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Abstract

Current unsupervised video deraining methods are in-
efficient in modeling the intricate spatio-temporal proper-
ties of rain, which leads to unsatisfactory results. In this
paper, we propose a novel approach by integrating a bio-
inspired event camera into the unsupervised video derain-
ing pipeline, which enables us to capture high temporal res-
olution information and model complex rain characteris-
tics. Specifically, we first design an end-to-end learning-
based network consisting of two modules, the asymmetric
separation module and the cross-modal fusion module. The
two modules are responsible for segregating the features of
the rain-background layer, and for positive enhancement
and negative suppression from a cross-modal perspective,
respectively. Second, to regularize the network training,
we elaborately design a cross-modal contrastive learning
method that leverages the complementary information from
event cameras, exploring the mutual exclusion and similar-
ity of rain-background layers in different domains. This en-
courages the deraining network to focus on the distinctive
characteristics of each layer and learn a more discrimina-
tive representation. Moreover, we construct the first real-
world dataset comprising rainy videos and events using a
hybrid imaging system. Extensive experiments demonstrate
the superior performance of our method on both synthetic
and real-world datasets.

1. Introduction

Rain is the most common bad weather which introduces
the serious degradation in captured videos and images. It
not only causes the poor visual quality but also seriously
deteriorates the performance of some outdoor vision tasks
that assume clean video as input, e.g., object tracking [ 5],
object detection [12], person re-identification (Re-ID) [43]
and segmentation [26]. Thus, it is of great importance to
develop an effective video rain removal algorithm to restore
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Figure 1: Our proposed cross-modal contrastive learning
method includes intra-modal and inter-modal contrastive
learning. In intra-modal contrastive learning, we aim to es-
tablish the mutually exclusive relationship between the rain
and background layers by pushing them far away in both
the event and frame domains. In inter-modal contrastive
learning, we pull together the rain layer shared in two do-
mains. Moreover, we push the rain layer in the frame do-
main and background layer in the event domain for sup-
pressing the negative information such as the moving edges
as shown in Fig. 3(f).

the high-quality rain-free videos. Recently, many methods
[42, 36, 35, 41] are proposed for rain removal and achieved
significant successes in synthetic datasets. Unfortunately,
most of these methods are supervised, which heavily rely
on paired rain-clean data. The large domain gap between
the synthetic and real rain makes them perform poorly in
real-world rainy scenes.

To address this issue, the semi-supervised deraining
methods [40, 8] are proposed. They commonly employed
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the labeled synthetic data for good initialization and intro-
duce the real rains for generalization. Although the char-
acteristics of real rains are taken into account, they can-
not achieve satisfying results when the gap between syn-
thetic and real rainy images is large. To further improve
robustness, the unsupervised deraining methods have at-
tracted more attention. EXxisting unsupervised deraining
methods demonstrated that satisfying deraining results can
be achieved by using either the temporal correlation and
consistency [37] or the unpaired adversarial learning and
cycle-consistency [29, 45, 39]. More recently, some meth-
ods [38, 2] exploited the underlying mutually exclusive rela-
tionship and correlation from rainy inputs to remove rains in
a contrastive learning manner. Despite remarkable improve-
ment, these frame-based methods are limited to the imaging
mechanism of the conventional RGB cameras, which fail to
model the complex spatio-temporal distribution of rain and
present unsatisfying results.

In this paper, we introduce a novel neuromorphic sen-
sor called event camera [4] to approach the unsupervised
video deraining task. In contrast to conventional frame-
based cameras that capture images at a fixed frame rate,
event cameras asynchronously respond to intensity changes
of each pixel in high temporal resolution and have been used
for many applications [9, 30, 10, 24, 21]. We delve into the
exploration of the role of event cameras in video deraining
and demonstrate that event cameras can contribute to video
deraining from two perspectives.

Firstly, event cameras are well-suited for modeling the
complex spatio-temporal properties of rain, making it eas-
ier to distinguish between the rain layer and the background
layer. The moving rain streaks produce noticeable inten-
sity changes that match the dynamic perception of event
cameras. With their high temporal resolution and high dy-
namic range perception of rain, event cameras can capture
the fast motions of both rain and background, preserving
the details of rain-free regions. Secondly, event cameras
can provide complementary modality information. We can
obtain both absolute intensity information and the intensity
changes produced by the motion of rain and moving back-
ground objects. This way, the contrastive learning can be
enhanced by exploring multiple relationships in two modal-
ity. In comparison to the conventional contrastive learning
of single modality, we propose a new contrastive learning
framework called cross-modal contrastive learning. It forms
positive and negative pairs from both frame and event for
utilizing the mutually exclusive and similar relationships
between rain and background in the frame and event do-
mains. Fig. 1 illustrates the main idea of proposed cross-
modal contrastive learning. Furthermore, to enable real-
world evaluations, we build a hybrid imaging system to col-
lect a dataset of rainy videos and event streams. The main
contributions are summarized as follows:

* We make the first attempt to approach unsupervised video
deraining with an event camera by exploiting its effective
perception of motion information.

* We formulate a cross-modal contrastive learning frame-
work to distinguish the rain layer and background layer
by exploiting their mutually exclusive and similar rela-
tionship in frame and event domains.

* We collect a real-world dataset containing rainy videos
and events using a hybrid camera system.

* We achieve superior performance over existing state-of-
the-art methods on both synthetic and self-collected real-
world datasets.

2. Related Work

Unsupervised Deraining. Compared with the supervised
deraining methods which heavily rely on labeled data and
suffer from the domain gap between the synthetic and real
data [3, 42, 41], unsupervised deraining methods [2, 38, 39,
, 37] have been proposed to reduce the domain gap and
improve generalization ability in real rainy scenes. Despite
the corresponding merits, these frame-based methods suffer
from the compromise that the imaging quality of conven-
tional frame cameras are limited due to the low temporal
resolution and low dynamic range, leading to the unsatis-
fying deraining results. In this work, we bring in an event
camera and propose a novel cross-modal contrastive learn-
ing framework to address unsupervised video deraining.
Contrastive Learning. Contrastive learning has experi-
enced significant progress in unsupervised representation
learning. The main idea of contrastive learning is to pull
close the positive pairs and push apart the negative pairs,
which has been used for many applications such as image
dehazing [32], image super-resolution [28] and image trans-
lation [6]. Most recently, contrastive learning has been ex-
ploited for deraining by exploring the mutual relationship
between rain and background domain [2, 38]. However, the
complex overlapping of the rain layer and the background
layer in a single modality will make the contrastive learning
difficult to converge. In contrast, we develop cross-modal
contrastive learning to fully excavate the contrastive rela-
tionship from frame and event data.
Event-based Vision. Event camera has been widely used in
many fields due to their unique properties of high temporal
resolution, high dynamic range, and low power consump-
tion. Recent works relevant to our paper are event-based
video deblurring [31, 23], video super-resolution [I3, 7]
and video interpolation [33, 27]. These works introduce an
event camera as an additional sensor that provides comple-
mentary information, achieving significant progress. In this
paper, we make the first attempt to investigate the role of
event cameras in unsupervised video deraining.
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Figure 2: Pipeline of our proposed method for unsupervised video deraining with an event camera. Our method includes an
event-based video deraining network and a cross-modal contrastive learning framework for regularizing the network training.

3. Deep Event-Based Video Deraining

The key of the video deraining methods is to project the

rain layer and background layer into distinguishable sub-
spaces. Existing methods struggle to achieve it by either
modeling the intrinsic properties of two layers or exploiting
the relationship between them. In contrast, we introduce a
novel sensor, called event camera, to approach unsupervised
video deraining. With the exclusive merits of high temporal
resolution and high dynamic range, event cameras are ca-
pable of formulating the complex characteristics of the rain
layer and offer extra supervision guidance when contrastive
learning is used. Fig. 2(a) illustrates the overall pipeline of
the designed event-based video deraining network, which
consists of two main components: 1) asymmetric separation
for segregating the features of the rain-background layer
both in the event domain and frame domain, 2) cross-modal
fusion for positive enhancement and negative suppression
from the cross-modal perspective.
Asymmetric Separation. As shown in Fig. 2(a), we con-
sider three consecutive frames and in-between events as the
input. We convert an event sequence into a fixed-size repre-
sentation € REXH*W according to the event representa-
tion [44]. Before the feature separation, we first extract the
shallow features from three frames Iy, I7, I> and two event
voxel grids Ey, Fy by two similar yet independent feature
extractors, forming the frame feature Ff and event feature
F°. Note that these two features are mixed with rain and
background layer features, which need to be separated.

Benefiting from the accurate motion perception of event
cameras due to high temporal resolution and high dynamic
range, the rain-background separation will be easier in the

event domain. In contrast, the frame camera measures the
absolute light intensity and texture cues. The separation of
the rain streaks is more challenging in the frame domain
because the rain layer exhibits strong variations (e.g., direc-
tion, scale, and thickness) which always present a similar
appearance to the texture of background objects. The differ-
ence between frame cameras and event cameras motivates
us to adopt an asymmetric way of separating the rain layer
and the background layer instead of a symmetric way with
the identical feature extractor.

We illustrate the details of the asymmetric separation
module in Fig. 2(c). As can be seen, the event feature F'° is
first utilized to enhance the motion information in the frame
feature F'7 via a convolution layer followed by a sigmoid
function. Then two 3D convolution layers are adopted to ag-
gregate the temporal information for both frame and event
features, which favors the latter separation. In the frame
domain, we adopt two independent yet identical encoders
[42] to generate multi-scale features, forming background
features F and rain features me In the event domain,
we first use the encoder [42] to generate multi-scale motion
features F’7,, which are then fed to the rain attention block
for providing the rain features F° ... As shown in Fig. 2(c),
the rain attention block is composed of repeated symmetric
channel-spatial-spatial-channel attentions across the chan-
nel dimension and spatial dimension, which is able to sup-
press mixed information and encourages useful information
relevant to rain. The features of the background layer F,
can be obtained by subtracting F?,;,, from the motion fea-

tures F5 . In such a way, we achieve rain-background sepa-
ration in both frame and event domains.
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Figure 3: (a, e) The estimated rain layer R and background
layer B; (b, c, f, g) four features outputted by asymmetric
separation block including the rain event features, the rain
frame features, the background event features, and the back-
ground frame features; (d, h) refined rain features and back-
ground features outputted by the cross-modal fusion block.

Zoom in for better visualization.

Cross-Modal Fusion. Due to the exclusive advantages of
event cameras and frame cameras, the complementary in-
formation can be excavated from event and frame data. As
shown in Fig. 3(c), the rain feature in frame domain me
is expected to be rain information only. However, due to the
limited imaging ability of frame cameras, there exists extra
background noise, especially the moving edges (e.g., object
contour and texture boundaries) and insufficient rain infor-
mation in me In contrast, event cameras feature high
temporal resolution and high dynamic range, which leads
to satisfying motion perception that favors rain-background
separation. As can be seen from Fig. 3(b), (f), the rain fea-
ture in the event domain F? ;,, presents the most relevant
regions about rain, and background feature Fy reports ac-
curate background information. These complementary mer-
its of two cameras can be jointly exploited to give a clean
rain feature as in Fig. 3(d).

In order to give the final outcomes of rain-background
separation, we design a cross-modal fusion branch for
adaptively fusing polarities (i.e., positives, negatives) and
cross-modal (i.e., event, frame) information. As shown in
Fig. 2(d), to generate the clean rain feature, we add F, mm
and F?;,, to enhance the rain feature, which then subtracts
Fy, to suppress the background noise. A similar process
is conducted to generate the clean background feature, in
which Ff is added with Fy, to enhance the background
feature and then subtracts Ffam to suppress the rain noise.
Mathematically, we formulate the cross-modal fusion pro-
cess as:

FI' — Res(Conv(FY,, + F¢. — Fg)),

rain rain rain — * bg
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Figure 4: The t-SNE visualizations of final rain features
and background features without/with the cross-modal con-
trastive learning in (a)/(b). The cross-modal contrastive
learning is able to effectively decompose the background
and rain.

feature Ff , > We adopt two independent yet identical re-

constructlon blocks [42] to reconstruct the final rain layer
R, and background layer B;.

4. Cross-Modal Contrastive Learning

With the proposed fully convolutional network for event-
based video deraining as aforementioned in Sec. 3, we then
explore how to achieve a unsupervised training scheme by
utilizing the both event and frame data instead of the single
modality of frame commonly-used in the prior methods [2,

b ]’
4.1. Intra-Modal Contrastive Learning

Typically, clean background images and rainy images
are significantly different. Rain streaks are characterized
by sparseness, directionality and monochromaticity, while
clean background images are more complex with various
structures such as color, shape and texture. Therefore,
whether in frame domain or in event domain, this structural
discrepancy between clean background and rain streaks pro-
vides a natural guidance for separation process.

Based on these analyses, we propose to apply the intra-
modal contrastive learning, which is conducted in the same
modality from frame or event data to push apart rain-
background features. Mathematically, given event features

Fryin, Fr, and frame features me, Fb > We construct the
intra- modal contrastive loss, which is formulated as:
E{M = - lOg(l - Sim(Fr“fazn7 Fb{;))’
?]\/[ = log(l - Slm(Frazn’ Flfg))’ (2)

Liv = ‘CIM + Lo

where sim(-) denotes the operation of computing cosine
similarity of two specified features. As can be seen, this
intra-modal contrastive loss enforces rain-background sep-
aration in the same modality (i.e., event or frame), leading
to an initial outcome of deraining.

10834



4.2. Inter-Modal Contrastive Learning

As aforementioned, the contrastive learning in the same
modality provides an initial outcome of deraining. How-
ever, the same modality measurement signal shows similar
properties such as structure and appearance, which confines
the conditions of rain-background separation to only geom-
etry properties such as appearance. Therefore, one problem
will inevitably stands out that the background objects sim-
ilar to the rain streaks would be wrongly identified as rain
streaks, and be removed by mistake. It reveals that the con-
trastive learning in the single modality can not separate two
layers effectively. To solve this challenge, we propose an
inter-modal contrastive learning as a complement. In other
words, the rain layer in the frame domain should not only
be pushed apart from the background layer in the frame do-
main, but also the background layer in the event domain. In
such a way, given the new observation in another modality
that the background layer in event domain presents physical
motion boundaries of the background objects, the non-rain
region can be easily detected avoiding the misunderstanding
of the background objects similar to rain streaks.

Specifically, as shown in Fig. 2(b), we construct posi-
tive pairs using the rain feature in the frame domain and
the event domain. For negative pairs, we make a choice to
select them from the rain feature in the frame domain and
the background feature in the event domain. In addition,
inspired by [34], we design a multi-scale weight-ranking
way to assign the different weight to positive pairs with dif-
ferent similarity between multi-scale features. Mathemati-
cally, the weight is defined as:

W = exp(—a - rank(— log(sim(F? ), (3

rain’ - rain

where « is a hyper-parameter, rank(-) indicates the oper-
ation of sorting in descending order and getting the index,
and sim(-) denotes the operation of computing cosine sim-
ilarity in feature space. The numerical values of the com-
puted weight W is restricted in (0,1). In order to conduct
inter-modal contrastive learning, we formulate the loss that
is presented as:
L = —W -log(sim(F. . FS.),

rain’ - rain
L?Je]& = —log(1 - Sim(vaainv Fbeg))7 S
Lom = LYy + LA
Note that both intra-modal and inter-modal losses are com-
puted in the multi-scale features.

4.3. Training Loss

In addition to the proposed cross-modal contrastive loss,
we further introduce extra constraints for training.
Self-Consistency Loss. To preserve the image content of
the estimated background layer B;, we utilize the self-
consistency loss by composing the estimated two layers
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Figure 5: A hybrid camera system for building real-world
rainy dataset including rainy frames and temporally syn-
chronized event streams.

back to target rainy frame /;, we formulate it as:
‘CConsistency = ||Bl + Rl - Il||1~ (5)

Adversarial Loss. We introduce the adversarial loss [5]
on the predicted clean image for generating a more realistic
image and keeping the data fidelity. The adversarial loss is
defined as:

Laaw =Ep, [log D(By)] + Ep, [log(1 — D(Gp(11)))],
(6)
where D(-) is the discriminator, and Gg(+) is the generator
for the clean image.
The overall loss function is formulated as:

£O'Uerall = LConsistency + £Adv + £IM + [-:CM- (7)

5. Experiments
5.1. Dataset Preparation

Synthetic Datasets. For training and quantitative eval-
uation, we generate large-scale synthetic datasets where
the rain types, object motions and camera motions are
considered. We choose NTURain [1], GoPro [18] and
Adobe240fps [25] as the clean videos. More specially,
we firstly use a video editing software to synthesize the
rain layer. We randomly set the software parameters
(e.g., scale, thickness, wind direction, velocity, accelera-
tion, scene depth). Then the clean videos are overlaid by the
synthesized rain layers for generating rainy videos. Finally,
the popular event simulator [22] is employed for generating
event streams from rainy videos. In such a way, we gener-
ate four synthetic datasets: N-NTURain, N-GoProRain, N-
AdobeRainH, and N-AdobeRainL, where the “N” denotes
Neuromorphic, “H” and “L” denotes the dataset contains
only heavy and light rain layers.

Real-World Dataset. We build a hybrid camera system to
collect real-world data. As shown in Fig. 5, the hybrid cam-
era system is composed of a conventional camera (iRAY-
PLE A5031CU815 with resolution of 640 x 480 and a 8mm
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N-NTURain

N-GoProRain

N-AdobeRainL N-AdobeRainH

Methods
PSNR?T SSIM? PSNR?T SSIM?T PSNR?T SSIM?T PSNR? SSIMt
CUT [19] 23.50 0.8543 21.58 0.7864 24.70 0.8664 2291 0.7698
DCD-GAN [2] 22.67 0.8065 22.02 0.7950 23.70 0.8308 21.75 0.7365
CycleGAN [45] 25.46 0.8791 25.18 0.8633 27.40 0.9125 24.45 0.8338
UDGNet [39] 29.22 0.9185 26.77 0.8824 28.97 0.9155 24.56 0.8356
NLCL [38] 28.11 0.9355 26.03 0.8921 26.99 0.9308 23.45 0.8230
DerainCycleGAN [29] 30.04 0.9242 25.07 0.8265 28.90 0.9147 22.07 0.7553
S2VD [40] 31.73 0.9347 24.88 0.8257 32.19 0.9402 27.05 0.8553
SLDNet [37] 32.74 0.9523 28.57 0.8856 32.73 0.9592 24.37 0.7727
Ours 37.30 0.9756 32.18 0.9448 36.58 0.9767 32.35 0.9384

Table 1: Quantitative comparisons on four synthetic datasets. Best in bold, the runner-up with an underline.

NLCL

Rainy Frame S2VD

SLDNet

DCD-GAN

Figure 6: Qualitative comparisons of different methods on three typical frames in synthetic datasets. Frames are from N-
NTURain, N-GoProRain and N-AdobeRainH, respectively. Zoom-in for better visualization.

lens), an event camera (Prophesee Gen3S1.1 with resolu-
tion of 640 x 480 and a 25mm lens) and a beam splitter
(Thorlabs CCM1-BS013) which splits the input light and
allocates them to two sensors simultaneously. For spatial-
alignment, we compute the homography and radial distor-
tion matrix between two cameras for geometric calibration.
Besides, we write a synchronization script for hardware
temporal synchronization. More details about the geomet-
ric calibration and temporal synchronization can be found
in the Appendix.

Using the hybrid camera system, we collect a real-world
dataset, called RealRain-Event. It contains 15 video se-
quences of varying duration from 8s to 20s in 25fps. Se-
quences were recorded in a variety of conditions (e.g., light
intensity, the field of view and camera exposure time). Be-
sides the motion of rain streaks, the camera motion and
other background objects motion have been involved in this
dataset for enriching the recorded event streams. To our
best, this is the first real-world dataset including the rainy
videos and temporally synchronized event streams, which
will be publicly available.

5.2. Implementation Details

We utilize the same encoder architecture as MPRNet
[42] for feature extraction of both rain and background. The
PatchGAN [!1] is utilized for the discriminator. During
the training, the original images are randomly cropped into
128 x 128 as input. We use the Adam optimizer [14] with
the initial learning rate of 2 x 10~*, which is steadily de-
creased to 0 using the cosine annealing strategy [16]. The
entire network is implemented using PyTorch 1.6 [20] on
two NVIDIA GTX1080Ti GPUs.

5.3. Comparisons with State-of-The-Art Methods

Baselines. We mainly select the unsupervised methods in-
cluding GAN-based CycleGAN [45], contrastive-learning
based CUT [19], optimization-driven UDGNet [39], self-
learning video deraining method SLDNet [37], three recent
unsupervised deraining methods DerainCycleGAN [29],
NLCL [38] and DCD-GAN [2] and semi-supervised video
deraining method S2VD [40]. We also make comparison
with state-of-the-art supervised deraining method MPRNet
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Figure 7: Qualitative comparisons on our real-world dataset RealRain-Event. Zoom-in for better visualization.

Variants Input Supervision PSNRT SSIM?
Model#A Frame Supervised 3841  0.9820
Model#B  Frame+Event Supervised 41.88  0.9886

Model#C Frame UnSupervised (w/o CMCL)  29.45  0.9207
Model#D  Frame+Event UnSupervised (w/o CMCL)  30.00  0.9239
Mode#E ~ Frame+Event ~ UnSupervised (w/ CMCL) 37.30  0.9756

Table 2: Ablation results on the effect of events. “CMCL”
denotes the proposed cross-modal contrastive learning. The
best results are marked in bold.

Variants  wlo £, wio £S5, wio LE05,  wio £ Full loss
PSNR?T 35.67 37.18 35.02 35.04 37.30
SSIM?T 0.9712 0.9752 0.9650 0.9661 0.9756

Table 3: Ablation results on the influence of loss functions.
The best results are marked in bold.

[42] on the real rainy images. We employ the metrics of
PSNR and SSIM to evaluate the deraining performance
in synthetic datasets, and the non-reference natural image
quality evaulator (NIQE) [17] for evaluation on the real-
world dataset.

Results on Synthetic Datasets. In Tab. I, we present the
average PSNR and SSIM results on four synthetic datasets
including N-NTURain, N-GoProRain, N-AdobeRainH and
N-AdobeRainL. These four datasets contain various types
of rains, ranging from light rain to heavy rain. The quan-
titative results of our proposed method achieves state-of-
the-art results in terms of PSNR and SSIM, which verifies
the effectiveness of our method. Especially for heavy rainy
scenes, the performance of baselines are heavily limited. In
addition, we provide some qualitative results of three cases
in Fig. 6. The compared methods produce the incomplete

(a) Input

(b) Model#C  (c) Model#D  (d) Model#E

Figure 8: Qualitative analysis of the effect of events.
We visualize the background and rain layer generated by
Model#C/Model#D/Model#E of Tab. 2 in (b)/(c)/(d).

deraining results with residual rain streaks. Besides, in the
third case, DCD-GAN [2] and NLCL [38] incorrectly re-
move the background content due to the similarity of ap-
pearance between white pillar and rain streaks. In contrast,
our method is able to effectively remove rain streaks and
restore the details thanks to the accurate motion perception
property of the event camera. Note that even though no ex-
tra data as inputs in the simulation process, the new gener-
ated events can be considered as motion priors of the input
data, revealing the potentials of explicitly motion modeling
and separation of rain and background layers. As a result,
our proposed method can obtain better results on synthetic
datasets both qualitatively and quantitatively.

Generalization on Real-World Dataset. For general ver-
ification in practical use, we conduct comparisons against
other competitors on the RealRain-Event. For a fair
comparison, we apply the pre-trained model on the N-
AdobeRainH dataset of each method to remove real rain
streaks. Fig. 7 presents the visual results and the corre-
sponding non-reference metric of NIQE. It can be clearly
seen that our method achieves the best visual results com-
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Figure 9: Tllustration of four settings of separating the fea-
tures.

. Symmetric Asymmetric
Metrics
EE + EE EA +EA EA + EE EE + EA
PSNR? 35.32 35.68 35.01 37.30
SSIM? 0.9676 0.9638 0.9618 0.9756

Table 4: Ablation results on different settings of separating
the features. The best results are marked in bold.

pared with other methods. We observe that the state-of-the-
art supervised deraining method MPRNet [42] generates the
worst result due to the large domain gap between synthetic
and real rains. Unsupervised deraining methods provide a
better performance compared to the supervised method in
real rainy scenes. However, they fail to remove full rain
streaks and preserve the details. Meanwhile, NLCL [38]
brings the color distortion. In contrast, our method gener-
ates more natural and better visual deraining results, which
not only removes the rain streaks but also restore the details
of the background image.

5.4. Methodology Analysis

To find out what contributes to the superior performance

of our approach, we conducted ablation study to demon-
strate the effectiveness of each component. All ablation ex-
periments are conducted on the N-NTURain dataset.
The Effect of Events. To validate the effectiveness of
events, we choose our network as backbone and carry out
the following experiments by controlling inputs, training
manner and event-relevant design (e.g., the proposed cross-
modal contrastive learning). The quantitative results are
shown in Tab. 2 and some conclusions can be made. First,
for supervised manner, events bring an at least 3 dB PSNR
boost by comparing Model#A and Model#B, validating the
effectiveness of events. However, when adopting the un-
supervised manner, events bring a slight PSNR increase
by comparing Model#C and Model#D without using cross-
modal contrastive learning. It reveals that simple use of
events in input can not guarantee satisfying performance for
unsupervised training. When cross-modal contrastive learn-
ing is exploited, an impressive PSNR gain of over 7 dB is
achieved as can be seen from Model#D and Model#E. We
also provide qualitative results in Fig. 8. Through these re-
sults, we draw that events indeed help video deraining but
needs event-relevant designs for unsupervised training.

Variants Cross-Modal Fusion PSNR? SSIM?
Model#A None 34.32 0.9577
Model#B ! v Fe 3622 09715
Model#C Fln —F, 3623 0.9707
ModeD  Fl,. +Ft,, —Fg,—Fl 3540  0.9696
Model#E S A 3730 0.9756

Table 5: Ablation results on the strategies of cross-modal
fusion. The best results are marked in bold.

The Effectiveness of the Proposed Losses. In Tab. 3, we
show how each loss contributes to the final result. The L}c M
and £$,, aim to decouple rain layer and background layer
in event and frame modalities. The L7}, is utilized to ex-
plore the correlations between the rain layer in frame do-
main and in event domain, which enables the accurate es-
timation of rain. The £/} is adopted to suppress the neg-
ative information, i.e., the edge information of background
objects in the separated features of rain layers. It can be ob-
served that each loss term contributes to deraining task and
the best performance is achieved by using all.

The Choice of Feature Separation. The frame camera and
event camera measures rain streaks in different ways, which
inspires us to employ an asymmetric feature separation net-
work. In Tab. 4, we test different structures as shown in
Fig. 9. We name “EE” as the combination of two indepen-
dent encoders and “EA” as the combination of one encoder
and one attention module. We use the pattern“A+B” to rep-
resent the structure of feature separation, where “A”/“B”
indicates the way of feature separation in the frame/event
domain. We conclude that the “EE+EA” attains the best
performance, validating its effectiveness.

The Choice of Cross-Modal Fusion. Contrastive learning
indicates that the positive pairs would be pulled closer and
the negative pairs would be pushed away. To further enable
the propagation of effective information and suppress neg-
ative information, we propose a cross-modal fusion mod-
ule. In order to validate its effectiveness, we generate four
variants to fuse different features in different ways. The nu-
merical results in Tab. 2 verify that the variant of Model#E
is qualified for positive enhancement and negative suppres-
sion, achieving the best result.

6. Limitation and Conclusion

Limitation. The rain streak is generally produced by the
motion blur of the rain drop. The proposed method does
not consider the formulation of motion blur of rain streak,
which may lose efficacy when facing real complex rain
scenes due to large amount of motion blur. Therefore, a
new perspective of deraining via deblurring that is assisted
by event cameras will be expected to solve this challenging
scenes, which will be our future work.
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Conclusion. This paper proposes to use event cameras for
unsupervised video deraining. As validated by the compre-
hensive experiments, the proposed cross-modal contrastive
learning boosted by event cameras demonstrates the su-
periority of our method on both synthetic and real-world
datasets. We expect the proposed method could generalize
to other bad weathers, such as snow, hail and sandstorm.
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