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Figure 1: Comparing the state-of-the-arts RegNeRF [37], MonoSDF* [65], DSNeRF [17], and our SparseNeRF with three
views for training (* denotes a re-implementation for our task). RegNeRF regularizes geometry with sparsity and continuity
constraints. MonoSDF, and DSNeRF use scale-invariant depth constraints supervised by coarse depth maps. Our SparseNeRF
uses robust depth ranking of coarse depth maps. SparseNeRF can synthesize realistic novel views and coherent geometric
depth (Please refer to the supplementary material for rendered videos).

Abstract

Neural Radiance Field (NeRF) significantly degrades
when only a limited number of views are available. To
complement the lack of 3D information, depth-based mod-
els, such as DSNeRF and MonoSDF, explicitly assume the
availability of accurate depth maps of multiple views. They
linearly scale the accurate depth maps as supervision to
guide the predicted depth of few-shot NeRFs. However, ac-
curate depth maps are difficult and expensive to capture
due to wide-range depth distances in the wild. This work
presents a new Sparse-view NeRF (SparseNeRF) frame-
work that exploits depth priors from real-world inaccurate
observations. The inaccurate depth observations are ei-
ther from pre-trained depth models or coarse depth maps of
consumer-level depth sensors. Since coarse depth maps are
not strictly scaled to the ground-truth depth maps, we pro-
pose a simple yet effective constraint, a local depth ranking
method, on NeRFs such that the expected depth ranking of
the NeRF is consistent with that of the coarse depth maps in
local patches. To preserve the spatial continuity of the esti-

mated depth of NeRF, we further propose a spatial continu-
ity constraint to encourage the consistency of the expected
depth continuity of NeRF with coarse depth maps. Surpris-
ingly, with simple depth ranking constraints, SparseNeRF
outperforms all state-of-the-art few-shot NeRF methods (in-
cluding depth-based models) on standard LLFF and DTU
datasets. Moreover, we collect a new dataset NVS-RGBD
that contains real-world depth maps from Azure Kinect,
ZED 2, and iPhone 13 Pro. Extensive experiments on NVS-
RGBD dataset also validate the superiority and generaliz-
ability of SparseNeRF. Code and dataset are available at
https://sparsenerf.github.io/.

1. Introduction

Neural radiance fields (NeRFs) [36, 32, 1, 2, 44] have
made tremendous progress in generating photo-realistic
novel views of scenes by optimizing implicit function repre-
sentations given a set of 2D input views. However, in a wide
range of real-world scenarios, collecting dense views of a
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scene is often expensive and time-consuming [47]. There-
fore, it is necessary to develop few-shot NeRF methods that
can be learned from sparse views without significant degra-
dation in performance.

Learning a NeRF from sparse views is a challenging
problem due to under-constrained reconstruction condi-
tions, especially in textureless areas. Directly applying
NeRFs to few-shot scenarios suffers from dramatic degra-
dation [37]. Recently, some methods have greatly improved
the performance of few-shot NeRF, which can be catego-
rized into three groups. 1) The first group [37, 27, 25] is
based on geometry constraints (sparsity and continuity reg-
ularizations) and high-level semantics. RegNeRF [37] reg-
ularized the geometry and appearance of patches rendered
from unobserved viewpoints, and annealed the ray sampling
space. InfoNeRF [27] imposed an entropy constraint of
the density in each ray and a spatial smoothness constraint
into the estimated images. However, since a scene often
contains multiple layouts (Figure 1), sparsity and continu-
ity geometric constraints of a few views cannot guarantee
the complete 3D geometric reconstruction. 2) The second
group [64, 5] resorts to pre-training on similar scenes. For
example, PixelNeRF [64] proposed to condition a NeRF
on convolutional feature maps to learn high-level seman-
tics from other scenes. 3) The third group [17, 65, 24] ex-
ploits depth maps and makes a linearity assumption of depth
maps to supervise few-shot NeRFs. For example, DSNeRF
[17] exploited sparse 3D points generated by COLMAP
[42] or accurate depth maps [13] obtained by high-accuracy
depth scanners and the Multi-View Stereo (MVS) algo-
rithm. The depth maps are linearly scaled as supervision to
guide the predicted depth of few-shot NeRFs. To use coarse
depth maps, MonoSDF [65] uses a local patch-based scale-
invariant depth constraint supervised by coarse depth maps
instead of global depth maps. However, the scale-invariant
depth constraint is strong for real-world coarse depth maps
from pre-trained depth models or consumer-level depth sen-
sors due to wide-range depth distances in the wild.

Along the third group, we wish to explore more ro-
bust 3D priors from coarse depth maps to complement the
under-constrained few-shot NeRF. To address this problem,
we present SparseNeRF, a simple yet effective method that
distills depth priors from pre-trained depth models [41] or
inaccurate depth maps from consumer-level depth sensors
(Figure 3), which can be easily obtained from real-world
scenes. Deriving useful depth cues from such pre-trained
models is non-trivial. In particular, although single-view
depth estimation methods have achieved good visual per-
formance, thanks to large-scale monocular depth datasets
and large ViT models, they cannot yield accurate 3D depth
information due to coarse depth annotations, dataset bias,
and ill-posed 2D single-view images. The inaccurate depth
information contradicts the density prediction of a NeRF

when reconstructing each pixel of a 3D scene based on vol-
ume rendering. Directly scaling the coarse depth maps to
a NeRF [17, 65] leads to inconsistent geometry against the
expected depth of the NeRF.

Instead of directly supervising a NeRF with coarse depth
priors, we relax hard depth constraints [17, 65] and distill
robust local depth ranking from the coarse depth maps to a
NeRF such that the depth ranking of a NeRF is consistent
with that of coarse depth. That is, we supervise a NeRF with
relative depth instead of absolute depth [17, 65]. To guar-
antee the spatial continuity of geometry, we further propose
a spatial continuity constraint on depth maps such that the
NeRF model imitates the spatial continuity of coarse depth
maps. The accurate sparse geometry constraints from a lim-
ited number of views, combined with relaxed constraints
including depth ranking regularization and continuity reg-
ularization, finally achieve promising novel view synthesis
(Figure 1). It is noteworthy that SparseNeRF does not in-
crease the running time during inference as it only exploits
depth priors from pre-trained depth models or consumer-
level sensors during the training stage (Figure 2). In ad-
dition, SparseNeRF is a plug-and-play module that can be
easily integrated into various NeRFs.

The main contributions of this paper are 1) SparseNeRF,
a simple yet effective method that distills local depth rank-
ing priors from pre-trained depth models. With the help
of the local depth ranking constraint, SparseNeRF signif-
icantly improves the performance of few-shot novel view
synthesis over the state-of-the-art models (including depth-
based NeRF methods). To preserve the coherent geome-
try of a scene, we propose a spatial continuity distillation
constraint that encourages the spatial continuity of NeRF
to be similar to that of the pre-trained depth model. Both
depth ranking prior and spatial continuity distillation are
new in the literature on NeRF. 2) Apart from SparseNeRF,
we also contribute a new dataset, NVS-RGBD, which con-
tains coarse depth maps from Azure Kinect, ZED 2, and
iPhone 13 Pro. 3) Extensive experiments on the LLFF,
DTU, and NVS-RGBD datasets demonstrate that SparseN-
eRF achieves a new state-of-the-art performance in few-
shot novel view synthesis.

2. Related Work
Neural Radiance Fields. NeRF [36, 48, 8, 39] has
made great success in synthesizing novel views of com-
plex scenes due to good representation of neural networks
[20, 52, 50, 53, 18, 28]. Block-NeRF [47], CityNeRF [58],
and Mega-NeRF [49] scaled the standard NeRF up to city-
scale or urban-scale scenes. NeRF−− [56], GNeRF [33],
and BARF [31] relaxed the requirements of NeRFs and syn-
thesized novel views without perfect camera poses. Some
works attempted to improve NeRFs by considering anti-
aliasing [1], sparse 3D grids with spherical harmonics [19].
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Some methods [40, 30, 57] extended NeRFs to dynamic
scenes. These methods do not focus on generating novel
views with a few views. In this paper, we study sparse-view
NeRF to reduce dense capture requirements in real-world
applications.

Few-shot Novel View Synthesis. There are increasing
studies on few-shot novel view synthesis. Basically, the ex-
isting few-shot NeRF methods can be categorized into three
groups. First, some methods exploit continuity constraints
on geometry or object semantics. For example, RegNeRF
[37] imposed a continuity constraint on geometry and reg-
ularized the appearance of patches from unobserved view-
points with a flow model. InfoNeRF [27] proposed a ray
entropy minimization regularization to encourage the den-
sity to be as sparse as possible along a ray, and used a ray
information gain reduction regularization to constrain the
continuous depth of neighbor rays. Second, some meth-
ods attempt to pe-train a NeRF on other similar scenes
and fine-tune the NeRF on the target scene. For example,
PixelNeRF [64] conditioned a NeRF on image inputs in
a fully convolutional manner, allowing the model to learn
scene priors from other scenes and reduce the requirement
of dense views. MVSNeRF [5] leveraged plane-swept cost
volumes for geometry-aware scene reasoning and combined
it with physically based volume rendering. Similar to Pixel-
NeRF, MVSNeRF was first trained on other real scenes and
was finetuned on target scenes to evaluate its effectiveness
and generalizability. Third, depth-based models [17, 65]
use available depth information to supervise the training of
NeRFs. DSNeRF [17] exploited sparse 3D points generated
by COLMAP [42] or accurate depth maps [13] obtained
by high-accuracy depth scanners. Different from these
depth-based models, SparseNeRF distills robust depth rank-
ing from pre-trained depth models or coarse depth maps
from consumer-level sensors. As concurrent works, NeRDi
[16] and NeuralLift-360 [60] also use ranking-based meth-
ods. However, they mainly focus on the single-view setting
while SparseNeRF focuses on sparse-view. SparseNeRF
uses ranking loss to avoid inconsistent 3D geometry across
different views while [16, 60] focuses on a soft geometric
regularization on a single view (no cross-view consistency
problem during training). Moreover, SparseNeRF intro-
duces a new spatial continuity loss to distill spatial coher-
ence from monocular depth estimators. In addition, some
single-view synthesis methods [59] either allow new gener-
ative objects from unseen views or focus on specific objects,
e.g., face [4] and human [23]. Some NeRF-based methods
[22, 11] extended to generation instead of reconstruction.
Other AIGC models [21, 51, 54, 67, 10, 9, 63, 29, 62] fo-
cus on the 2D generation or category-specific reconstruction
[7], which are different.

3. Our Approach
We present SparseNeRF to synthesize novel views given

sparse view inputs. Single-view depth estimation is a long-
standing computer vision task, aiming to predict a depth
map given a single image. In this paper, we are interested
in mining the depth priors encapsulated in pre-trained mod-
els of single-view depth estimation or coarse depth maps
captured by consumer-level depth sensors. However, due
to coarse annotations of single-view depth maps, (e.g., user
clicks [6], RGB-D [43, 46], and laser/stereo [34]), dataset
bias, and imperfect depth estimation models, it is challeng-
ing to obtain accurate 3D depth estimation given 2D single-
view images. As for consumer-level depth sensors, it still
struggles to capture accurate depth maps (Figure 3). Driven
by these observations, our goal is to make use of the coarse
depth maps and distill useful depth priors to guide the learn-
ing of a NeRF.

3.1. Preliminary and Problem Formulation

Neural Radiance Fields. Let a NeRF [36] be a mapping
function f that maps a 3D spatial location x and a viewing
direction d into a volume density σ and a color value c.
The f is a neural network consisting of eight perceptron
(MLP) layers parameterized by θ, which is given by fθ :
(γ(x), γ(d)) 7→ (σ, c), where γ is a positional encoding.
For each expected pixel color Ĉ(r), it is rendered by casting
a ray r(t) = o+ td with near and far bounds tn and tf . We
evenly partition [tn, tf ] into N points (t1, t2, ..., tN ) along
a ray r and compute expected pixel color Ĉ(r) by Ĉ(r) =∑N

i=1 c
∗
i . The weighted color c∗i of a 3D point is computed

by c∗i = wici, where wi = Ti(1 − exp(−σiδi)), Ti =

exp(−
∑i−1

j=1 σjδj) and δi = ti−ti−1. Therefore, the NeRF
reconstruction loss can be formulated as

Lnerf =
∑
r∈R

||Ĉ(r)− C(r)||2, (1)

where Ĉ(r) are rendered color blended by N samples. C(r)
is the ground-truth pixel color. We use coarse-to-fine sam-
pling as discussed in the vanilla NeRF [36]. Here we omit
the fine rendering for simplification.
Problem Formulation. Vanilla NeRFs aim to learn a map-
ping function fθ with Kd dense views by optimizing a color
reconstruction loss in Eq. (1). In this work, we aim to study
few-shot NeRF when only Ks sparse views are available
(Ks ≪ Kd). Let H and W denote the height and width of
an image, we have HWKs rays as color reconstruction con-
straints. Without considering view directions d and image
continuity assumptions (i.e., c∗i is independent of c∗j when
i ̸= j), suppose we have a Nc × Nc × Nc discrete cubic
volume to be optimized, which contains N3

c weighted color
variables c∗i . We have N3

c variables c∗i and HWKs con-
straints. Ideally, we are able to solve a discrete cube of edge
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Figure 2: Framework Overview. SparseNeRF consists of two streams, i.e., NeRF and depth prior distillation. As for NeRF,
we use Mip-NeRF as the backbone. we use a NeRF reconstruction loss Lnerf . As for depth prior distillation, we distill depth
priors from a pre-trained depth model. Specifically, we propose a local depth ranking regularization and a spatial continuity
regularization to distill robust depth priors from coarse depth maps.

length Nc =
3
√
HWKs. That is, we can sample 3

√
HWKs

for each edge of a cubic volume. Take H = W = 512 and
Ks = 3 as an example, we have Nc ≈ 92, which is far from
reconstructing a continuous radiance field. To address this
under-constrained optimization problem of few-shot NeRF,
an intuitive way is to introduce reasonable regularization
terms to constrain few-shot NeRFs conditioned on input x,
d, and C(r). Considering these constraints, a general for-
mulation is given by

L = Lnerf + λR(x,d, C(r)), (2)

where R is a regularization term.

Remark. RegNeRF [37] and InfoNeRF [27] tackles this
problem by introducing regularization terms on continu-
ous depth constraint from unobserved viewpoints, sparsity
of density on rays, and patch-based semantic constraint on
color appearance. Depth-based models, such as DSNeRF
[17] and MonoSDF [65], directly regress depth by leverag-
ing sparse 3D points or deriving ground-truth depth maps
with accurate absolute depth maps. Different from them,
we propose to use a robust relative depth regularization
from coarse depth maps of pre-trained depth models or
consumer-level depth sensors.

3.2. Overview of SparseNeRF

The pipeline of SparseNeRF is illustrated in Figure 2.
SparseNeRF mainly consists of four components, i.e., a
neural radiance field (NeRF), a color reconstruction mod-
ule, a depth ranking distillation module, and a spatial con-
tinuity distillation module. Specifically, we use Mip-NeRF
[1] as the backbone and apply an MSE loss for color re-
construction Lnerf . As for depth prior distillation, we ei-
ther use a pre-trained depth model to estimate depth maps
or capture coarse depth maps with consumer-level depth
sensors. We use a vision transformer (DPT) [41] that is
trained on a large-scale mixed depth dataset (1.4M images
with various depth annotations) that covers a wide range of
scenes. Therefore, DPT is able to provide general depth
priors. Since single-view depth estimation is coarse, we
carefully design a local depth ranking regularization and a
spatial continuity regularization, which distills robust depth
priors from coarse maps to the NeRF.

3.3. Local Depth Ranking Distillation

Single-view depth estimation is a challenging computer
vision task, which aims at predicting a depth map of a scene
given a single image as input. Due to dataset bias, coarse
depth annotations, and imperfect neural models, it is diffi-
cult to achieve accurate depth prediction. Depth maps cap-
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Figure 3: Two types of coarse depth maps. Top: pre-
dicted by a pre-trained depth model. Bottom: captured by
Azure Kinect and ZED 2 depth sensors. Si-MSE is a scale-
invariant depth error. Time jittering refers to the difference
between two depth maps captured by a static camera within
a small time interval.

tured by consumer-level sensors are also inaccurate due to
wide-range depth distances. Directly using coarse depth
maps to supervise a NeRF leads to ambiguous rendered
novel view synthesis. To avoid the error of coarse depth
maps, we relax the depth constraint and exploit the robust
depth ranking prior. Given a pair of pixels in a single image,
the depth ranking regularization only considers which point
is nearer or farther. However, when the scene is complex,
even depth ranking is not accurate. As shown in Figure 4,
it is easy for depth estimation models to compare the depth
ranking of white and cyan points, but it is hard to estimate
the depth ranking of white and red points. It implies that
the depth ranking becomes unreliable as the spatial distance
increases.

Motivated by these observations, we propose a local
depth ranking distillation method that distills depth rank-
ing priors from coarse depth maps to a NeRF. On one hand,
given a local patch P of an RGB image I with a pose p.
We compute the depth dr of the rays that trace from P by
dr =

∑N
i=1 witi. On the other hand, we use pre-trained

depth DPT [41] to estimate the depth of I and crop a local
patch ddpt with the same spatial location as dr. We per-
form the depth ranking distillation by transferring the depth
ranking knowledge from ddpt to dr. Let k1 and k2 be the

┼

┼┼ ┼
┼

┼

Figure 4: Motivation of local depth ranking. It is easy for
depth estimation models to tell the white point is nearer
than the cyan point, but it is hard to compare while and red
points. Best viewed by zooming in.

indices of 2D pixel coordinate of ddpt and dr. The depth
ranking regularization is given by

Rrank =
∑

dk1
dpt≤dk2

dpt

max(dk1r − dk2r +m, 0), (3)

where m is a small margin that allows limited depth ranking
errors. In Eq. (3), we randomly sample two depth pixels
of ddpt, as denoted as dk1dpt and dk2dpt, d

k1
dpt ≤ dk2dpt. If the

depth rankings of ddpt and dr are not consistent, i.e., dk1r >
dk2r and dk1dpt ≤ dk2dpt, we punish the NeRF. We encourage
the corresponding depth estimated by NeRF to satisfy the
consistent depth ranking of the pre-trained model. We clip
the large depth value and normalize the depth map for depth
sensors. For depth models, we use relative inverse depth.

3.4. Spatial Continuity Distillation

The local depth ranking constraint guarantees that the
predicted depth map estimated by NeRF is consistent with
the DPT’s depth map. However, it does not constrain the
spatial continuity of the depth map. We distill spatial conti-
nuity priors from the depth model DPT, which allows large
displacement across several depth pixels. If neighbor depth
pixels are continuous on the depth map of DPT, we con-
strain the corresponding depth pixels of NeRF to be contin-
uous. The spatial continuity regularization is given by

Rconti =
∑
k1

∑
dk2
dpt∈KNN(dk1

dpt)

max(|dk1r − dk2r | −m
′
, 0),

(4)
where KNN(·) returns k-nearest neighbors measured by
depth values within a small region, e.g., 6 × 6 patch. m

′
is

a small margin that allows small depth differences between
neighbor pixels.
Full Objective Loss. The full objective loss of SparseNeRF
is formulated by

L = Lnerf + λRrank + γRconti, (5)

where λ and γ control the importance of the regularization
terms. In practice, we set λ = 0.2, γ = 0.02, m = m

′
=

1.0× 10−4.
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4. NVS-RGBD Dataset

The popular benchmark LLFF [35] on NeRFs is fea-
tured with forward-facing and object-centric. Moreover, we
focus on consumer-level depth sensors instead of expen-
sive scanners [14]. We study stand-alone depth cameras
instead of a complex calibrated structured multiple cam-
era system [15], and collect from real-world scenes instead
of synthesized 3D assets [45]. Few RGBD datasets sat-
isfy all of the requirements. Therefore, we collect a new
dataset NVS-RGBD that contains real-world depth maps
captured by consumer-level depth sensors, including Azure
Kinect, ZED 2, and iPhone 13 Pro. We collect 8 scenes
for both Azure Kinect and ZED 2, and 4 scenes for iPhone
13 Pro. The depth maps of Azure Kinect often contain
noises around object edges. The depth maps of ZED 2 look
smooth but unstable and incorrect when observing time jit-
tering (Figure 3). The poses are computed via COLMAP.
We collect indoor scenes for ZED 2 and Kinect. For iPhone,
we collect both indoor and outdoor scenes. All the scenes
are object-centric. Depth maps obtained from sensors have
different artifacts coming from the sensor noises. Please re-
fer to the supplementary material for the details.

5. Experiments

Datasets. We conduct experiments on the LLFF [35], DTU
[26], and NVS-RGBD datasets. LLFF contains 8 complex
forward-facing scenes. Following RegNeRF [37], we use
every 8-th image as the held-out test set, and evenly sam-
ple sparse views from the remaining images for training.
Different from LLFF, DTU is an object-level dataset. Fol-
lowing PixNeRF [64, 37], we use the same 15 scenes in
our experiments. On the DTU dataset, the background of
these scenes is a white table or a black background, which
has few textures. As mentioned in RegNeRF, we mask the
background during inference to avoid background bias. We
use the same evaluation protocol for a fair comparison. On
the NVS-RGBD dataset, for each scene, we use 3 views
for training and the rest views for inference. For LLFF
and DTU, we use pre-trained depth maps to implement our
method. For NVS-RGBD, we use coarse depth maps cap-
tured by depth sensors.
Evaluation Metrics. We adopt four evaluation metrics in
the experiments, i.e., PSNR, SSIM [55], LPIPS [66], and
depth error [17]. Depth error is a scale-invariant MSE de-
rived by minimizing ||wd̂ + b − d||, where d̂ and d denote
coarse depth maps and pseudo-ground-truth depth maps
predicted by dense-view NeRF. Note that we only use dense
views to train a good NeRF to generate pseudo-ground-truth
depth maps for evaluation.
Implementation Details. We implement SparseNeRF
based on the official JAX [3]. We use the Adam opti-
mizer for the learning of SparseNeRF. We use an exponen-

tial learning rate, which decays from 2× 10−3 to 2× 10−5.
The batch size is set to 4096. For each scene, we use one
GPU-v100 with 32G memory for both training and infer-
ence. We also implement the proposed SparseNeRF on
GPU-v100 with 16G and RTX 2080 Ti with 11G. We re-
duce the batch size to 2048 and 1024 for these two types of
GPUs, respectively. We use the same backbone and sam-
pled points along rays compared with prior arts.

We train 90k iterations for each scene given three train-
ing views, which takes about 2 hours for each scene. For
depth maps captured by Kinect and ZED 2, we mask uncer-
tain regions (black regions in depth maps). More precisely,
we sample near-far depth pairs in certain regions in local
patches to optimize Eqs. 3 and 4 of the paper.

5.1. Comparisons on LLFF

We compare SparseNeRF with state-of-the-art methods
on the LLFF dataset, including SRF [12], PixelNeRF [64],
MVSNeRF [5], Mip-NeRF [1], DietNeRF [25], RegNeRF
[37], DSNeRF [17] and MonoSDF[65]. Among them, SRF,
PixelNeRF, and MVSNeRF are pre-trained on other sim-
ilar scenes to exploit high-level semantics. Mip-NeRF is
the state-of-the-art NeRF designed for dense-view training.
InfoNeRF and RegNeRF mainly constrain sparsity and con-
tinuity of geometry or natural appearance semantics. More
precisely, the compared methods can be classified into four
groups. In the first group, SRF, PixelNeRF, and MVSNeRF
are pre-trained in the large-scale DTU datasets (88 scenes)
and are directly tested on the LLFF dataset. In the second
group, SRF, PixelNeRF, and MVSNeRF are pre-trained on
DTU and fine-tuned on LLFF per scene. The third group
includes Mip-NeRF, DietNeRF, and RegNeRF. They uses
geometry continuity and semantic constraints. The fourth
group distills knowledge from depth maps or sparse points
of COLMAP (DSNeRF). The compared results are shown
in Table 1. We can see that the proposed SparseNeRF
achieves the best performance in PSNR, SSIM, and LPIPS.
Note that the first and second groups have to pre-train on
lots of other scenes. SparseNeRF achieves better results
than DSNeRF and MonoSDF because the depth ranking is
more robust than the absolute scale-invariant constraint.

We provide qualitative analysis on LLFF, as shown in
Figure 5. It is observed that PixelNeRF and MVSNeRF
tend to generate ambiguous pixels. The reason is that they
integrate CNN features into NeRFs. CNN features can pro-
vide high-level semantics to infer under-constrained tex-
tures but suffer pixel-level inference. MipNeRF is designed
for dense-view synthesis without considering the under-
constrained problem, leading to degraded geometry arti-
facts. Compared with RegNeRF, SparseNeRF uses robust
depth priors from pre-trained depth models, which can han-
dle challenging scene geometry with better performance.
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Ground TruthRegNeRF SparseNeRF(ours)PixelNeRF(ft) MVSNeRF(ft) MipNeRF

Figure 5: Visual comparisons on the LLFF dataset with three views. Red boxes denote compared regions. SparseNeRF
achieves consistent improvement in different scenes.

Ground TruthRegNeRF SparseNeRF(ours)PixelNeRF(ft) MVSNeRF(ft) MipNeRF

Figure 6: Visual comparisons on the DTU dataset with three views. Red boxes denote compared regions. SparseNeRF
achieves consistent improvement in different scenes.

Table 1: Quantitative Comparison on LLFF with three
views. There are four groups. The first group denotes mod-
els that are pre-trained on other scenes and tested on a target
scene (P). The second group requires further finetuning on a
target scene (P&FT). The third group uses geometry and se-
mantic constraints (geo. & sem.). The fourth group distills
depth knowledge (depth KD).

Setting PSNR ↑ SSIM ↑ LPIPS ↓
SRF [12] 12.34 0.250 0.591

PixelNeRF [64] P 7.93 0.272 0.682
MVSNeRF [5] 17.25 0.557 0.356

SRF ft [12] 17.07 0.436 0.529
PixelNeRF ft [64] P&FT 16.17 0.438 0.512
MVSNeRF ft [5] 17.88 0.584 0.327

Mip-NeRF [1] 14.62 0.351 0.495
DietNeRF [25] geo. & sem. 14.94 0.370 0.496
RegNeRF [37] 19.08 0.587 0.336
MonoSDF*[65]

depth KD
18.45 0.565 0.388

DSNeRF[17] 18.94 0.582 0.362
SparseNeRF (Ours) 19.86 0.624 0.328

5.2. Comparisons on DTU

Similar to the LLFF dataset, we conduct four-group
comparisons on the DTU dataset, as shown in Table 2. In
this first group, given a target scene, SRF, PixelNeRF, and
MVSNeRF are pre-trained on other DTU scenes and are

Table 2: Quantitative Comparison on DTU with three
views. The first group is pre-trained on other scenes and
tested on a target scene (P). The second group requires fur-
ther finetuning on a target scene (P&FT). The third group
uses geometry and semantic constraints (geo. & sem.). The
fourth group distills depth knowledge (depth KD).

Setting PSNR ↑ SSIM ↑ LPIPS ↓
SRF [12] 15.32 0.671 0.304

PixelNeRF [64] P 16.82 0.695 0.270
MVSNeRF [5] 18.63 0.769 0.197

SRF ft [12] 15.68 0.698 0.281
PixelNeRF ft [64] P&FT 18.95 0.710 0.269
MVSNeRF ft [5] 18.54 0.769 0.197

Mip-NeRF [1] 8.68 0.571 0.353
DietNeRF [25] geo. & sema. 11.85 0.633 0.314
RegNeRF [37] 18.89 0.745 0.190

MonoSDF* [65]
depth KD

18.92 0.748 0.237
DSNeRF [17] 16.90 0.570 0.450

SparseNeRF(Ours) 19.55 0.769 0.201

tested on the target scene. In the second group, these three
methods are further fine-tuned on the target scene. In the
third group, we compare Mip-NeRF, DietNeRF, and RegN-
eRF. Note that for the pre-trained models, they split DTU as
a training set (88 scenes) and a test set (15 scenes). Since
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DSNeRF MonoSDF* SparseNeRF (ours)RegNeRF Ground Truth

Figure 7: Visual comparisons on the NVS-RGBD dataset with three views. Red boxes denote compared regions. SparseNeRF
achieves consistent improvement in different scenes.

w/o conti.w/o conti. & ranking SparseNeRF(ours)w/o ranking

Figure 8: Ablation study on visual effect. The three
columns denote “w/o continuity and ranking distillation”,
“w/o continuity distillation”, and “w/ continuity and rank-
ing distillation” (SparseNeRF, ours), respectively.

the training set and the test set contains similar scenes, a
test scene shares a similar distribution (e.g., similar back-
grounds) with training scenes. Pre-training on other scenes
greatly benefits a target scene. Therefore, SRF, Pixel-
NeRF, and MVSNeRF also greatly achieve promising re-
sults. Finally, we compare depth-based DSNeRF [17] and
MonoSDF [65]. DSNeRF studies two kinds of depth infor-
mation, i.e., sparse 3D points generated by COLMAP [42]
and ground-truth depth maps obtained by high-accuracy
depth scanners and the Multi-View Stereo (MVS) algo-
rithm. The depth maps of NVS-RGBD are captured by
consumer-level sensors and contain lots of noise, which
is hard to be applied to DSNeRF. Therefore, we adopt
sparse 3D points for DSNeRF. Compared with these meth-
ods, SparseNeRF still achieves the best performance with-
out pre-training on other scenes. We provide a qualitative
analysis, as shown in Figure 6. SparseNeRF achieves bet-
ter visual results than previous state-of-the-art methods.

5.3. Comparisons on NVS-RGBD

We then implement three state-of-the-art methods on
our new NVS-RGBD dataset, including RegNeRF [37],
DSNeRF [17], and MonoSDF [65]. All of them are opti-
mized per scene without pre-training on the other scenes.
RegNeRF adopted continuous geometry assumptions from
unobserved viewpoints. DSNeRF uses a global scale-
invariant depth constraint to supervise NeRFs. MonoSDF
mainly focuses on implicit surface reconstruction. It is as-

Table 3: Comparison with State of the Arts on NVS-RGBD.
* denotes a new implementation from related tasks.

Metrics PSNR↑ SSIM↑ LPIPS↓ depth err↓

K
in

ec
t RegNeRF [37] 25.78 0.840 0.242 5.9×10−3

DSNeRF [17] 25.91 0.838 0.238 4.8 ×10−3

MonoSDF* [65] 25.50 0.838 0.239 5.5×10−3

SparseNeRF(ours) 26.28 0.850 0.232 3.9×10−3

Z
E

D
2

RegNeRF [37] 24.98 0.781 0.271 3.5 ×10−3

DSNeRF [17] 24.97 0.789 0.262 3.1×10−3

MonoSDF* [65] 24.54 0.784 0.275 3.2 ×10−3

SparseNeRF(ours) 26.22 0.804 0.262 2.4 ×10−3

sumed that local patches of depth maps from monocular
cameras satisfy d

′
= wd + b where d is predicted by the

pre-trained model and d
′

is then computed by the NeRF.
In Table 3, we observe that SparseNeRF achieves better
performance compared with these prior arts. We provide
a qualitative analysis in Figure 7, demonstrating the superi-
ority of SparseNeRF over previous state-of-the-art methods.

Table 4: Comparison of Depth Ranking and Depth scaling.

LLFF PSNR↑ SSIM↑ LPIPS↓ depth err↓
baseline 19.08 0.587 0.336 10.1×10−3

w/ depth scaling 18.45 0.565 0.388 8.9×10−3

w/ depth ranking 19.86 0.624 0.328 6.3×10−3

5.4. Ablation Studies and Further Analyses

Effectiveness of Depth Distillation. To validate the effec-
tiveness of the depth distillation, we isolate the depth con-
straint and keep other modules unchanged. As shown in the
first and third rows of Table 4, it is observed that without
the local depth ranking distillation, SparseNeRF degrades
on PSNR, SSIM, LPIPS, and depth error, which demon-
strates the effectiveness of the depth distillation. We further
study the depth maps from unobserved views. The abla-
tion study of visual effect is shown in Figure 8. It shows
that depth ranking greatly improves performance in geom-
etry. Spatial continuity regularization further improves the
detailed coherence of scenes.
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Table 5: Impact of different pre-trained depth models.

LLFF PSNR↑ SSIM↑ LPIPS↓ depth err↓
Baseline 19.08 0.587 0.336 10.1×10−3

MiDaS small 19.35 0.592 0.333 6.9×10−3

DPT Hybrid 19.86 0.625 0.326 6.3×10−3

DPT Large 19.86 0.624 0.328 6.3×10−3

Further Analyses on Depth Ranking and Depth Scal-
ing. To validate the robustness of local depth ranking,
we compare depth ranking regularization and depth scaling
regularization on LLFF. We use the idea from MonoSDF
[65], which mainly focuses on implicit surface reconstruc-
tion. With the specific design for surface shapes, MonoSDF
slightly degrades the performance of RGB view synthesis.
We re-implement it as depth scaling. Since the single-view
depth estimation is not accurate, the linear depth scaling
constraint is too strong such that depth distillation misleads
the learning of the NeRF. Figure 3 shows two cases of
scale-invariant errors. Instead, depth ranking relaxes the
constraint and only focuses on depth comparison, which is
more robust than depth scaling. As shown in Table 4, depth
ranking performs better than depth scaling on LLFF.
Impact of Different Pre-trained Depth Models. We test
our method on three depth estimation models, i.e., MiDaS
small, DPT Hybrid, and DPT Large. As shown in Table 5,
all of the depth models are better than the baseline. DPT
Hybrid and DPT Large achieve comparable results, which
are better than MiDaS small.
FreeNeRF [61] potentially complements SparseNeRF.
FreeNeRF and SparseNeRF improve few-shot NeRF in dif-
ferent ways. FreeNeRF introduces a frequency regular-
ization while SparseNeRF distills depth priors from pre-
trained general depth estimators. We implement SparseN-
eRF on FreeNeRF and the results significantly improve, as
shown in Table 6.

Table 6: FreeNeRF potentially complement SparseNeRF.

LLFF PSNR↑ SSIM↑ LPIPS↓
FreeNeRF 19.60 0.614 0.302

FreeNeRF+our depth distillation 20.26 0.646 0.292

User Study. To show that the proposed spatial continuity
regularization improves the 3D consistency in 3D space, we
conducted a user study. For each scene, we rendered videos
for both with and without spatial continuity regularization
terms. Users are asked to select the better-quality video
according to 3D consistency/coherence and completeness
(good geometry, few floaters). We evaluate 8 scenes on
LLFF and there are 27 participants. The result shows 88.9%
of users prefer “w/ conti” and 11.1% prefer “w/o conti”. To
evaluate the advantages of SparseNeRF on 3D consistency
and shape completeness, we conduct another user study.
Users are asked to evaluate “baseline+RegNeRF’s continu-

ity term” and “baseline+our continuity term”. The 27 users
participated in the study and 8 scenes on LLFF are evalu-
ated. The result shows 87.5% of users prefer “baseline+our
continuity term” and 12.5% prefer “baseline+RegNeRF’s
continuity term”. RegNeRF encourages the overall patch
to be as smooth as possible without considering the sharp
edges of objects, which conflicts with the reconstruction
from sparse views. Our continuity regulation distills the
neighbor relationship from depth models is more accurate.
We show two examples of depth maps in Figure 9.

w/ RegNeRF’s conti. w/ our conti. w/ RegNeRF’s conti. w/ our conti. 

Figure 9: Visual comparison on continuity regulation.

Discussion. SparseNeRF could have a wide range of appli-
cations due to its promising results. We provide two appli-
cations on iPhone 13 Pro. Please refer to the project page
for more experiments. Like UNISURF [38, 65], we also
evaluate the SparseNeRF using Chamfer distance, showing
the competitive results with MonoSDF and UNISURF, es-
pecially for complex scenes.

6. Conclusion
In this paper, we propose a SparseNeRF framework that

synthesizes novel views with sparse view inputs. To tackle
the under-constrained few-shot NeRF problem, we propose
a local depth ranking regularization that distills the depth
ranking prior from coarse depth maps. To preserve the
spatial continuity of geometry, we propose a spatial con-
tinuity regularization that distills the depth continuity pri-
ors. With the proposed depth priors, SparseNeRF achieves
a new state-of-the-art performance on three datasets.
Limitation. SparseNeRF significantly improves the perfor-
mance of few-shot NeRF, but cannot be generalized to oc-
cluded views that are unobserved in the training views.
Potential Negative Impact. SparseNeRF focuses on scene
synthesis. It might be misused to create misleading content.
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