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Abstract

Semi-Supervised Semantic Segmentation (S4) aims to
train a segmentation model with limited labeled images and
a substantial volume of unlabeled images. To improve the
robustness of representations, powerful methods introduce
a pixel-wise contrastive learning approach in latent space
(i.e., representation space) that aggregates the representa-
tions to their prototypes in a fully supervised manner. How-
ever, previous contrastive-based S4 methods merely rely on
the supervision from the model’s output (logits) in logit
space during unlabeled training. In contrast, we utilize the
outputs in both logit space and representation space to ob-
tain supervision in a collaborative way. The supervision
from two spaces plays two roles: 1) reduces the risk of
over-fitting to incorrect semantic information in logits with
the help of representations; 2) enhances the knowledge ex-
change between the two spaces. Furthermore, unlike pre-
vious approaches, we use the similarity between represen-
tations and prototypes as a new indicator to tilt training
those under-performing representations and achieve a more
efficient contrastive learning process. Results on two pub-
lic benchmarks demonstrate the competitive performance of
our method compared with state-of-the-art methods.

1. Introduction
Semantic segmentation is a fundamental task in com-

puter vision, aiming to classify each pixel in an image. Sig-
nificant progress [22, 4] has been made in training on high-
quality labeled images using segmentation models com-
posed of an encoder and a segmentation head. However,
annotating images is expensive and time-consuming. Semi-

*equal contribution
†corresponding author

provide

pseudo-labels

pseudo-labels

logits in logit space representation space

produce 
supervision

produce 
supervision produce 

supervision

similarity in representation space

confidence

confidence

similarity

prototype representation

logits in logit space

single/dual space supervision

push

pullpull

representation space

push

pullpull

Previous methods

Ours

Figure 1. We enhance the knowledge exchange between the logit
and representation spaces. Orange and blue represent different
classes. Top: Existing contrastive-based S4 methods overlook
the semantic information in representation space. Bottom: Our
method uses dual-space collaborative supervision.

supervised Semantic Segmentation (S4) alleviates the thirst
for annotation by leveraging unlabeled images to train seg-
mentation models.

Most existing works learn from unlabeled images via
self-training [44, 37, 15] or consistency regularization [40,
38, 13] strategies, both of which retrain the model with
its predictions on unlabeled images. Recently, great suc-
cess has been achieved by introducing pixel-wise con-
trastive learning to semantic segmentation, which endows
the model with a stronger features-extracting ability by ac-
cessing a more discriminative representation space. Spe-
cially, these methods [45, 23] project each pixel to repre-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

931



sentation space as a representation and regularize it in a
fully supervised manner, i.e., aggregating the representa-
tions with the same class and separating them with differ-
ent classes. In semi-supervised settings, due to limited la-
bels, most methods [1, 32, 46] obtain supervision from the
model’s output logits in logit space during the unlabeled
training process. However, recent contrastive-based seman-
tic segmentation methods [1, 32, 46, 45] mainly focus on
the learning process in logit space while only taking that in
representation space as an auxiliary task. The unidirectional
supervision makes training dominated by the predicted log-
its, leading to the neglect of information in the representa-
tion space. We argue that this kind of single-space super-
vision may incorrectly provide semantic guidance to rep-
resentation learning and fails to facilitate knowledge ex-
change between the two spaces (see Sec. 5.1).

In this work, we extend the single-space supervision to
a dual-space supervision for contrastive-based S4 and pro-
pose Collaborative Space Supervision (CSS). Our key in-
sight is to: i) utilize the semantic information in represen-
tations to obtain more reliable guidance during unlabeled
training, and to enhance knowledge exchange between two
spaces; ii) provide a more accurate reference for the model’s
performance on predicting each representation to tilt train-
ing those under-performing representations. To achieve ob-
jective i), we obtain dense semantic predictions by retriev-
ing the nearest class prototype for each representation in
the representation space and then engage with predictions
from the logits for collaborative supervision of the model.
For objective ii), we measure the similarity between the
representations and prototypes and use the similarity after
a normalization operation as the indicator for guiding the
learning process in the representation space. Unlike previ-
ous works that utilize confidence as the indicator to involve
representation learning, the similarity directly reflects the
confusion level between representations and prototypes, re-
sulting in more efficient representation learning.

To summarize, our main contributions are three-fold: 1)
The dual-space collaboration for contrastive-based S4, en-
hances the knowledge exchange between the logit and rep-
resentation spaces. 2) Utilizing similarity to provide a more
accurate reference for the model’s performance in represen-
tation learning. 3) Extensive experiments on two S4 bench-
marks demonstrate the effectiveness of our method.

2. Related Works

2.1. Semi-supervised Semantic Segmentation

The aim of S4 is to train a segmentation model with the
semi-supervised setting (i.e., a few labeled images and a
large number of unlabeled images) to classify each pixel in
an entire image. The critical issue of S4 is how to leverage
unlabeled images to train the model. Some methods [25,

27, 30, 35] based on GANs [16], adversarial training [36],
and consistency regularization paradigm [38, 13, 40, 7, 56].
Meanwhile, self-training [28, 44, 49, 61, 53] is also a strik-
ing paradigm, which always generates pseudo-labels from
model and retrains the model with the combined supervi-
sion of human annotations and pseudo-labels. One essential
issue of self-training is the accuracy of pseudo-labels. Some
methods [29, 33, 14, 42, 52] try to polish pseudo-labels and
provide reliable guidance. Some methods [21, 47, 24, 17]
focus on the class-imbalance problems in the dataset and
try to alleviate the negative effect from class-biased pseudo-
labels generated by the model pre-trained on imbalanced
labeled images. We build our framework based on the
self-training and additionally explore semantic information
among different images.

2.2. Pixel-wise Contrastive Learning

Pixel-wise contrastive learning explores semantic rela-
tions not only in the individual image but also among differ-
ent images. Different from instance-wise contrastive learn-
ing [19, 6, 3], pixel-wise contrastive learning [50, 55, 5, 58]
project each pixel to the representation in representation
space with the cooperation of encoder and representation
head. Representations are then aggregated in their proto-
types and are separated from each other in different classes.
In semi-supervised settings, most methods [1, 32, 46, 48]
use pseudo-labels based on logits to provide semantic infor-
mation contrastive learning process during training on un-
labeled images. Meanwhile, the confidence of logit is used
as an indicator to involve the contrastive learning process,
e.g., [32] uses the hard representations whose correspond-
ing logit confidence is lower than a threshold to contrast for
effective training. As opposed to the above methods, we
use collaborative space supervision for contrastive learning
on unlabeled images and use a new indicator to involve the
contrastive learning progress.

2.3. Prototype-based Learning

Prototype-based learning has been widely studied in
few-shot learning [41, 11, 31, 34] and unsupervised do-
main adaption [54, 26, 43, 39, 57]. Recently, it is restud-
ied in semantic segmentation as known as a non-parametric
prototype-based classifier [60]. Concretely, the classes in
the dataset are presented by a set of non-learnable proto-
types, and the dense semantic predictions are thus achieved
by assigning the output features to its most similar proto-
type. Under semi-supervised settings, some methods [51]
maintain the consistency between predictions from a linear
predictor and a prototype-based predictor. The two predic-
tors are followed by the encoder and project the features to
logit space and representation space, respectively. In this
work, we combine the semantic information in the logit and
representation spaces to provide supervision in a collabora-
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tive way during semi-supervised learning.

3. Methodology

In the S4 task, we have a small labeled set Dl =
{(xl

i,y
l
i)}

Nl
i=1 and a large unlabeled set Du = {xu

i }
Nu
i=1,

where xl
i,x

u
i ∈ RH×W×3, H , W denote the height, and the

width, respectively. And ground truth yl
i ∈ {0, 1}H×W×|C|

with the set of class C. The goal is to boost model per-
formance with Du. The base model consists of an encoder
f(·) and a segmentation head g(·), which projects features
to the logit space RH×W×|C|. We adopt Self-Training (ST)
and pixel-wise contrastive learning to our framework, as de-
scribed in Sec. 3.1. The supervision for Du is produced
by the collaboration between the logit and representation
spaces, as described in Sec. 3.3.

3.1. ST and Pixel-wise Contrastive Learning

The main idea of self-training is to pre-train a model on
labeled images and use it to produce pseudo-labels as su-
pervision for unlabeled images. A typical framework is the
teacher-student framework [44], which consists of a student
model and a teacher model. Both the student model and the
teacher model are constructed by an encoder and a segmen-
tation head. Parameters of the student model are optimized
via Stochastic Gradient Decent (SGD) while parameters of
the teacher model are updated by the Exponential Moving
Average (EMA) of student model parameters. We denote
the encoder and the segmentation head in the student model
by f(·) and g(·) while denoting those in the teacher model
by f ′(·) and g′(·). The pseudo-labels ŷu,lgt

i are produced
based on the teacher model’s output logits p̂u

i = g′(f ′(xu
i ))

in logit space, formulated as:

ŷu,lgt
i = 1c(argmax

c
{p̂u

i,c}c∈C), (1)

where 1c(·) denotes the one-hot encoding of class c.
In order to enhance the ability of the model itself to ex-

tract features, recent works [32, 46, 1] additionally employ
pixel-wise contrastive learning and introduce a representa-
tion head to both teacher and student models. We denote the
representation head in the student model as h(·) and that
in the teacher model as h′(·). The pixel xi of the class c
are projected as representations zci in representation space
by the cooperating of f(·) and h(·), i.e., zci = h(f(xi)).
And the representation zci is then aggregated to its class
centroid (prototype) while separated from representations
in different classes zc̃i (negatives). The semantic guidance
for contrastive learning is from the combination of ground
truth yl

i and pseudo-labels ŷu,lgt
i in logit space. Moreover,

in order to emphasize the reliable and crucial aspects dur-
ing unlabeled and contrastive learning, a sampling strategy
is adopted to select valid pixels xi according to their corre-

sponding confidence, i.e. the student model’s output logits
pi after a Softmax operation.
Discussion. In recent works [46, 1, 32], the supervision
of unlabeled images is derived solely from the logit space.
This overlooks the potential benefits of the supervision from
the representation space, leading to two potential limita-
tions: 1) the pseudo-labels ŷu,lgt

i obtained from the logit
space may contain noise and miss the opportunity to be
corrected by semantic information from the representation
space; 2) since the confidence from logit space is used as
the indicator ĵi for the sampling strategy, learning in the
representation space may not be critical enough due to the
different confusing parts between the two spaces.

To mitigate these limitations, we produce pseudo-labels
from the representation space and combine them with
pseudo-labels from the logit space to provide higher-quality
supervision during unlabeled training. Meanwhile, we ob-
tain a new indicator from the representation space for the
more effective sampling strategy.

3.2. Supervision from Representation Space

In this section, we detail the approach to obtain the
pseudo-labels from the representation space. Meanwhile,
we simultaneously access a new indicator for the sampling
strategy in representation spaces, which provides a critical
reference in the contrastive learning process.

Specifically, we first build a set of prototypes for each
class and obtain the pseudo-labels by retrieving the nearest
prototype for each representation. We calculate the centroid
of all representations in the current class c as the prototype
ρc, which is formulated as:

ρc =
1

Nc

Nc∑
i

z′
i, (2)

where Nc is the total number of representations of current
class c and z′

i is the representation projected by the coop-
eration of the f ′(·) and h′(·). Meanwhile, to include more
representation information, we update the prototype along
the sequential iterations with EMA as follows:

ρ̂c(t) = αρ̂c(t− 1) + (1− α)ρc(t), (3)

where ρ̂c(t), ρ̂c(t − 1) mean the current tth prototype and
last (t − 1)th prototype in iterations , ρc(t) means the pro-
totype calculated by Eq. 2 in current iteration, and α is a
hyper-parameter that controls the updating speed. Thus, the
pseudo-label from the representation space is achieved by:

ŷu,rep
i = 1ĉ(ĉ), with ĉ = argmax

c
{sim(z′

i, ρ̂c(t))}c∈C , (4)

where sim(·) is defined as the cosine similarity.
As for the indicator for the sampling strategy in the rep-

resentation space, we use the Softmax function on the simi-
larity among the representation and all prototypes, which is
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Figure 2. Overview of our framework. Our training pipeline consists of learning in two spaces: logit space and representation space. The
pseudo-labels ŷu

i during unlabeled training are produced by the collaboration of two spaces with mix pseudo-labeling strategy (1) or cross
pseudo-labeling strategy (2). The indicator for representation learning is produced by similarity (s1, s2, and s3).

followed as:

ĵu,repi =
esim(zci,ρ̂c(t))/τ

esim(zci,ρ̂c(t))/τ +
∑

c̃∈C̃ esim(zci,ρ̂c̃(t))/τ
, (5)

where ρ̂c̃(t) means the prototype with different classes from
zci and τ is a hyper-parameter. Different from using con-
fidence from logit space as the indicator to involve repre-
sentation learning [32, 46], the Softmax similarity directly
helps the model to discover the confusion between repre-
sentations and their prototypes and focus on them during
the subsequent training.

3.3. Collaboration Between Two Spaces

With the pseudo-labels in two spaces, we propose two
pseudo-labeling strategies to strengthen the collaboration
between two spaces and obtain more reliable pseudo-labels.

• Mix pseudo-labeling. To mitigate the negative effects
of inherent noise from both two spaces during pseudo-
labeling, we adopt the mix pseudo-labeling strategy
that only considers the mutually agreeable pseudo-
labels between the two spaces. Specifically, we define
the set of final pseudo-labels as Ŷ u = Ŷ u,lgt∩ Ŷ u,rep,
where ŷu,lgt

i ∈ Ŷ u,lgt and ŷu,rep
i ∈ Ŷ u,rep.

• Cross pseudo-labeling. Inspired by recent researches
[7, 38] that maintain consistency among the predic-
tions of the same image across different models or de-
coders in different views, we propose a cross pseudo-
labeling strategy that leverages pseudo-labels from one
space to supervise the other. Specifically, we use
pseudo-labels ŷu,rep

i to supervise the logit space, and
vice versa.

The strengths of using pseudo-labels from two spaces in the
collaborative way are twofold: 1) obtaining more reliable
supervision during unlabeled training, and 2) enabling the
strengths of learning in different spaces to complement each
other. Since the learning in different feature spaces con-
centrates on different parts of features, i.e., the logit space
mainly focuses on the most discriminative part of features
while the representation space treats all parts of features
equally, the performance of pseudo-labels from two spaces
varies across different classes or regions of images. There-
fore, our collaborative pseudo-labeling strategies exchange
knowledge between two spaces and provide higher-quality
supervision during unlabeled training. The experimental
proof is in Sec. 5.1.

As for indicators, we use confidence as the indicator
ĵu,lgti for learning logit space and Softmax similarity as the
indicator ĵu,repi for learning representation space. We ar-
gue that the confusing parts of learning in both two spaces
are varied due to the different parts of features being con-
centrated in each space. Therefore, this strategy allows the
learning in different spaces to focus on their own confusing
parts, which can be more effective than using a single in-
dicator when mining confusing parts for both spaces in the
training process. The experimental proof is in Sec. 5.2.

3.4. Training Objective

With the indicators ĵu,lgti and ĵu,repi , we adopt some
threshold sampling strategies. In logit space, we set a
threshold δu during unlabeled learning and logits p̂u

i whose
indicator ĵu,lgti is higher than δu will be regarded as the
valid logits in logit space. In representation space, our sam-
ple strategy can be divided into three parts: 1) Valid Sam-
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pling Strategy. Similar to the sampling strategy in logit
space, a threshold δw is used to sample representations
whose indicator ĵu,repi is higher than δw. 2) Hard Sam-
pling Strategy. We adopt the hard sampling strategy for tilt-
ing to train those confusing representations. Specifically,
we set a threshold δs to sample representations whose indi-
cator ĵu,repi is lower than δs. 3) Negative Sampling Strat-
egy. We sample negatives according to the similarity be-
tween the prototype of current class c and other prototypes.
Concretely, the negatives are more likely to be sampled if
its prototype is more similar to the prototype of the current
class.

Cooperated with the ground truth yl
i, pseudo-labels yu

i

produced from two spaces in a collaborative way, and dif-
ferent sampling strategies in two spaces, the total learning
object is composed with a supervised loss Ls, an unsuper-
vised loss Lu, and a contrastive loss Lc as follows:

L = Ls + Lu + λcLc, (6)

where λc is used to tune the contribution between logit
space and representation space. Specifically, Ls and Lu are
constructed by the Cross-Entropy (CE) ℓce and can be for-
mulated as:

Ls =
1

|Bl|
∑

xl
i∈Bl

ℓce(p
l
i,y

l
i), (7)

Lu =
1

|B̂u|

∑
xu

i ∈B̂u

ℓce(p
u
i , ŷ

u
i ), (8)

where Bl denotes the labeled images in a mini-batch and
B̂u is the subsets that sampled from unlabeled images in a
mini-batch according to the sampling strategy. Meanwhile,
the contrastive loss Lc is formulated as:

Lc =−
1

|C| × |Ẑc|

∑
c∈C

∑
zci∈Ẑc

log[
es(zci,ρ̂c)/τ

es(zci,ρ̂c(t)))/τ +
∑

c̃∈C̃

∑
zc̃i∈Ẑc̃

es(zci,zc̃i)/τ
],

(9)

where Ẑc is the subset sampled from the set of the repre-
sentations which belong to class c according to the sam-
pling strategy, Ẑc̃ is the subset sampled from the set of the
representations which bot belong to class c, C̃ denotes the
subset of C with class c removed, and the supervision in-
formation comes from the final pseudo-labels ŷu

i after the
pseudo-labeling strategies.

The whole framework is shown in Fig. 2. All the pseudo-
code of producing pseudo-labels and their indicators from
the logit and representation spaces is shown in Algorithm 1,
and the pseudo-code of the mix pseudo-labeling strategy is
shown in Algorithm 2. The pseudo-code is PyTorch-like.

Algorithm 1 Pseudo-code of producing pseudo-labels and
indicators
Network: Teacher’s encoder f ′, segmentation head g′, rep-
resentation head h′.
Input: Unlabeled mini-batch Bu consists of Xu, the set of
prototypes {ρ̂c(t)}c∈C .

1: for Xu ∈ Bu do
2: # Predict logits from unlabeled images.
3: P̂u,lgt ← g′(f ′(Xu))
4: # Produce labels and indicators based on logits with

Eq. 1.
5: Ŷ u,lgt, Ĵu,lgt ← lgt pseudo(P̂u,lgt)
6: # Predict representations from unlabeled images.
7: R̂u,rep ← h′(f ′(Xu))
8: # Produce labels and indicators based on representa-

tions with Eq. 4 and Eq. 5.
9: Ŷ u,rep, Ĵu,rep ← rep pseudo(R̂u,rep, {ρ̂c(t)}c∈C)

10: end for

Algorithm 2 Pseudo-code of mix pseudo-labeling strategy

Input: Pseudo-labels from logit space Ŷ u,lgt and from rep-
resentation space Ŷ u,rep. Indicators Ĵu,lgt and Ĵu,rep.
Notation: Threshold δu for sampling strategy in Lu, weak
threshold δw.

1: # Sampling valid pseudo-labels according to the sam-
pling strategy in logit space.

2: Ŷ u,lgt
val ← sample lgt(Ŷ u,lgt, Ĵu,lgt, δu)

3: # Sampling valid pseudo-labels according to the valid
sampling strategy in logit space.

4: Ŷ u,rep
val ← sample rep(Ŷ u,rep, Ĵu,rep, δw)

5: # Produce the mask for mix pseudo-labels.
6: masky ← Ŷ u,rep.eq(Ŷ u,lgt)
7: # Produce mix pseudo-labels according to the mask.
8: Ŷ u ← mask pseudo(Ŷ u,lgt,masky)

3.5. Discussions

We discuss the relations between our framework and
other most-related S4 frameworks.
Compare with PCR [51]. The key insight of PCR and our
method lies in the promotion of consistency between the
output in the logit and representation spaces. However, PCR
exclusively relies on pseudo-labels derived from logit space
as the guidance in the logit and representation spaces during
the unsupervised training process, thereby neglecting the
exploitation of the extensive semantic information inherent
in representations and prototypes. In contrast, our method
adopts a collaborative way by combining pseudo-labels ob-
tained from both the logit and representation spaces, which
improves the quality of pseudo-labels and enhances the
knowledge exchange between the two spaces. In addition,
since these two approaches are orthogonal, one can employ
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our pseudo-labeling and indicator strategies within the PCR
framework, or alternatively incorporate multiple prototypes
and consistency loss into our approach. Such combinations
may yield further improvements in performance, however,
also increase the computational complexity.
Compare with CPS [7]. CPS contains two segmentation
models initialized differently. It leverages pseudo-labels
generated by one model to supervise the other, thereby
maintaining the consistency between the output of the two
models in the logit space. In a similar vein to CPS, our cross
pseudo-labeling strategy in Sec. 3.3 is also motivated by the
objective of maintaining consistency during unsupervised
training. However, our method is distinct from CPS in that
we focus on preserving consistency between the logit space
and the representation space. This distinction confers a dis-
tinct advantage in terms of memory efficiency, as we solely
introduce a MLP as the representation head, rather than in-
troducing an additional segmentation model as in CPS.
Compare with other contrastive based S4 works [32, 1,
46, 23]. We adhere to prior works to build our prototype,
describe in Eq. 2. Different from them, we update our pro-
totypes iteratively, similar to [60]. Our sampling strategies
are based on the threshold, similar to [32, 23, 45]. However,
it is worth noting that our indicators which serve as the ba-
sis for comparison with the threshold, are derived from both
the logit and representation spaces. This stands in contrast
to prior approaches where indicators solely originate from
the logit space. The efficacy of this modification is substan-
tiated and extensively discussed in Sec. 5.2.

4. Experiments

4.1. Setup

Datasets. We conduct experiments on PASCAL VOC 2012
dataset [12], Cityscapes dataset [9], ADE20K dataset [59],
and COCO-Stuff 10K dataset [2] to validate the effec-
tiveness of our proposed method. The original PASCAL
VOC 2012 dataset contains 1,464 labeled images in train
set and 1,449 images for validation in val set. Follow-
ing [7, 37], we additionally introduce 9,118 images from
SBD [18] as training images. Since the labels in SBD
are coarsely annotated, following [46], we use both clas-
sic VOC train set (1,464 candidate labeled images) and
blender VOC train set (10,582 candidate labeled im-
ages). Cityscapes dataset is a dataset for urban scene under-
standing, which contains 2,975 images in train set and
500 images in val set. ADE20K has 20,210 and 2,000
images in train and val set, with 150 classes in total.
COCO-Stuff 10K has 9,000 images in train set and 1,000
images in val set, with 181 classes. The approach of pre-
processing labels is followed by MMSegmentation [8].
Network structure. We use Deeplabv3+ [4] with ResNet-
101 [20] pre-trained on ImageNet [10] as our network struc-

ture. The segmentation and representation head are com-
posed of Conv-BN-ReLU-Conv.
Implementation details. For training on PASCAL VOC
2012 dataset and COCO-Stuff 10K dataset, we set the learn-
ing rate as 0.0064, weight decay as 0.0005, crop size as 512
× 512, batch size as 16, and a total of 40,000 iterations.
For training on the Cityscapes dataset, we set the learning
rate as 0.0038, weight decay as 0.0005, crop size as 768 ×
768, batch size as 8, and a total of 80,000 iterations. For
training on ADE20K dataset, we set the learning rate as
0.0064, weight decay as 0.0005, crop size as 512 × 512,
batch size as 16, and a total of 80,000 iterations. We use the
poly scheduling to decay the learning rate during the train-
ing process: lr = lrbase × (1− epoch

total epoch )
0.9. We use the

mean of Intersection over Union (mIoU) as the metric in
evaluation. We use the sliding window strategy to evaluate
the performance of our method on the Cityscapes dataset,
following [7]. In addition, when adopting our cross-labeling
strategy, due to the requirement of a set of high-quality pro-
totypes when classifying each representation, we first solely
use the supervision from logit space for 20 epochs to initial-
ize the prototypes.

4.2. Comparison with Existing Methods

In this subsection, we first reproduce three baselines:
MT [44], CutMix [15], and a same contrastive-based frame-
work with us but with only logit space pseudo-labels and
indicators (Baseline) on classic VOC train set. Mean-
while, we make the comparison of our method with mix
(CSS (mix)) and cross (CSS (crs.)) pseudo-labeling strat-
egy on blender VOC train set and Cityscapes train
set with following recent SOTA S4 methods: CCT [38],
CPS [7], U2PL [46], ST++ [52], PRCL [48], PCR [51], and
PSMT [33]. Since the data split will dramatically affect the
performance in S4, i.e., choosing labeled images plays an
important role in the final results, we conduct experiments
with three different data splits and report the mean value
and standard deviation (blue color numbers). Since the mix
pseudo-labeling strategy has better performance, we only
use CSS (mix) when compared with SOTAs. Meanwhile,
we use ResNet-101 with deep stem blocks as our network
structure when compared with SOTAs. Since there is no
uniform data split, we use the data splits in U2PL [46]. We
use the OHEM loss when training Cityscapes.
Results on PASCAL VOC 2012. Tab. 1 shows the compar-
ison with our baselines on Classic PASCAL VOC 2012 set.
Our method consistently outperforms baselines with an ac-
ceptable standard deviation on all label rates. Tab. 2 shows
the comparison with the SOTAs on PASCAL VOC 2012.
Results on Cityscapes. Tab. 3 shows the performance of
our method on Cityscapes.
Results on ADE20K and COCO-Stuff 10K. Tab. 4 shows
the results of our method on ADE20K and COCO-Stuff.
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Table 1. Results on classic VOC train set with four different la-
bel rate. Labeled data splits are from the original VOC train set.
All approaches are reproduced with three runs and three different
data splits.

Pascal VOC 2012 (Classic)
Method 92 183 366 732
Sup. 51.57±3.58 54.69±2.44 64.86±1.04 70.77±0.76

MT 58.92±2.99 61.63±1.76 66.79±0.53 71.58±0.51

CutMix 65.82±3.60 67.91±1.47 72.53±0.50 74.08±0.49

Baseline 66.91±4.21 70.32±1.86 73.97±1.04 76.49±0.58

CSS(crs.) 67.03±4.58 71.41±1.67 74.47±1.08 77.08±0.37

CSS(mix) 68.09±4.89 71.93±1.88 74.91±1.12 77.57±0.73

Table 2. Results on blender VOC train set. All the results from
the recent papers [46, 52, 13, 29, 33, 51]. Labeled data is from the
augmented VOC train set and the data splits are from [46, 33].

Pascal VOC 2012 (Blender)
Method 662 1323 2646 5291
CCT [38] 71.86 73.68 76.51 77.40
CPS [7] 74.48 76.44 77.68 78.64
U2PL [46] 77.21 79.01 79.30 80.50
ST++ [52] 74.70 77.90 77.90 -
PRCL [48] 76.96 78.16 79.02 79.59
PCR [51] 78.60 80.71 80.78 80.91
PSMT [33] 75.50 78.20 78.72 79.76

CSS (mix) 78.73 79.54 80.82 81.06

Table 3. Results on Cityscapes. The model is trained on the
Cityscapes train set, which consists of 2,975 samples in total,
and tested on Cityscapes val set. And all the results from the re-
cent papers [46, 51, 33].

Cityscapes
Method 186 372 744 1488
CCT [38] 69.32 74.12 75.99 78.10
CPS [7] 69.78 74.31 74.58 76.82
U2PL [46] 70.30 74.37 76.47 79.05
PCR [51] 73.41 76.31 78.40 79.11
PSMT [33] - 76.89 77.60 79.09

CSS (mix) 74.02 76.93 77.94 79.62

5. Ablative Study
The main contribution of our work lies in 1) collabora-

tive pseudo-labeling strategies and 2) a new indicator for
representation learning. To further prove the effectiveness
of our proposed method, we conduct ablative studies on
these two points. We choose Deeplabv3+ with ResNet-101
pre-trained on ImageNet as our backbone and leverage 92
labeled images and 183 labeled images in PASCAL VOC
2012. The other settings are the same as those in Sec. 4.

5.1. Effectiveness of Collaborative pseudo-labeling

Quality of pseudo-labels. To illustrate the superiority of
using pseudo-labels from two spaces in a collaborative way
as supervision, we conduct experiments to show the quality
of pseudo-labels obtained 1) from logit space (lgt.), 2) from

(a) Image (b) GT (c) lgt. mask (d) lgt. label (e) rep. mask (f) rep. label

Figure 3. Differences between pseudo-labels in different spaces.

representation space (rep.), and 3) from the mix pseudo-
labeling strategy (mix). The pseudo-labels are sampled with
corresponding sampling strategies in Sec. 3.4. Tab. 5 illus-
trates the IoU of pseudo-labels for each class on PASCAL
VOC 2012 with 92 labeled images. The results clearly indi-
cate that employing pseudo-labels from the representation
space enhances the accuracy of the final pseudo-labels in
most classes. This improvement is particularly evident in
classes that are originally under-performing, such as the IoU
improvement of 11.42% for the chair class and 11.58%
for the sofa class.

Meanwhile, we also visualize the pseudo-labels obtained
from logit space (lgt.) and representation space (rep.) in
Fig. 3. Fig. 3 (c) and (e) show the masks for pseudo-
labels produced by the sampling strategies. In particular,
the white color represents the valid pixels used during unla-
beled learning, while the black color indicates the discarded
pixels. Fig. 3 (d) and (f) are the pseudo-labels we obtained
from two spaces. The figure clearly illustrates the differ-
ences between pseudo-labels produced by different spaces.
For example, the parts of the instance edge in pseudo-labels
are usually discarded since they are challenging for learn-
ing in logit space. However, pseudo-labels from represen-
tation space will easily tackle this problem (first row). The
pseudo-labels from representation space are more inaccu-
rate in some complex scenes, which be resolved by com-
bining pseudo-labels from logit space (second row).

We mainly attribute the differences in pseudo-label to
the differing concentrations of learning in the two spaces.
Specifically, learning in the logit space primarily empha-
sizes the most discriminative part of features, whereas that
in the representation space treats each part of features
equally. As a result, learning in the logit space may over-
look minor feature differences, leading to sub-optimal per-
formance in predicting instance edges and distinguishing
between similar classes (e.g., chair and sofa). Con-
versely, learning in the representation space produces bal-
anced performance across all image parts and classes. How-
ever, this can lead to erroneous predictions for classes with
high intra-class variance (e.g., background). By lever-
aging pseudo-labels from the two spaces, we capitalize on
the strengths of the learning in each space and enhance the
knowledge exchange between the two spaces.

937



Table 4. Results on ADE20K and COCO-Stuff 10K with four different label rates and single data splits.
ADE20K COCO-Stuff 10K

Method 1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2
Cutmix 28.91 31.89 34.62 39.15 23.09 26.14 29.88 30.91
Baseline 31.11 33.24 36.46 39.91 26.57 27.91 28.97 31.08

CSS (crs.) 32.01 33.92 37.84 39.97 27.06 28.85 30.59 31.73
CSS (mix) 32.55 34.21 37.01 40.85 27.46 29.51 29.98 31.91

Table 5. The quality of pseudo-labels from different pseudo-labeling strategies. The pseudo-labels are sampled by sampling strategies.
source back aero. bicy. bird boat bott. bus car cat chair cow

lgt. 96.78 95.14 77.47 93.38 81.37 87.54 96.76 95.48 94.47 4.09 92.15
rep. 90.71 96.50 61.42 75.75 53.30 54.65 84.46 80.55 91.11 28.03 88.16

mix 96.66↓0.12 98.12↑2.98 82.76↑5.29 94.47↑1.09 85.12↑3.75 89.94↑2.40 97.03↑0.27 95.98↑0.50 94.65↑0.18 19.01↑14.92 94.81↑2.66
source tabel dog horse motor pers. plant sheep sofa train tv mIoU

lgt. 58.34 94.12 93.01 91.37 93.68 50.33 91.10 18.16 86.65 64.89 78.87
rep. 52.23 86.97 73.22 88.70 91.75 56.13 66.78 35.25 88.51 62.61 71.57

mix 64.35↑6.01 94.33↑0.21 93.65↑0.64 91.50↑0.13 93.01↓0.67 55.64↑5.31 91.56↑0.46 29.74↑11.58 93.54↑6.89 69.48↑4.59 82.17↑3.33

Table 6. Results on pseudo-labels from different sources on two
different label rates.

source 92 labels 183 labels
logit space 67.11 70.32

representation space 64.20 67.52

mix pseudo-labeling 68.41↑1.30 72.74↑2.42
cross pseudo-labeling 67.85↑0.74 71.98↑1.66

Results of different strategies To investigate the involve-
ment of different pseudo-labeling strategies, we conduct the
experiments as follows: 1) Using pseudo-labels from logit
space. 2) Using pseudo-labels from representation space. 3)
Using mix pseudo-labeling strategy. 4) Using cross pseudo-
labeling strategy. Tab. 6 shows the effectiveness of our
proposed strategy in two different label rates. The results
show that the performances of experiments with collabo-
rative pseudo-labeling strategies are better than the ones
whose pseudo-labels come from a single space with two
different label rates, which proves the effectiveness of our
proposed collaboration between the two spaces. It is worth
noting that even though the quality of pseudo-labels from
representation space is lower than that from logit space, the
performance of the model is also boosted by using the cross
pseudo-labeling strategy to maintain consistency between
the predictions in two spaces. In addition, our method with
the mix pseudo-labeling strategy outperforms that with the
cross pseudo-labeling strategy.

5.2. Effectiveness of the Indicator

Limitation of merely using confidence. To explain the
limitation of merely using confidence for learning in the
logit and representation spaces, we conduct experiments to
show the relations between confidence and similarity. The
similarity is the cosine similarity between representations
and prototypes, which directly shows the confusion level
between the representation and the prototype of its class.

(a) (b)

0.5 0.6 0.7 0.8 0.9 1.0
(confidence)

(similarity)

Figure 4. Relations between similarity and confidence.

Fig. 4 (a) shows the comparison between the confidence of
each prediction and the corresponding similarity. We use
the class person for demonstrating in our experiments. It
shows clearly that even though fixing the confidence into a
small range (from 0.8 to 0.81 in our settings), the similarity
varies. Meanwhile, in Fig. 4 (b), different color bars stand
for different intervals of confidence, and the lines denote
the mean similarity between the prototype and each repre-
sentation whose corresponding confidence is in the current
interval. Fig. 4 (b) illustrates that the mean similarity of the
class fluctuates when its interval of confidence rises. Both
two figures imply that confidence is not able to represent
the confusion level between representations and prototypes
since there are no direct and close relations between confi-
dence and similarity.

Fig. 5 visualizes the similarity and confidence of an im-
age in both logit (lgt.) and representation (rep.) spaces, in-
dicating the varying levels of confusion in the same region
when learning in different spaces.

We also attribute it to the different concentrations of
learning two spaces, i.e., the confusing region in one space
can be more readily addressed in the other space.

Thus, it is inappropriate to choose confidence as the indi-
cator to involve representation learning, e.g., sampling more
hard samples with threshold and indicator. In contrast, our
indicator directly employs similarity between the represen-

938



(a) Image (b) GT (c) lgt. space

lowhigh

(c) rep. space

Figure 5. Visualization of the confusing part in different spaces.

tation and prototype of its class, which directly reflects the
confusion level in representation learning. It is more ac-
curate to use similarity as the indicator to sample hard and
critical samples in representation learning.
Results of different indicators. Tab. 7 shows the impact
of using different indicators. We conduct experiments on
two different label rates (92 and 183) and three different
indicators for pseudo-labels: only confidence (conf.), only
similarity (smlr.), and confidence for learning logit space
while similarity for learning representation space (mix). We
use two different approaches to obtain pseudo-labels: from
logit space only (seg label) and from mix pseudo-labeling
strategy (mix label). It is clear that using both confidence
and similarity to involve the learning in their own spaces
obtains the best performance.

Table 7. Results on indicators from different spaces on two differ-
ent label rates.

92 labels 183 labels
source seg label mix label seg label mix label
conf. 67.11 68.33 70.32 71.92
smlr. 66.16 66.89 68.90 69.25

mix 67.80↑0.69 68.41↑1.30 71.50↑1.18 72.74↑2.42

5.3. Ablation study of Components

In this section, we conduct experiments to introduce our
components in CSS step by step, with results shown in
Tab. 8. Our baseline is the conventional contrastive-based
S4, achieving mIoU of 67.11% on 92 labels and 70.32% on
183 labels. Mix and cross means the pseudo-labels are from
the mix pseudo-labeling strategy and cross pseudo-labeling
strategy while the indicator is still the confidence in two
spaces. Ind means we use the different indicators in differ-
ent spaces while the pseudo-labels are from logit space. The
last two rows represent our proposed two pseudo-labeling
strategies with indicators from two spaces.

5.4. Qualitative Results

Fig. 6 shows the qualitative results of different methods
on PASCAL VOC 2012 with 92 labeled images. Baseline
means the conventional contrastive-based method. Com-
pared with the original self-training methods (CutMix),

Table 8. Ablation study on different components of our CSS.
component 92 labels 183 labels

baseline 67.11 70.32

mix 68.33↑1.22 71.92↑1.60
cross 67.21↑0.10 70.87↑0.55
ind 67.80↑0.69 71.50↑1.18

mix + ind 68.41↑1.30 72.74↑2.42
cross + ind 67.85↑0.74 71.98↑1.66

thanks to introducing pixel-wise contrastive learning, the
baseline, and our method perform better in some ambigu-
ous regions. Furthermore, benefiting from the supervision
of two spaces and different indicators in different spaces,
our method outperforms the baseline.

(a) Image (b) GT (c) CutMix (d) Baseline (e) CSS (cross) (f) CSS (mix)

Figure 6. Visualization on PASCAL VOC 2012 with 92 labeled
images. Yellow boxes highlight the main differences.

6. Conclusion
In this paper, we propose two collaborative pseudo-

labeling strategies to take full use of the semantic infor-
mation in the representation space and enhance the knowl-
edge exchange between the logit and representation spaces.
Moreover, we employ a new indicator for the learning pro-
cess in the representation space. Extensive experiments
demonstrate that our pseudo-labeling strategies obtain more
reliable supervision during unlabeled training and our indi-
cator helps the model to concentrate on more critical parts
during representation learning.
Future work: In this paper, we employ pseudo-labeling
strategies to utilize the semantic information in both logit
and representation spaces. In the future, we will investi-
gate more powerful strategies to enhance the knowledge ex-
change between two spaces.
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Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In 2011 international conference on com-
puter vision, pages 991–998. IEEE, 2011.

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[21] Ruifei He, Jihan Yang, and Xiaojuan Qi. Re-distributing
biased pseudo labels for semi-supervised semantic segmen-
tation: A baseline investigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 6930–6940, October 2021.

[22] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation. arXiv preprint arXiv:1612.02649, 2016.

[23] Hanzhe Hu, Jinshi Cui, and Liwei Wang. Region-aware con-
trastive learning for semantic segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16291–16301, 2021.

[24] Hanzhe Hu, Fangyun Wei, Han Hu, Qiwei Ye, Jinshi Cui,
and Liwei Wang. Semi-supervised semantic segmentation
via adaptive equalization learning. Advances in Neural In-
formation Processing Systems, 34:22106–22118, 2021.

[25] Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu
Lin, and Ming-Hsuan Yang. Adversarial learning for
semi-supervised semantic segmentation. arXiv preprint
arXiv:1802.07934, 2018.

[26] Zhengkai Jiang, Yuxi Li, Ceyuan Yang, Peng Gao, Yabiao
Wang, Ying Tai, and Chengjie Wang. Prototypical contrast
adaptation for domain adaptive semantic segmentation. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXIV, pages 36–54. Springer, 2022.

940

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


[27] Tarun Kalluri, Girish Varma, Manmohan Chandraker, and
CV Jawahar. Universal semi-supervised semantic segmenta-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5259–5270, 2019.

[28] Rihuan Ke, Angelica I Aviles-Rivero, Saurabh Pandey,
Saikumar Reddy, and Carola-Bibiane Schönlieb. A three-
stage self-training framework for semi-supervised seman-
tic segmentation. IEEE Transactions on Image Processing,
31:1805–1815, 2022.

[29] Donghyeon Kwon and Suha Kwak. Semi-supervised seman-
tic segmentation with error localization network. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9957–9967, 2022.

[30] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba,
and Sanja Fidler. Semantic segmentation with generative
models: Semi-supervised learning and strong out-of-domain
generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8300–
8311, 2021.

[31] Jinlu Liu, Liang Song, and Yongqiang Qin. Prototype rec-
tification for few-shot learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part I 16, pages 741–756. Springer,
2020.

[32] Shikun Liu, Shuaifeng Zhi, Edward Johns, and Andrew
Davison. Bootstrapping semantic segmentation with re-
gional contrast. In International Conference on Learning
Representations, 2022.

[33] Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu,
Vasileios Belagiannis, and Gustavo Carneiro. Perturbed and
strict mean teachers for semi-supervised semantic segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4258–4267,
2022.

[34] Binjie Mao, Xinbang Zhang, Lingfeng Wang, Qian Zhang,
Shiming Xiang, and Chunhong Pan. Learning from the tar-
get: Dual prototype network for few shot semantic segmen-
tation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 1953–1961, 2022.

[35] Sudhanshu Mittal, Maxim Tatarchenko, and Thomas Brox.
Semi-supervised semantic segmentation with high-and low-
level consistency. IEEE transactions on pattern analysis and
machine intelligence, 43(4):1369–1379, 2019.

[36] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018.

[37] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and
Lennart Svensson. Classmix: Segmentation-based data aug-
mentation for semi-supervised learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1369–1378, 2021.

[38] Yassine Ouali, Celine Hudelot, and Myriam Tami. Semi-
supervised semantic segmentation with cross-consistency
training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2020.

[39] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah
Ngo, and Tao Mei. Transferrable prototypical networks
for unsupervised domain adaptation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2239–2247, 2019.

[40] Jizong Peng, Guillermo Estrada, Marco Pedersoli, and Chris-
tian Desrosiers. Deep co-training for semi-supervised image
segmentation. Pattern Recognition, 107:107269, 2020.

[41] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017.

[42] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
Advances in neural information processing systems, 33:596–
608, 2020.

[43] Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shu-
jian Zhang, Hao Zhang, Bo Chen, and Mingyuan Zhou.
A prototype-oriented framework for unsupervised domain
adaptation. Advances in Neural Information Processing Sys-
tems, 34:17194–17208, 2021.

[44] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017.

[45] Wenguan Wang, Tianfei Zhou, Fisher Yu, Jifeng Dai, En-
der Konukoglu, and Luc Van Gool. Exploring cross-image
pixel contrast for semantic segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 7303–7313, 2021.

[46] Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing Fei,
Wei Li, Guoqiang Jin, Liwei Wu, Rui Zhao, and Xinyi
Le. Semi-supervised semantic segmentation using unreli-
able pseudo labels. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

[47] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and
Fan Yang. Crest: A class-rebalancing self-training frame-
work for imbalanced semi-supervised learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10857–10866, June
2021.

[48] Haoyu Xie, Changqi Wang, Mingkai Zheng, Minjing Dong,
Shan You, and Chang Xu. Boosting semi-supervised seman-
tic segmentation with probabilistic representations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 2938–2946, 2023.

[49] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10687–
10698, 2020.

[50] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen
Lin, and Han Hu. Propagate yourself: Exploring pixel-level
consistency for unsupervised visual representation learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16684–16693, 2021.

941



[51] Hai-Ming Xu, Lingqiao Liu, Qiuchen Bian, and Zhen Yang.
Semi-supervised semantic segmentation with prototype-
based consistency regularization. Advances in Neural Infor-
mation Processing Systems, 2022.

[52] Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao.
St++: Make self-training work better for semi-supervised se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4268–4277, 2022.

[53] Jianlong Yuan, Yifan Liu, Chunhua Shen, Zhibin Wang, and
Hao Li. A simple baseline for semi-supervised semantic seg-
mentation with strong data augmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 8229–8238, 2021.

[54] Xiangyu Yue, Zangwei Zheng, Shanghang Zhang, Yang
Gao, Trevor Darrell, Kurt Keutzer, and Alberto Sangiovanni
Vincentelli. Prototypical cross-domain self-supervised learn-
ing for few-shot unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13834–13844, 2021.

[55] Xiangyun Zhao, Raviteja Vemulapalli, Philip Andrew Mans-
field, Boqing Gong, Bradley Green, Lior Shapira, and
Ying Wu. Contrastive learning for label efficient seman-
tic segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
10623–10633, October 2021.

[56] Xu Zheng, Yunhao Luo, Hao Wang, Chong Fu, and Lin
Wang. Transformer-cnn cohort: Semi-supervised semantic
segmentation by the best of both students, 2022.

[57] Xu Zheng, Jinjing Zhu, Yexin Liu, Zidong Cao, Chong Fu,
and Lin Wang. Both style and distortion matter: Dual-
path unsupervised domain adaptation for panoramic seman-
tic segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1285–1295, June 2023.

[58] Yuanyi Zhong, Bodi Yuan, Hong Wu, Zhiqiang Yuan, Jian
Peng, and Yu-Xiong Wang. Pixel contrastive-consistent
semi-supervised semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7273–7282, 2021.

[59] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017.

[60] Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc
Van Gool. Rethinking semantic segmentation: A prototype
view. In CVPR, 2022.

[61] Yanning Zhou, Hang Xu, Wei Zhang, Bin Gao, and Pheng-
Ann Heng. C3-semiseg: Contrastive semi-supervised
segmentation via cross-set learning and dynamic class-
balancing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7036–7045, 2021.

942


