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Abstract

Frequency analysis is useful for understanding the mech-
anisms of representation learning in neural networks (NNs).
Most research in this area focuses on the learning dynam-
ics of NNs for regression tasks, while little for classifi-
cation. This study empirically investigates the latter and
expands the understanding of frequency shortcuts. First,
we perform experiments on synthetic datasets, designed
to have a bias in different frequency bands. Our re-
sults demonstrate that NNs tend to find simple solutions
for classification, and what they learn first during train-
ing depends on the most distinctive frequency character-
istics, which can be either low- or high-frequencies. Sec-
ond, we confirm this phenomenon on natural images. We
propose a metric to measure class-wise frequency char-
acteristics and a method to identify frequency shortcuts.
The results show that frequency shortcuts can be texture-
based or shape-based, depending on what best simpli-
fies the objective. Third, we validate the transferability
of frequency shortcuts on out-of-distribution (OOD) test
sets. Our results suggest that frequency shortcuts can be
transferred across datasets and cannot be fully avoided by
larger model capacity and data augmentation. We recom-
mend that future research should focus on effective train-
ing schemes mitigating frequency shortcut learning. Codes
and data are available at https://github.com/
nis-research/nn-frequency-shortcuts.

1. Introduction
Deep neural networks (DNNs) have been widely used to

tackle problems in many fields, e.g. medical data analysis,
self-driving vehicles, robotics, and surveillance. However,
the underlying predictive processes of DNNs are not com-
pletely understood due to the black-box nature of their non-
linear multilayer structure [3]. While a DNN can approx-
imate any function [23], its (hundreds of) millions of pa-
rameters limit the understanding of function approximation
process. Analyzing the learned features is a viable way to
understand what triggers the predictions, although explain-
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dominant frequencies only

Figure 1: Images of ‘container ship’ and ’siamese cat’ and
their DFM-filtered versions with only top-5% dominant fre-
quencies (the white dots in the central figures) retained can
both be recognized correctly by NNs.

ing how DNNs process data needs further exploration [28].
Researchers worked on explaining the predictions of

NNs in terms of their input, using Saliency [27], Gradient-
weighted Class Activation Mapping [25] and Layer-wise
Relevance Propagation [2]. These techniques highlight the
area of an image that contributes to prediction but do not
explain why the performance of NNs degrades on OOD
data. Recently, an interest in understanding the learning
dynamics of NNs from a frequency perspective has grown.
NNs are found to learn lower frequencies first in regres-
sion tasks [23], as they carry most of the needed informa-
tion to reconstruct signals [35]. Thus NNs tend to fit low-
frequency functions first to data [17]. This biased learning
behavior is known as simplicity bias [26], which induces
the NNs to learn simple but effective patterns, i.e. shortcuts
solutions that disregard semantics related to the problem at
hand but are simpler for solving the optimization task. For
instance, the frequency shortcuts proposed in [31] are sets
of frequencies used specifically to classify certain classes.

In this work, we empirically analyze the learning dy-
namics of NNs for image classification and relate it to
simplicity-bias and shortcut learning from a frequency per-
spective. Our results indicate that simplicity-biased learn-
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ing in NNs leads to frequency-biased learning, where the
NNs exploit specific frequency sets, namely frequency
shortcuts, to facilitate predictions. These frequency short-
cuts are data-dependent and can be either texture-based or
shape-based, depending on what best simplifies the objec-
tive function (e.g. a unique color, texture, or shape associ-
ated with a particular class in a dataset, without necessar-
ily other meaningful semantics). This may impact general-
ization. We demonstrate this phenomenon through texture-
based and shape-based frequency shortcuts in Fig. 1. When
we retain only specific subsets of frequencies (identified us-
ing a method proposed in this paper) from images of ‘con-
tainer ship’ and ‘siamese cat’, the classifier can recognize
them correctly. Interestingly, when the same sets of fre-
quencies are retained from images of other classes, the pre-
dictions are biased towards these two classes, indicating that
the frequency sets are specific for their classification.

Different from previous work on regression tasks [23],
we investigate the learning dynamics and frequency short-
cuts in NNs for image classification. Compared to the
work uncovering frequency shortcuts [31], we expand the
understanding of them and demonstrate that they can be
texture, shape, or color, depending on data characteristics.
We propose a metric to compare the frequency character-
istics of data and investigate systematically the impact of
present/absent shortcut features on OOD generalization. In
summary, our contributions are:

1. We complement existing studies that showed
NNs for regression tasks are biased towards low-
frequency [23]. For classification, we find that NNs
can exhibit different frequency biases, tending to
adopt frequency shortcuts based on data characteris-
tics because of simplicity-bias learning. Our analysis
provides valuable insights into the learning dynamics
of NNs and the factors influencing their behavior.

2. We propose a method to identify frequency short-
cuts, based on culling frequencies that contribute less
to classification. These shortcuts are composed of
specific frequency subsets that correspond to tex-
tures, shapes, or colors, providing further insight into
the texture-bias identified by Geirhos et al. [12] and
background-dependency found in [33].

3. We systematically examine the influence of frequency
shortcuts on the generalization of NNs and find that
the presence of frequency shortcut features in an OOD
test set may give an illusion of improved generaliza-
tion. Furthermore, we find that larger model capacity
and common data augmentation techniques like Au-
toAugment [5], AugMix [14], and SIN [11] cannot
fully avoid shortcut learning. We recommend further
research targeting frequency information to avoid fre-
quency shortcut learning.

2. Related works
Frequency analysis. Recently, Fourier interpretations of
NNs were published. For regression tasks, NNs tend to
learn low-frequency components first [23, 34], while ini-
tial layers bias towards high-frequency components [7]. In
classification, NNs exhibit a bias towards middle-high fre-
quency during testing [1]. The authors in [1] argued that the
importance of frequency is data-driven. Sensitivity to dif-
ferent frequency perturbations was measured in [36], show-
ing that most NNs are more sensitive to middle-high fre-
quency noise. The impact of high-frequency dependence on
the robustness of NNs was investigated in [29]. These anal-
yses show that NNs for regression and classification tasks
exhibit different frequency dependencies, while there is a
lack of analysis on the learning dynamics of NNs for classi-
fication. We study what and how NNs learn in classification,
highlighting their data-driven behavior and complementing
existing work on regression tasks. We uncover that NNs can
learn to use specific frequency sets encompassing both low
and high frequencies to achieve accurate classification.

Shortcut learning. In classification, decision rules based
on spurious correlations between data and ground truth,
rather than semantic cues, are known as shortcuts [10].
For example, a network may classify images based on
the presence of text embedded in the images, rather than
the actual image content [18], negatively impacting gen-
eralization [32]. Identifying shortcuts learned by NNs
might be helpful to avoid unwanted learning behavior and
thus improve generalization. It is easy to identify short-
cuts that are artificially added and are visible (e.g. color
patches [20], line artefacts [6], or added text [18]). How-
ever, for those implicitly existing in data (e.g. particular tex-
tures or shapes), their identification is difficult. Most meth-
ods focus on mitigating learning shortcut information in
data [9, 19, 21, 24], rather than explicitly identifying them.
Wang et al. [31] investigated shortcut learning from a fre-
quency perspective and proposed the definition of frequency
shortcuts. However, their algorithm for shortcut identifica-
tion is heavily influenced by the order of frequency removal
and their observations are limited to texture-based shortcuts.
In this paper, our frequency shortcut identification method
does not have such limitations. We broaden the understand-
ing of frequency shortcuts, study the data-dependency of
shortcut features, and provide a more systematic analysis of
the impact of shortcuts on OOD generalization.

3. Frequency shortcuts in image classification
For regression tasks, it is known that NNs are biased to-

wards learning low-frequency components (LFCs) first dur-
ing training [23]. This has not been verified for classifica-
tion tasks. Here we study the learning behavior of NNs in
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image classification and its relation to shortcut learning and
simplicity-bias, using both synthetic (Section 3.1) and nat-
ural images (Section 3.2). We use synthetic data to study
the learning behavior of NNs and show their tendency to
discover shortcuts in the frequency domain. Inspired by the
insights gained on the synthetic data, we propose a method
based on frequency culling to examine the frequency de-
pendency of NNs trained on natural images, which contain
intricate frequency information. This allows us to uncover
the frequency shortcuts learned by NNs for classification.

3.1. Experiments on synthetic data

Design of synthetic datasets. To study the impact of data
characteristics on the spectral bias of NNs and frequency
shortcut learning, we generate four synthetic datasets, each
with a frequency bias in a different band, from low to high.
This allows us to examine the effect of different frequency
biases on the learning behavior of NNs. We separate evenly
the Fourier spectrum into four frequency bands (see Fig. 2).
The bands are denoted by B1 the lowest frequency band,
B2 and B3 the mid-frequency bands, and B4 the highest
frequency band. Each dataset contains four classes and im-
ages of 32×32 pixels. An image is generated by sampling at
least eight frequencies from the frequency bands associated
with the target class (see Table 1), according to a probability
density function:

Pr(r) = S · 1

r + 1
, with S =

1∑R
r=1

1
r+1

.

R is the largest radius and r =
√
u2 + v2 is the radius

of frequency [u, v]. This prioritizes the sampling of LFCs,
mimicking the frequency distribution of natural images.

We use b ∈ B = {B1, B2, B3, B4} to control the fre-
quency bias in the generated data. For instance, in the
dataset Synb with b = B1, the frequency bands for classes
C0 and C1 are {B2, B3, B4} while class C3 has frequency
band B1. To distinguish between C0 and C1, we embed
special patterns consisting of a set of frequencies [u, v]
(u = v ∈ {1, 3, 5, 7, 9, 11, 13, 15}) into the images of class
C0 which are removed from the images of other classes.
The design imposes various levels of classification difficulty
by incorporating different levels of data complexity for each
class (C3 < C0 < C1 ≈ C2), as observed visually. This
aids in comprehending the connection between simplicity-
bias learning and spectral-bias of NNs in classification.

Hypothesis. As noted in the theory of simplicity-
bias [26], NNs tend to achieve their objective in the sim-
plest way. As a result, NNs for regression tasks approximate
LFCs first compared to HFCs [23, 34, 16, 1]. Based on
this, we hypothesize that NNs might prioritize learning to
distinguish classes with the most discriminative frequency

r

Sample 
frequencies

IFFT

Synthetic imageFourier spectrum

Figure 2: Evenly separated frequency bands. B1 denotes
the lowest band and B4 denotes the highest one.

Table 1: Design details of a synthetic dataset Synb with
b ∈ B = {B1, B2, B3, B4}. The special pattern contains
frequencies [u, v] where u = v ∈ {1, 3, 5, 7, 9, 11, 13, 15}
are removed from classes other than C0.

class frequency bands special patterns

C0 B − b ✓
C1 B − b -
C2 B -
C3 b -

characteristics in classification. Thus, what the NNs first
learn could depend on data bias rather than being limited to
low frequencies. This learning behavior could result in fre-
quency shortcut learning, where the NNs focus on specific
frequencies to achieve their objective in a simpler way.

Data characteristics influence what NNs learn first. We
conduct experiments on the synthetic data to test this hy-
pothesis. We train ResNet18 models on the synthetic
datasets and expect they can distinguish classes like C0

and C3 easily and from the early stages of training, as they
carry more distinctive characteristics than others. To evalu-
ate this, we measure their classification performance in the
first 500 iterations of training by computing the F1-score
per class. This provides insight into whether each class
is correctly classified and how many false positives each
class attracts. We report the obtained F1-scores (see Fig. 3)
and observe that for class C3 (with a clear frequency bias),
the F1-score is generally higher than other classes in the
first few iterations, indicating that it is immediately distin-
guished from others across the four synthetic datasets, fol-
lowed by class C0. This finding suggests that the more dis-
tinguishable characteristics of class C3 play an important
role in driving the learning behavior of NNs. Note that, de-
spite the bias in different bands across the four synthetic
datasets, class C3 is always learned first, indicating that
NNs can learn either low- or high-frequency early in train-
ing if they are more discriminative than other frequencies.
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Figure 3: F1-scores of each class in the first 500 training
iterations. C3 has higher F1-scores than others at the early
training stage, meaning that it is learned first even if it only
has frequencies sampled from the highest frequency band.

Thus, what frequencies are learned first by NNs in classifi-
cation is driven by simplicity-bias and data characteristics.

Data bias and simplicity bias can lead to frequency
shortcuts. Based on the frequency characteristics of the
synthetic datasets, we examine how NNs find shortcuts in
the Fourier domain by comparing the classification results
of the NNs tested on the original synthetic datasets and their
band-stop versions where two frequency bands in B are re-
moved. We report the results using relative confusion ma-
trices (see Fig. 4), computed as:

∆Ci,Cj = (Pred
Ci,Cj

bs − PredCi,Cj
org )/Nc × 100,

where Pred
Ci,Cj

bs is the number of samples from class Ci in
the band-stopped test set predicted as class Cj , Pred

Ci,Cj
org

is the equivalent on the original test set, and NC is the num-
ber of samples in class Ci.

As ∆Ci,Ci (i = 0, 1, 2, 3) is larger than or equal to
zero, the performance of the model improves or remains the
same on the band-stop test sets, indicating that the limited
bands provide enough discriminative information for classi-
fication, while negative values indicate lower performance.
Class C2 in the four synthetic datasets is designed to contain
frequencies from all bands. If a model can predict class C2

using only frequencies from partial bands instead of con-
sidering frequencies across the whole spectrum, then it is
considered to likely be using frequency shortcuts to classify
C2. Observed from Fig. 4, ∆C2,C2 are -1 and 1 for models
trained on SynB1 and SynB4 respectively. The good per-
formance indicates that NNs apply frequency shortcuts in
the limited bands for classifying samples of C2. Moreover,
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Figure 4: Relative confusion matrices of models tested on
different band-stop synthetic datasets (e.g. B14 indicates
the bands B1 and B4 are used). The top-left figure shows
the comparison of the results on the original test set and
its band-stopped version for the model trained on SynB1

.
Other matrices show the results of other models. Most
∆Ci,Ci (i = 0, 1, 2, 3) values are close to or larger than 0,
indicating good performance on band-stopped datasets due
to learned frequency shortcuts.

∆C0,C0 of models trained on the four synthetic datasets are
close to 0, demonstrating that the NNs can recognize sam-
ples of C0 when only part of the frequencies (shortcuts)
associated with the special patterns are present in the test
data. Similar behaviors are observed for other architectures
(see results of AlexNet and VGG in the supplementary ma-
terial). To summarize, the NNs trained on the four synthetic
datasets use frequency differently, but they all adopt fre-
quency shortcuts depending on the data characteristics.

3.2. Experiments on natural images

The synthetic experiments show frequency characteris-
tics of data affect what NNs learn. To analyze the more
intricate frequency distributions of natural images, we in-
troduce a metric to compare the average frequency distri-
butions of individual classes within a dataset. This facili-
tates the identification of discriminative and simple class-
specific frequency characteristics to learn early in training.
While this metric provides valuable insights into the poten-
tial learning behavior, a deeper examination of frequency
usage by NNs is also needed. To this end, we propose a
technique based on frequency culling, which can help un-
cover frequency shortcuts explicitly. Additionally, we in-
vestigate how model capacity and data augmentation im-
pact shortcut learning. As NNs are found to exhibit texture-
bias [12] on natural images, we specifically augment data
using SIN to create a dataset with more shape-bias. This
better demonstrates how texture-/shape-biased data charac-
teristics affect frequency shortcut learning.
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A frequency distribution comparison metric. From the
insights gained on the synthetic experiments, we recog-
nize the importance to examine the frequency character-
istics of individual classes within a dataset to understand
comprehensively what NNs learn. Thus, we devise a
metric called Accumulative Difference of Class-wise av-
erage Spectrum (ADCS), which considers that NNs are
amplitude-dependent for classification [4]. We compute the
average amplitude spectrum difference per channel for each
class within a set C = {c0, c1, . . . , cn} and average it into a
one-channel ADCS. The ADCS for class ci at a frequency
(u, v) is calculated as:

ADCSci(u, v) =
∑

∀cj∈C
cj ̸=ci

sign(Eci(u, v)− Ecj (u, v)),

where
Eci(u, v) =

1

|Xi|
∑
x∈Xi

|Fx(u, v)|

is the average Fourier spectrum for class ci, x is an im-
age from the set Xi of images contained in that class, and
Fx(u, v) is its Fourier transform. ADCSci(u, v) ranges
from 1 − |C| to |C| − 1. A higher value indicates that a
certain class has more energy at a specific frequency than
other classes.

Impact of class-wise frequency distribution on the learn-
ing process of NNs. We choose ImageNet-10 [15], a re-
duced version of ImageNet [8] for the following analysis. It
has lower computational requirements and greater manage-
ability, compared to the full ImageNet dataset. For larger
datasets with more classes, one may expect severer short-
cut learning behaviors, as the NNs will tend to find quick
solutions to simplify a more difficult classification problem.

Using ADCS, we find that the classes ‘humming bird’
and ‘zebra’ possess certain distinctive frequency character-
istics that can be readily exploited by models to distinguish
them from other classes at early training stages. The result-
ing ADCS of ‘humming bird’ (see Fig. 5a) indicates that
samples from this class have on average much less energy
than other classes across almost the whole spectrum. Con-
versely, the ADCS of ‘zebra’ (see Fig. 5b) reveals that im-
ages from this class have a marked energy preponderance in
the middle and high frequencies, as indicated by the promi-
nence of red color in these frequency ranges.

To verify the impact of such frequency characteristics on
the learning behavior, we train NNs on ImageNet-10. We
inspect the frequency bias in the early training phase, by
testing models on low- and high-pass versions of the dataset
for the first 1200 training iterations, rather than the original
test set. We compute the recall and precision of each class
and observe that the precision of class ‘zebra’ (see Fig. 6a)

(a) ADCShumming bird
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Figure 5: ADCS of classes ‘humming bird’ and ‘zebra’.
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(a) Precision of each class in the first 1200 iterations.
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(b) Recall of each class in the first 1200 iterations).

Figure 6: Precision and recall rates of ResNet18 trained on
ImageNet-10 for the first 1200 iterations.

and the recall of class ‘humming bird’ (see Fig. 6b) are gen-
erally higher than those of other classes. This shows that
these two classes are learned faster than others. In sum-
mary, our findings indicate that NNs for classification can
learn and exploit substantial spectrum differences among
classes, which serve as highly discriminative features at the
early learning stage. This further supports our previous ob-
servations in synthetic datasets that what is learned first by
NNs is influenced by the frequency characteristics of data.

A frequency shortcut identification method. To identify
frequency shortcuts, we propose a method based on culling
irrelevant frequencies, similar to the analysis strategy in [1].
We measure the relevance of each frequency to classifica-
tion by recording the change in loss value when testing a
model on images of a certain class with the concerned fre-
quency removed from all channels. The increment in loss
value is used as a score to rank the importance of frequen-
cies for classification. Frequencies with higher scores are
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Figure 7: Dominant frequency maps of ResNet18 (with AutoAugment/AugMix/SIN), ResNet50 and VGG16. The maps
show the top-5% dominant frequencies of each class in ImageNet-10.

considered more relevant for classification, as their absence
causes a large increase in loss. We compute a one-channel
dominant frequency map (DFM) for a class by selecting
the top-X% frequencies according to the given ranking. Us-
ing the DFMs, we study the effect of dominant frequencies
on image classification and the extent to which they indicate
frequency shortcuts (specific sets of frequencies leading to
biased predictions for certain classes). To quantify these, we
classify all images in the test set retaining only the top-X%
frequencies of a certain class (i.e. top-X% DFM-filtered
test set). We calculate the true positive rate (TPR) and false
positive rate (FPR) to evaluate their discrimination power
and specificity for a certain class, respectively. We consider
classes with high TPR and FPR as instances where the clas-
sifier is induced to learn and apply frequency shortcuts.

Frequency shortcuts can be texture- or shape-based.
We show the DFMs with the top-5% frequencies for
ResNet(s) trained w/o or w/ augmentation (AutoAugment,
AugMix, and SIN) and VGG16 in Fig. 7 (more DFMs are
in the supplementary material). In Table 2, we report the
TPR and FPR of models tested on the original and the top-
5% DFM-filtered test sets. For ResNet18, the TPR and FPR

of classes ‘zebra’ and ‘container ship’ are higher than other
classes, indicating that the model applies frequency short-
cuts for these two classes. Similarly, for ResNet18 trained
with SIN which replaces object textures to emphasize shape
information, the model learns a frequency shortcut for class
‘siamese cat’. In Fig. 1, we show examples of ‘container
ship’ and ‘siamese cat’ images, their corresponding DFMs,
and the images retaining only the frequencies in the DFMs,
which contain textures, shapes, or colors that would not be
used alone by human observers to classify images, but that
NNs can exploit solely due to frequency shortcut learning.

Learned frequency shortcuts might prevent NNs from
learning meaningful semantics. We show an example of a
person dressed in zebra-pattern clothes predicted as ‘zebra’
with high confidence, and an image of a ‘horse’ predicted
as ‘zebra’ with low confidence in Fig. 8. Mixing the images
of ‘zebra cloth’ and ‘horse’ increases the confidence of be-
ing predicted as ‘zebra’, indicating that the model mainly
uses texture information and ignores almost any shape in-
formation of ‘zebra’, potentially impairing generalization.
As shown above, the class ‘zebra’ is easily recognized early
in the training, suggesting that learned frequency shortcuts
impede the learning of other important semantics, e.g. the
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Table 2: ID test: TPRs and FPRs on ImageNet-10 and the top-5% DFM-filtered versions (w/ df).

ImageNet-10

Model airliner wagon humming bird siamese cat ox golden retriever tailed frog zebra container ship trailer truck average

ResNet18 TPR 0.96 0.8 0.94 0.98 0.92 0.9 0.84 0.96 0.94 0.96 0.92
FPR 0.0044 0 0.0178 0.0067 0.0156 0.0022 0.0044 0.0022 0.0133 0.0222

w/ df TPR 0.08 0 0.4 0.8 0.02 0.02 0.14 0.8 0.54 0.06
FPR 0.0044 0 0.02 0.0356 0.0311 0.0044 0.0022 0.1178 0.1889 0.0022

ResNet18+AutoAug TPR 0.92 0.76 0.88 0.92 0.96 0.84 0.66 0.94 0.94 0.8 0.862
FPR 0.0089 0 0.0289 0.0089 0.0267 0.0111 0.0044 0.0067 0.0222 0.0356

w/ df TPR 0 0 0 0.22 0.04 0.02 0 0.26 0.18 0
FPR 0 0 0 0.0067 0.0222 0.0111 0 0.0089 0.0622 0

ResNet18+AugMix TPR 0.92 0.86 0.96 0.98 0.92 0.88 0.72 0.96 0.92 0.92 0.904
FPR 0.0089 0.0022 0.0267 0.0022 0.0222 0.0044 0.0044 0 0.0156 0.02

w/ df TPR 0.08 0 0.22 0.34 0.22 0.24 0.02 0.16 0.88 0.26
FPR 0.0067 0 0.0089 0.0267 0.1511 0.0089 0 0.0067 0.2444 0.0067

ResNet18+SIN TPR 0.96 0.86 0.94 0.96 0.98 0.86 0.76 0.96 0.96 0.92 0.916
FPR 0.0022 0.0022 0.0178 0.0111 0.0244 0 0.0044 0.0022 0.0133 0.0156

w/ df TPR 0.46 0 0.18 0.98 0.06 0.6 0 0.06 0.06 0.1
FPR 0.1267 0.0022 0.0111 0.5467 0.0511 0.0822 0 0.0022 0.0622 0.0133

ResNet50 TPR 0.9 0.78 0.86 0.94 0.86 0.82 0.78 0.94 0.94 0.8 0.862
FPR 0.0044 0.0022 0.02 0.0044 0.0267 0.0089 0.0111 0.0089 0.0244 0.0422

w/ df TPR 0.54 0 0 0.42 0 0.2 0 0.16 0.7 0.1
FPR 0.22 0 0.0022 0.04 0.0022 0.0533 0 0.0489 0.2289 0.0156

VGG16 TPR 0.96 0.84 0.92 1 0.9 0.92 0.78 0.96 0.96 0.88 0.912
FPR 0.0022 0.0022 0.0222 0.0111 0.0133 0.0044 0.0067 0.0022 0.0133 0.02

w/ df TPR 0.18 0 0 0.66 0.22 0.12 0.04 0.06 0.7 0.22
FPR 0.0133 0 0 0.0444 0.1489 0.0267 0 0.0533 0.42 0.0578

Table 3: Transferability test: TPRs and FPRs of ViT-B on the top-5% DFM (of ResNet18+SIN)-filtered versions.

ImageNet-10

Model airliner wagon humming bird siamese cat ox golden retriever tailed frog zebra container ship trailer truck

ViT-B w/ df TPR 0.34 0.02 0.28 0.82 0.44 0.72 0.02 0.46 0.92 0.6
FPR 0.1933 0.0022 0.0067 0.22 0.08 0.0578 0.0133 0.0289 0.2467 0.0333

100% zebra cloth 100% horse
40% zebra cloth 20% zebra cloth

Zebra 99.84% 97.26% 21.23% 2.11%
Ox 0% 0.74% 23.87% 93.73%

Predicted
as

60% horse 80% horse

Figure 8: Model classifies zebra-pattern clothes with high
confidence but misclassifies horse as ox. Mixing images of
‘zebra cloth’ and ‘horse’ increases the confidence of ‘zebra’
predictions. This indicates that the model relies on texture
over shape information, its ability to generalize and recog-
nize another animal of similar shape but different texture.

shape or other morphological features of the animal. The
learned frequency shortcuts are impacted significantly by
the frequency characteristics of data. They can be texture-
based or shape-based and might hinder NNs from learning
more meaningful semantics. There might be cases where
frequency shortcuts are not in the data and thus not learned.

Model capacity vs. frequency shortcuts. The high TPR
and FPR for ResNet50 in Table 2 indicate that it is sub-
ject to frequency shortcuts for the classification of classes
‘airliner’ and ‘container ship’. Compared to ResNet18 fre-

quency shortcut for class ‘zebra’, ResNet50 has lower TPR
and FPR, indicating less specific dominant frequencies for
classifying ‘zebra’. This demonstrates mitigation of learn-
ing a frequency shortcut, although learning another short-
cut for class ‘airliner’. Additionally, VGG16 learns a fre-
quency shortcut for class ‘container ship’ (TPR=0.7 and
FPR=0.42). We show in the following paragraph that fre-
quency shortcuts affect transformers as well, indicating that
shortcuts impact networks across different model capacities
and architectures. Thus, larger models cannot necessarily
avoid it. This commonality shows that frequency shortcut
learning is data-driven, which needs to be considered more
explicitly to learn generalizable models.

Transferability of frequency shortcuts. We trained ViT-
B on ImageNet-10 and tested it on images processed with
the DFMs we had computed for ResNet18+SIN. This tests
the dependency of ViT predictions on small sets of fre-
quency, and the transferability of shortcuts between mod-
els or architectures. We present the results in Table 3 and
observe shortcuts for the classes ‘siamese cat’ (TPR=0.82,
FPR=0.22) and ‘container ship’ (TPR=0.92, FPR=0.25).
Though having a large model capacity, ViT-B is also sub-
ject to frequency shortcuts (shape or texture) to classify
the samples of certain classes, in line with the observa-
tion in [22]. Moreover, the frequency shortcuts learned
by ResNet18+SIN can be exploited by ViT-B, further in-
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Table 4: OOD test: TPRs and FPRs on ImageNet-SCT and the top-5% DFM-filtered versions (w/ df).

ImageNet-SCT

Model military aircraft car lorikeet tabby cat holstein labrador retriever tree frog horse fishing vessel fire truck average

ResNet18 TPR 0.3286 0.4143 0.4429 0.2714 0.3286 0.4 0.4143 0.0286 0.4286 0.6143 0.3672
FPR 0.0794 0.0397 0.1952 0.0921 0.0746 0.0587 0.0429 0.019 0.0238 0.0778

w/ df TPR 0 0 0.2143 0.1286 0.0429 0.0286 0.0571 0.1286 0.2143 0
FPR 0.0016 0 0.054 0.0556 0.0683 0.0238 0.0063 0.0889 0.3397 0.0016

ResNet18+AutoAug TPR 0.4 0.6571 0.5143 0.4 0.4857 0.4286 0.3286 0 0.4 0.6143 0.4229
FPR 0.0603 0.0667 0.1619 0.0937 0.1 0.0444 0.0302 0.0079 0.0143 0.0619

w/ df TPR 0 0 0 0.0429 0.2143 0.0429 0.0143 0.0286 0.0429 0.0857
FPR 0 0 0 0.0444 0.1016 0.0413 0 0.0079 0.0778 0.0127

ResNet18+AugMix TPR 0.3571 0.7286 0.4143 0.2714 0.3857 0.4429 0.3571 0.0286 0.4143 0.5571 0.3957
FPR 0.0984 0.1159 0.1254 0.081 0.0889 0.054 0.0397 0.0111 0.0175 0.0397

w/ df TPR 0 0 0 0.1143 0.0429 0.2 0 0 0.5 0.1429
FPR 0.0048 0 0.0095 0.0365 0.1 0.081 0 0.0111 0.2 0.1016

ResNet18+SIN TPR 0.3857 0.6 0.4286 0.4914 0.6286 0.5714 0.4571 0 0.6429 0.6857 0.48714
FPR 0.0333 0.0444 0.1016 0.0476 0.1159 0.0635 0.0492 0.0222 0.0127 0.0794

w/ df TPR 0.0429 0 0.0714 0.9286 0.0714 0.1714 0 0 0.0429 0.0286
FPR 0.0349 0.0016 0.0222 0.7444 0.0492 0.1016 0 0.0159 0.1127 0.0095

ResNet50 TPR 0.4286 0.4857 0.4143 0.2 0.3714 0.3 0.3 0.0571 0.4429 0.7429 0.3743
FPR 0.1444 0.054 0.0952 0.0651 0.0984 0.0492 0.0365 0.027 0.0333 0.0921

w/ df TPR 0.2429 0 0.0571 0.0429 0 0.2 0 0 0.4857 0.0429
FPR 0.127 0 0.0032 0.0206 0 0.1444 0.0016 0.0159 0.3222 0.0111

VGG16 TPR 0.5143 0.6571 0.4714 0.3 0.3571 0.3714 0.5143 0.0286 0.5286 0.5 0.4242
FPR 0.0841 0.0714 0.1238 0.073 0.0905 0.0492 0.0698 0.0143 0.0111 0.0524

w/ df TPR 0.0143 0 0.0286 0.2571 0.2143 0.1429 0.0143 0.0286 0.4571 0.0429
FPR 0.0032 0 0.0032 0.2048 0.1079 0.0857 0 0.0333 0.4079 0.0571

dicating that frequency shortcuts are data-driven and can be
transferred between models.

Data augmentation vs. frequency shortcuts. As com-
mon techniques to improve generalization performance, we
investigate the effect of data augmentation in mitigating fre-
quency shortcut learning. We train ResNet18 with these
techniques and report the results in Table 2. AugMix wors-
ens the learned frequency shortcut for ‘container ship’, but
mitigates a frequency shortcut for ‘zebra’. AutoAugment
partially avoids the frequency shortcuts for both ‘zebra’
and ‘container ship’. SIN causes a frequency shortcut for
‘siamese cat’. To summarize, appropriate data augmenta-
tion may partially reduce frequency shortcut learning, but
NNs still tend to find shortcut solutions based on the char-
acteristics of the augmented data.

4. Frequency shortcuts and OOD tests

Design of OOD test: ImageNet-SCT. To assess how fre-
quency shortcuts affect OOD generalization, we construct a
new test set based on previous analysis results, ImageNet-
SCT (ShortCut Tests). It consists of 10 classes, each con-
taining 70 images with seven different image styles, includ-
ing art, cartoon, deviantart, painting, sculpture, sketch, toy.
This dataset expands the coverage of ImageNet-R [13] in
terms of image variations. The classes in ImageNet-SCT
are related, to some extent, to those in ImageNet-10. For
instance, ‘zebra’ in ImageNet-10 corresponds to ‘horse’
in ImageNet-SCT, allowing us to test the effect of an ab-
sent texture-based shortcut feature, as horse images con-
tain animals with a very similar shape to zebras, but with
no texture. Similarly, ’siamese cat’ in ImageNet-10 cor-

responds to ’tabby cat’ in ImageNet-SCT, to test the ef-
fect of a present shape-based shortcut feature. Further-
more, ‘container ship’ in ImageNet-10 maps to ‘fishing ves-
sel’ in ImageNet-SCT, which contains images with similar
textures and somehow different shapes (fishing vessels are
much smaller boats), enabling us to evaluate the effect of a
present texture-based shortcut. Examples of ImageNet-SCT
images are provided in the supplementary material.

Frequency shortcuts can impair generalization and cre-
ate the illusion of improved performance. We test the
NNs on ImageNet-SCT and its DFM-filtered versions with
the top-5% dominant frequencies. From the results on the
original ImageNet-SCT, we observe a considerable average
drop of TPR for all models (see Table 4). Larger model ca-
pacity and data augmentations may not always effectively
address frequency shortcuts in certain classes, as observed
for ‘siamese cat’, ‘zebra’, and ‘container ship’ in ImageNet-
10 (corresponding to ‘tabby cat’, ‘horse’, and ‘fishing ves-
sel’ in ImageNet-SCT). For example, models relying on
texture-based shortcut features for ‘zebra’ in ImageNet-
10 fail to capture shape characteristics and perform poorly
on similar-shaped animals like ‘horse’ in ImageNet-SCT
(see Fig. 8). While data augmentations can partially mit-
igate this effect in ID tests, OOD results for ‘horse’ still
indicate the presence of learned frequency shortcuts. Con-
versely, ‘tabby cat’ and ‘fishing vessel’, which are designed
to have similar shape or texture characteristics to their cor-
responding class in ImageNet-10, exhibit above-average
OOD results (higher TPR than average accuracy). Thus,
the present shape-based and texture-based shortcut features
in the OOD test set are used for classification, giving a false
sense of generalization. ‘Fire truck’ in ImageNet-SCT is a
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good example of generalization, as no shortcuts were iden-
tified, allowing models to learn more global and semantic
information. Frequency shortcuts can impair generalization
and their impact can transfer across datasets, resulting in
a misleading impression of generalization with the inclu-
sion of shortcut features in a new test set. Larger models
and data augmentation cannot fully counteract these effects,
we thus highlight the need to explore novel data augmenta-
tion strategies that explicitly target shortcut mitigation, e.g.
leveraging DFMs to induce models to exploit more frequen-
cies rather than shortcut frequencies [30] and avoid learning
behaviors that may impair the generalizability of NNs.

5. Conclusions
We conducted an empirical study to investigate what

NNs learn in image classification, by analyzing the learn-
ing dynamics of NNs from a frequency shortcut perspec-
tive. We found from a synthetic example that NNs learn
frequency shortcuts during training to simplify classifi-
cation tasks, driven by frequency characteristics of data
and simplicity-bias. To address this on natural images, we
proposed a metric to measure class-wise frequency charac-
teristics and a method to identify frequency shortcuts. We
evaluated the influence of shortcuts on OOD generalization
and found that frequency shortcuts can be transferred
to another dataset, in some cases, giving an illusion of
improved generalization. Furthermore, we observed that
larger model capacity and data augmentation techniques do
not necessarily mitigate frequency shortcut learning. Our
study expands previous works on the learning dynamics of
NNs for regression tasks, broadens the understanding of
frequency shortcuts (which can be either texture-based or
shape-based), and provides a more systematic analysis of
OOD generalization. We foresee that enhancing the identi-
fication of frequency shortcuts and applying proper training
schemes that avoid frequency shortcut learning may hold
promise in improving generalization.
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