, combining both deforma-

tion and mask led to a substantial decrease in mCE, with

the value reducing from 92.1% to 78.3%. This finding sug-

gests that the incorporation of both deformation and mask

significantly improves model robustness.

Effect of the Number of Anchors. We investigate the im-

pact of anchor numbers of the deformation controller. As

illustrated in Tab. 4c, we vary the number of anchors and

analyze the resulting mCE scores. The results show that

the performance of mCE is 81.4% when the number of

weight matrices is 16, which is 3.1% higher than the per-

formance achieved using 4 anchors. This observation can

be attributed to the fact that too many anchors can nega-

tively impact the overall deformation, therefore leading to a

decrease in performance.

Impact of Feedback Loss Weight. Tab. 4d presents an

empirical investigation of the impact of loss weight on the

feedback loss in the context of AdaptPoint. The findings

demonstrate that modifying the loss weight λ can lead to

a harmful effect on model performance, due to the disrup-

tion of the delicate balance between the adversarial loss and

the feedback loss. Specifically, increasing or decreasing the

loss weight results in a drop in performance. Thus, main-

taining a proper balance among all components in Adapt-

Point is crucial, which further corroborates the efficacy of

our imitator loss design.

Combination of corruption techniques. There exist two

common techniques for point cloud data augmentation: pre-

defined transformations like PointWOLF, and mix-up based

sample generation like RSMix. WOLFMix combines both

techniques, leveraging their strengths. Results in Tab. 1 in

Sec. 5.1 and Tab. 2 in Sec. 5.2, involve all these techniques

under both standalone and combined circumstances, offer-

ing a holistic comparison with our method.

6. Conclusion
In this paper, we present a novel auto-augmentation

methodology, denominated AdaptPoint, specifically de-

signed for point cloud recognition under real-world cor-

ruptions. The AdaptPoint approach leverages the benefits

of a sample-adaptive imitator, enabling the simulation of

real-world corruptions scenarios. Additionally, we intro-

duce a real-world corruption dataset to facilitate the eval-

uation of point cloud recognition in the presence of real-

world corruptions. Our experimental results, conducted on

three benchmark datasets, manifest the superiority of our

proposed approach.
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