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Abstract

Scene boundary detection breaks down long videos in-
to meaningful story-telling units and plays a crucial role
in high-level video understanding. Despite significant ad-
vancements in this area, this task remains a challenging
problem as it requires a comprehensive understanding of
multimodal cues and high-level semantics. To tackle this
issue, we propose a multimodal high-order relation trans-
former, which integrates a high-order encoder and an adap-
tive decoder in a unified framework. By modeling the mul-
timodal cues and exploring similarities between the shot-
s, the encoder is capable of capturing high-order relations
between shots and extracting shot features with context se-
mantics. By clustering the shots adaptively, the decoder can
discover more universal switch pattern between successive
scenes, thus helping scene boundary detection. Extensive
experimental results on three standard benchmarks demon-
strate that the proposed model performs favorably against
state-of-the-art video scene detection methods.

1. Introduction
Cognitive science has discovered that humans usually

comprehend a long video by breaking down it into mean-
ingful units and reasoning about their relationships [20].
Therefore, dividing a long video into a series of meaningful
story-telling video scenes, i.e. video scene detection, turns
out to be a crucial task towards high-level video understand-
ing. In filmmaking and video production, the term ‘scene’ is
a basic unit for story-telling, consisting of a series of seman-
tic cohesive shots, while the term ‘shot’ is a series of frames
captured by the same camera over an uninterrupted period
of time [4]. The task of video scene detection has drawn
remarkable attention and can be widely adopted to various
tough applications, including video caption, content-driven
video search, scene classification, human-centric storyline
construction and so on [8, 15, 31]. Although significan-
t progress has been achieved in recent years, video scene
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(b) Histograms of similarities between shots.
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(c) Diverse scene boundaries in movie Blade Runner.

Figure 1: (a) There is minimal visual alteration at the scene
boundary, while the audio content undergoes significan-
t changes. (b) Direct similarities between shots near the
boundary can all have high scores, while the trend of simi-
larity variation can provide more discriminative signals. (c)
Scene boundaries can vary greatly even in the same movie.
Therefore, learning shot-level representations alone is in-
sufficient for this class-agnostic task.

detection remains challenging due to requiring semantic un-
derstanding in a long-term video.

Recently, researchers have proposed methods like [4,
15, 20, 38] that leverage visual cues in unlabeled videos
to model scene boundary. These approaches mainly em-
ploy an unsupervised contrastive learning strategy to dif-
ferentiate shots from distinct scenes. Although these meth-
ods have taken a big step forward, they simply use visual
appearance cues to generate pseudo labels for contrastive
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learning, resulting in the model learning the differences of
shots at the visual apparent level rather than semantic lev-
el. In order to address above limitations, approaches such
as [18, 19, 23, 27] introduce various expert networks to
model multimodal signals like visual, audio, cast and place
in various video understanding tasks. These methods stil-
l struggle to accurately identify scene boundaries in long-
term videos, particularly those with complex story-telling
structures. This is due to that modeling context of the shots
plays a crucial role in identifying boundaries. Furthermore,
all previous methods [1, 4, 23, 20, 27, 38] primarily em-
phasize learning discriminative shot features and overlook
that scene boundary detection is a class-agnostic task. Thus
they fail to identify more universal switch pattern between
different scenes which is less dependent on appearance.

Based on the above analysis and the characteristics of
scene boundary detection, we believe following aspects are
important in this task: (1) The multimodal shot represen-
tations can provide comprehensive cues to detect scene
boundary. (2) The high-order relation provides correction-
s for the context of shots. (3) The scene-level representa-
tions, derived from adaptively aggregation of shots features,
can effectively indicate the switch pattern between differ-
ent scenes. Firstly, as shown in Figure 1a, there is mini-
mal alteration in the visual appearance between Scene A and
scene B. However, the audio signal undergoes a significant
change, making it easier to discern the transition between
scenes. Secondly, as shown in Figure 1b, the shots before
and after the scene boundary, such as shot 48 and shot 49,
exhibit high similarities, suggesting that the scene switch
can occur seamlessly. Neither the environment nor the char-
acters change, only the two men’s behavior changes. Un-
der this circumstances, considering only the similarities be-
tween shots (first-order relation) can lead to undetectable
blurred boundaries. Fortunately, by representing shots 47-
49 as 10-dimensional similarity vectors based on their sim-
ilarities with reference shots 43-52, we can observe a sig-
nificant change near the scene boundary. This motivates
us that the similarities between these similarity vectors, de-
noted as high-order relation, can correct for the first-order
relation. Thirdly, unlike the common video action detection
task, video scene detection is a category-agnostic task [5].
As shown in Figure 1c, even within the same movie, the
appearances of the ‘scene boundary shots’ (i.e. shots 48,
52, 63, 80) still vary greatly. It is more important to dis-
cover the switch pattern between successive scenes rather
than learn shot-level representations. This encourages us
to learn more contextual and category-agnostic scene-level
representations, which can be adaptively aggregated from
shot-level features.

Take these observations together, we propose the Mul-
timodal High-order Relation Transformer for video scene
detection, which can model multimodal cues, high-order

relation and scene adaptive clustering in a unified struc-
ture. Specifically, we first take multimodal expert networks
and clip encoders to extract multimodal clip-level shot em-
beddings for the input shot sequence. Then our designed
multimodal high-order relation transformer, consisting of a
high-order encoder and an adaptive decoder, is employed
to model the high-order relation for the shots and gener-
ate contextual scene-level representation in a unified frame-
work. In detail, the high-order encoder primarily employs
the multi-head and self-attention mechanism on the multi-
modal shot embeddings to produce high-order relationships
(‘relation in relation’), thereby enhancing the appropriate
correlations between shots and suppressing erroneous ones.
And the adaptive decoder merges contextual shot embed-
dings into scene representations with learnable scene pro-
totypes and cross-attention. Finally, we take those contex-
tualized shot embeddings for scene boundary classification
and scene embeddings for boundary position regression.

The major contributions of this work can be summa-
rized as follows: (1) We propose the Multimodal High-
order Relation Transformer, which can model multimodal
cues, high-order relation and scene adaptive clustering in
a unified structure. (2) In our transformer, we design the
high-order encoder to enhance the context of shots and rec-
tify noises in the correlation map of shots caused by their
imperfect features. We further employ the adaptive de-
coder to aggregate shot features, which is better at captur-
ing switch pattern between scenes rather than visual appear-
ance. (3) Extensive experimental results on three standard
benchmarks including MovieNetSSeg [12], OVSD [27] and
BBC planet earth [1] demonstrate that the proposed model
can outperform previous works by a large margin, and can
be even competitive with those pre-training methods which
consume more than 5 times training data.

2. Related Work
The basic assumption of video scene detection is that one

shot can only belong to one scene, thus scene boundaries are
a subset of shot boundaries [30]. As a result, the pre-task of
scene detection is usually shot detection [14], which divides
a video into sequences of time-continuous, non-overlapping
shots. Given shot sequences, the video scene segmenta-
tion problem can be modeled as shot grouping, which clus-
ters consecutive shots into scenes, or binary classification,
which predicts whether a shot is a scene boundary. Many
methods have been proposed [1, 4, 27, 20, 38], which can
be categorized as unsupervised methods, supervised meth-
ods and self-supervised methods.

Unsupervised Methods. Early works utilize a variety of
unsupervised methods. Among them, [24, 29] cluster shot-
s according to spatiotemporal video features or shot color
similarities. [27] obtains a consecutive segmentation by dy-
namic programming. [28] presents a novel normalized cost
function for optimally grouping shots into scenes. Other
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Figure 2: Our method follows a three-stage pipeline. Firstly, we extract multimodal features with short-term context using
multimodal backbones and clip encoders. In the second stage, our high-order encoder models complex multimodal cues and
context for each shot, while the decoder adaptively aggregates shots within the same scene. Finally, we employ separate
heads for central shot classification and scene boundary position regression. Please refer to the text for more details.

works make use of multimodal information [27]. For in-
stance, [30] uses both low-level and high-level audio fea-
tures, visual features to build scene transition graph and ex-
tend the unimodal STG-based temporal segmentation tech-
nique to multimodal scene segmentation. However, these
methods are trained on small-scale datasets [1, 27], leading
to poor generalization. Our method turns to deep learning
and is trained with newly proposed large dataset [12], ob-
taining much better performance and generalization.

Supervised and Self-Supervised Methods. As more
and larger datasets are presented [4, 5, 20, 23, 38, 32, 37,
39], researchers are turning to supervised methods. With
large-scale datasets, the deep neural network has a great ad-
vantage on extracting semantic features. [22] uses Alex-
resnet365 to extract scene features, while [13] achieves
video scene segmentation using an image captioning mod-
el to extract semantic information of shots. [23] proposes
a supervised baseline utilizing multimodal features to per-
form a shot-level binary classification, followed by an iter-
ative optimal grouping. Recently, self-supervised methods
achieve the best performance. Among them, [4] proposes
a shot contrastive pre-training strategy to learn distinguish-
able shot representation. [38] achieves scene consistency
representation learning using a novel positive sample se-
lection strategy in contrast learning. And [20] mainly fo-
cuses on designing boundary-aware self-supervised tasks.
However, these methods ignore multimodal information
and simply use visual appearance cues to contrast differen-
t shots, while scene segmentation relies on semantic con-
text. On the contrary, we can jointly model multimodal
cues, high-order relation enhanced context with our pro-
posed high-order encoder. And our proposed decoder can
adaptive merge shot features into scene-level features to dis-
cover the switch pattern between video scenes.

3. Multimodal High-order Relation Trans-
former

As shown in Figure 2, our method deals with the multi-
modal shot-level video inputs in a pipeline of clip-level shot

embedding, multimodal high-order context modeling and
boundary classification. Given a full-length input video,
we first split it into a constituent set of shots with the s-
tandard shot detection techniques [30]. We then use the
sliding window to get a continuous subsequence of shot-
s {s0, s1, ..., sl}, and extract its multimodal representations
(i.e. visual, place and audio) with the various expert net-
works. And the clip encoder is employed to model each
shot’s short-term context. Based on these multimodal shot
features, we then perform multimodal high-order contex-
t modeling to exploit story-telling semantics for each shot.
Specifically, the proposed multimodal high-order relation
transformer first adopts the high-order encoder to take both
multimodal cues and high-order relationships into consid-
eration. Then the followed adaptive decoder is employed
to aggregate shots into scenes. Finally, we adopt both shot
features with contextual information and dynamically ag-
gregated scene features for scene boundary prediction.

3.1. Clip-level Shot Embedding
Multimodal Expert Networks. A long-term video is a

typical multimodal data containing different high-level se-
mantics [23]. Thus visual features extracted by classical
backbones like I3D [2] or TSN [36] are insufficient for the
video scene detection task. Instead, the story-telling high
semantics can be better described and complemented by
multimodal representations. Observing that, in addition to
visual contents, a ‘scene’ is closely related to shots sharing
common place, audio elements. Following [23] we adopt
visual, place and audio expert networks to extract multi-
modal shot features.

Following [1, 20, 23], we first extract the key frame for
each shot in the sequence {s0, s1, ..., sl}. Then we (1) adopt
the ViT [7] to get visual features Rv = {rv0 , rv1 , ..., rvl }, (2)
employ the ResNet50 [10] pretrained on Places dataset [40]
to get place features Rp = {rp0 , r

p
1 , ..., r

p
l }, and (3) take

stft [34] followed by the pretrained VGGish [11] to get au-
dio features Ra = {ra0 , ra1 , ..., ral }. The superscript v, a, p
denote for the different modality. Noting that all the expert
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Figure 3: The proposed Multimodal High-order Relation Transformer is designed to enhance shot features with high-order
context and discover the switch pattern between scenes. Specifically, the high-order encoder can fuse multimodal cues
and model context for each shot under the guidance of high-order relation extractor. Additionally, the subsequent decoder
adaptively aggregate shots in the same scene and captures the switch pattern between scenes. Best viewed with colors.

networks are frozen during the training process.

Aiming to enhancing shot features with high-order con-
text and discovering the switch pattern between scenes, we
design a transformer-based architecture. As shown in Fig-
ure 3, it consists of a high-order encoder and an adaptive de-
coder. The encoder is applied to fuse complex multimodal
cues and model context for each shot with the help of high-
order relation extractor, while the decoder is responsible for
adaptively aggregating shots in the same scene.

Clip Encoder. Following [23], we add a clip encoder
on a local window for each shot’s representations, aim-
ing to obtain their clip-level representations. Specifical-
ly, taking the visual feature rvi of shot i for example, we
consider the differences SD and relations SR of its n-
earby shots in a window with length 2ws, i.e. Vi ={
rvi−(ws−1), ..., r

v
i , ..., r

v
i+ws

}
. This process can be per-

formed by temporal convolution layers Ψ and fully connect-
ed layers FC, as shown in Equation (1):

SD(Vi) = Ψ({rvi−(ws−1), ..., r
v
i }) ·Ψ({rvi+1, ..., r

v
i+ws
}),

SR(Vi) = Ψ({rvi−(ws−1), ..., r
v
i+ws
}),

rv
+

i = FC(concat(SD(Vi),SR(Vi))),
(1)

where concat denotes the concatenation operation, · de-
notes the inner product. Similar operations are performed
on the place and audio modality, and the updated shot
features can be described by Rv+

= {rv+

0 , rv
+

1 , ..., rv
+

l },
Rp+

= {rp
+

0 , rp
+

1 , ..., rp
+

l }, Ra+

= {ra+

0 , ra
+

1 , ..., ra
+

l }.
Consequently, these multimodal shot features are enhanced
with short-term context.

3.2. Multimodal High-order Context Modeling

Aiming to enhancing shot features with high-order con-
text and discovering the switch pattern between scenes, we
design a transformer-based architecture. As shown in Fig-
ure 3, it consists of a high-order encoder and an adaptive de-
coder. The encoder is applied to fuse complex multimodal
cues and model context for each shot with the help of high-
order relation extractor, while the decoder is responsible for
adaptively aggregating shots in the same scene.

High-order Relation Extractor. As discussed above,
directly adopting the standard transformer encoder [35]
over the shot sequence features may introduce noises in the
correlation map due to imperfect shot features, and ignore
comprehensive ‘high-order relation’ signal. Thus, we inno-
vatively design the high-order relation extractor to correct
first-order relations and fuse the multimodal cues jointly.
As shown in the upper part of Figure 3, taking the multi-
modality shot sequence features Rv+

,Rp+

,Ra+

as inputs,
we first calculate the multi-head based temporal similari-
ty matrix for each modality, generating a first-order multi-
modal relation map M ∈ R(l+1)×(l+1)×3h, which naturally
contains temporal positional signal. Note that l + 1 is the
length of shot sequence and h is the number of heads. Then
a shallow CNN is applied on M to fuse multimodal cues
and model neighboring first-order relations. And one stan-
dard transformer layer followed by linear layers and sig-
moid function is adopted to model the global associations
of each shot’s relation, producing the guidance map MC.

High-order Encoder for Context Modeling. As shown
in the bottom left part of Figure 3, we fuse multimodal fea-
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tures with concatenation operation and a simple linear layer:

rfi = FC(concat(rv
+

i , rp
+

i , ra
+

i )) ∈ Rdf , (2)

producing fused shot sequence features Rf ∈ R(l+1)×df ,
where the superscript f denotes for fusion. Then we ap-
ply the guidance map MC to enhance context modeling in
a conventional transformer encoder. In detail, we first gen-
erate transformed queries and key-values pairs by: Q =
RfWQ,K = RfWK ,V = RfWV , where WQ ∈
Rdf×dk ,WK ∈ Rdf×dk ,WV ∈ Rdf×dv . Noting that we
omit the multi-head scripts to simplify the expression here.
Then the modified attention process HoAttn(Rf ), under
the guidance from the high-order multimodal relation cues
MC, can be described by:

HoAttn(Rf ) = (MC � softmax(
QKT

√
dk

))V, (3)

where � denotes Hadamard product, indicating MC work-
s as a rectifier to enhance the appropriate correlations and
suppress the erroneous ones. The residual connections, nor-
malization operation and feed-forward layer are concate-
nated after this attention block, as shown in Figure 3. As
a result, the high-order encoder can produce shot repre-
sentations Rf∗

= {rf
∗

0 , rf
∗

1 , ..., rf
∗

l }. And Rf∗
contains

comprehensive multi-modality contextual information. The
above two parts fit together as our High-order Encoder and
can serve as a basic block, offering a flexible high-order re-
lation perception function.

Adaptive Decoder for Shot Clustering. Although the
high-order encoder successfully models both multimodal
cues and high-order relations into the shot representation-
s, it is still challenging to detect scene boundaries. Because
even appearances of ‘boundary shots’ within the same video
can vary dramatically. It is essential to learn the switch
pattern between scenes, rather than simple shot features.
Consequently, we design an adaptive decoder to dynami-
cally merge shots within the same scene, resulting in aggre-
gated contextual scene features. Our decoder also follows
the query-key-value design in the vanilla transformer [35],
making the full model unified.

As shown in the right part of Figure 3, our adaptive
decoder consists of a pair of learnable scene prototypes
P = {p1, p2} and an attention block. In order to reduce the
domain gap between scene prototypes and shot features, we
first employ the average pooled feature of all shots to mod-
ify the scene prototypes. The attention interaction between
the shots and scene prototypes can be formulated by:

P∗ = P� avg(Rf∗
),

AS = (P∗Wq)(Rf∗
Wk)T ,

Z = {z1, z2} = ASR
f∗
,

(4)

where Wq ∈ Rds×dq ,Wk ∈ Rdf×dq are learnable param-
eters. The affinity matrix AS ∈ R2×(l+1) measures the rel-

evance between each prototype and the shots, which directs
the aggregation of shots into scenes. And {z1, z2} indicate
the dynamically aggregated scene representations, which is
used to regress the scene boundary positions.

3.3. Objective Function and Data Augmentation
Based on above discuss, we learn a set of shot repre-

sentations Rf∗
= {rf

∗

0 , rf
∗

1 , ..., rf
∗

l } and two adaptively
merged scene features Z = {z1, z2} for the input shot se-
quence {s0, s1, ..., sl}. For each shot sequence, we make
prediction on the central shot rf

∗

bl/2c, i.e. determining
whether it’s a scene boundary or not. The subscript bl/2c
stands for the floor function. The classification loss can be
formulated as:

Lpre = −[yclog(φ(rf
∗

bl/2c))+(1−yc)log(φ(rf
∗

bl/2c))], (5)

where yc is the label for the central shot, deciding whether
it’s a scene boundary, and φ is a binary classification head.
Moreover, ordering to learn adaptive scene representation-
s, we adopt the adaptively merged scene features Z =
{z1, z2} and a regression head γ to regress the position of
the boundary in the shot sequence:

Lreg = MSE[p, γ(concat(z1, z2))], (6)

where p is the ground-truth position of the scene boundary
in the shot sequence, and p = −1 or p = l + 1 stand-
s for there are no boundaries or multiple boundaries in the
sequence. MSE denotes the mean squared error. The over-
all training loss can be L = Lpre + αLreg , where α is a
hyperparameter.

Moreover, there is a serious class-imbalance problem in
the scene detection task, because boundaries are rare in a
long video. Thus, we construct shot sequence samples with
positive boundary on the central position by concatenating
two distant subsequences in the same video or two subse-
quences from different videos:

{s0, ..., sl/2, ..., sl}new = {s0, ..., sl/2}v0 +{sl/2, ..., sl}v1 .
(7)

The ratio of constructed samples to origin samples is ad-
justable according to the data distribution.

4. Experimental Results
4.1. Experimental Setup

Dataset. To demonstrate the effectiveness of our pro-
posed method, we carry out extensive experiments on three
public available datasets, including MovieNet-SSeg [12],
BBC planet earth [1] and OVSD [27]. MovieNet [12], con-
taining 1,100 videos with 1.6M shots, is the largest dataset
for video understanding analysis by far. And the MovieNet-
SSeg is a sub-dataset of that, with 190, 64 and 64 videos
labeled with scene boundaries for training, validating and
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Table 1: Results on the MovieNetSSeg dataset. The best results are in bold, and the second best are in bold and underlined.
Note that self-supervised methods are pretrained with 1100 videos in MovieNet (MS-1100), and fine-tuned with 190 training
videos in MovieSSeg (MS-190). Using less than 1/5 of the training data, our model can achieve competitive results.

Method Training Data AP (↑) mIoU (↑) AUC-ROC (↑) F1 (↑)
Supervised Learning

Siamese [1] MS-190 35.8 39.6 - -
MS-LSTM [12] MS-190 46.5 46.2 - -

LGSS [23] MS-190 47.1 48.8 - -
Ours MS-190 54.8 51.2 90.3 46.3

Unsupervised Learning
GraphCut [25] None 14.1 29.7 - -

SCSA [3] None 14.7 30.5 - -
DP [9] None 15.5 32.0 - -

Story Graph [33] None 25.1 35.7 - -
Grouping [27] None 33.6 37.2 - -

Self-supervised Learning
ShotCoL [4] MS-1100 53.4 - - -
SCRL [38] MS-1100 54.8 - - 51.4
BaSSL [20] MS-1100 56.3 49.5 90.3 45.7

testing. Besides, we also carry out experiments on BBC
planet earth [1] and OVSD [27] dataset. BBC planet earth
contains 11 documentaries and OVSD contains 21 various
videos. And we just take them as the testing set to verify
the generalization of our model, i.e. our model trained on
MovieScenes-SSeg is directly tested them, because of their
limited scale and unavailable splitting strategy.

Evaluation Metrics. We make comprehensive vali-
dations on our model with several metrics: (1) Average
Precision(AP), it’s the mean of AP of yc = 1 for each
video. (2) mIoU, the averaged intersection over union
(IoU) between detected scene boundary with their closest
ground-truth scene boundary. (3) F1 score, the harmonic
mean of the precision and recall, taking both recall and pre-
cision into consideration. (4) AUC−ROC, short for area
under the receiver operating characteristics.

Implementation Details. The proposed High-Order Re-
lation Aware Multi-modality Network is implemented in
PyTorch framework [21] with NVIDIA V100 GPUs.

To begin with, we set the shot sequence length as 7,
which is able to contain enough contextual information
while requiring relative low memory resource. In the clip-
level shot embedding stage, we only take visual, place and
audio modalities mentioned in [23], as they play the most
crucial roles in scene boundary detection. In specific, we
use ViT-B/16 pretrained on ImageNet [6], ResNet50 pre-
trained on Place dataset [40], and VGGish pretrained on
AVA-ActivaSpeaker [26] to extract multimodal shot fea-
tures with 768, 2048, 128 dimensions respectively. All of
them were frozen during training. The clip encoder employs
the 1D-CNN [16] and the FC layer to transform them into
384, 256, 128 dimensional vectors. This indicates the im-

Table 2: Results of AP on BBC planet earth and OVSD
datasets. Performances are achieved by the model trained
on the MovieNetSSeg dataset without any fine-tuning.

Method BBC OVSD
SimCLR(instance) [4] 32.3 25.5
SimCLR(temperal) [4] 34.2 24.9

SimCLR(NN) [4] 32.9 25.0
BaSSL(More Training Data) [20] 40.0 28.7

Ours 38.7 27.5

portance of each modality, which will be verified in the ab-
lation studies. In the followed multimodal high-order con-
text modeling stage, the high-order relation extractor first
maps the multimodal features as the correlation map M
with 8 heads. Feeding M into the shallow CNN with 4 lay-
ers, one transformer encoder layer and the followed linear
layer, we get the high-order relation-aware guidance map
MC. We set the corresponding high-order context mod-
eling encoder with 8 heads, 1 layer, and hidden units as
768. Finally, in the Adaptive Decoder, the dimensions of
the merged scene features and the shot features remain the
same. As a result, the scale of learnable parameters in our
model is approximately equivalent to the sum of two lay-
ers of transformer encoder, four layers of CNN and several
linear layers, which is comparable to that of BaSSL [20]
without its’ backbone.

The model is trained for 10 epochs with the Adam opti-
mizer [17]. We start training with a learning rate of 0.0002,
and decay the learning rate using a cosine schedule. The
batch-size is set to 128 for all experiments. And the hyper-
parameter α in loss is set to 0.2. At last, for evaluation on
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the testing set, we tackle the over-fitting by choosing the s-
napshot of the model based on the validation set. Noting
that during inference, for each shot sequence we only make
prediction on the central shot. Only if the classification head
predicts to be positive, or the regression head outputs the
central position, we take it as a positive boundary.

4.2. Performance Comparison
We compare with several recent state-of-the-art method-

s on the MovieNet-SSeg [12] in Table 1. And verifying
the generation ability of our method by carrying out exper-
iments on BBC planet earth [1] and OVSD [27] datasets in
Table 2. We can find that our proposed High-Order Rela-
tion Aware Multi-modality Network achieves much better
performance compared with the supervised methods, and
can be competitive with the self-supervised ones while con-
suming much less training resources.

Results on MovieNet-SSeg. Table 1 presents the quanti-
tative results on MovieNet-SSeg. We compare our method
with various types of methods, including supervised, un-
supervised and self-supervised approaches. The results
demonstrate that under the same settings, our methods can
outperform previous works by a large margin and can be
even competitive with those which employ more than 5
times training data. Particularly, our method achieves 54.8
for AP, 51.2 for mIoU, 90.3 for AUC−ROC and 46.3
for F1. Noting that our method can offer a much more con-
venient way for training and testing compared with BaSSL,
ShotCoL and SCRL [20, 4, 38]. For fair comparison, we al-
so conduct experiments using identical multi-modality set-
tings, specifically by the same features generated by expert
networks. As shown in Tabel 3, using less external knowl-
edge, our approach can still outperform LGSS by a large
margin. Different from previous works which neglect the
high-order relations among the shot sequence and only fo-
cus on learning shot features, our method jointly models
both of them in a unified deep model.

Results on BBC planet earth and OVSD. As shown in
Table 2, we further validate performance of our method on
BBC planet earth [1] and OVSD [27]. The training and test-
ing splits are not available and the scale of dataset size are
quite small (11 for BBC, and 21 for OVSD respectively),
in addition, 2 out of 21 videos in OVSD is not available.
Consequently, we just directly employ the model trained on
MovieNetSSeg without any fine-tune, and take inference on
these two datasets. SimCLR(x) corresponds to ShotCoL [4]
using different contrastive learning strategies reproduced
by [20]. The results demonstrate advanced generalization
ability of our methods. It’s competitive with shot-level pre-
training methods.

4.3. Ablation Studies and Analysis
To carry out analysis and evaluate the contribution of

each component and setting in our method, we conduct a

Table 4: Impact of multimodal semantics, where three el-
ements are studied including visual, place, and audio. †
denotes that the results are copied from [23].

Method place audio visual AP (↑)
Grouping [27]† X X X 23.8

StoryGraph [33]† X X X 33.2
Siamese [1]† X X X 34.1
LGSS [23] X X X 47.1

Ours X 50.9
Ours X 16.3
Ours X 52.4
Ours X X 48.4
Ours X X 53.4
Ours X X 53.1
Ours X X X 54.8

series of ablation studies. All the following comparative
experiments are conducted on the MovieNetSSeg dataset.

Impact of Multimodal Semantics. First of all, we re-
visit the impact of each modality in Table 4. We utilize the
whole pipeline with clip-level shot embedding and multi-
modal high-order context modeling to make predictions on
the testing set. Experiment starts from the model using only
one modality features, and gradually adds different modal-
ity cues. Observing the second block of Table 4, we get
the conclusion that visual modality plays the most impor-
tant role in video scene detection. It’s hard for single audio
features to obtain satisfied results. From the third part of
Table 4, we learn that both audio and place modalities can
give complementary cues to the visual modality, and im-
proves the final results. In particularly, audio improves 2.7
in terms of AP , place improves 3.5 for AP. Combin-
ing three modalities can produce the best result, i.e. 54.8
for AP. Compared with previous works in Table 4, our
method gets the best results. Because our approach takes
a more comprehensive way to fuse the multimodal features
and drive them to complement with each other in a unified
model. This can prove the hypothesis we presented above,
i.e. multimodal content can complement for each other in
the task of scene boundary detection.

Impact of Different Components. We take experi-
ments to validate the effect of different components in our
method, including the clip encoder, the high-order encoder
and adaptive decoder in our multimodal high-order relation
transformer. Specifically, taking the full model as baseline,
we remove the clip encoder which is denoted as ‘w/o CE’.
Removing the high-order relation extractor can verify the
effectiveness of modeling high-order context, and we de-
note it as ‘w/o HR’, i.e. without high-order relation guid-
ance. And the model without the full high-order encoder in
the multimodal high-order relation transformer is denoted
as ‘w/o CR’ for ‘without context relation’, as it lacks the
context relationship modeling. And the model without the
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Table 3: Results on the MovieNetSSeg dataset with different multimodal semantics settings, which demonstrate the effec-
tiveness of our approach under fair conditions.

Method LGSS
(audio)

LGSS
(place)

LGSS
(audio+place)

LGSS
(audio+place

+act+cast)

Ours
(audio)

Ours
(place)

Ours
(audio+place)

Ours
(audio+place

+visual)
AP(↑) 17.5 39.0 43.4 47.1 16.3 50.9 48.4 54.8

Table 5: Impact of different components. We take the full
model as baseline.

Modality AP (↑) mIoU (↑) AUC-ROC (↑) F1 (↑)
w/o CE 52.3 48.3 90.0 45.5
w/o HR 51.1 50.3 88.4 44.4
w/o CR 48.6 45.9 88.6 45.2

w/o Cluster 54.3 50.9 90.3 46.2
Full Model 54.8 51.2 90.3 46.3

Figure 4: Impact of different data augmentation strategies.

proposed adaptive decoder is formulated as ‘w/o Cluster’,
which does not need to cluster shots within the same scene.
As shown in the first line of Table 5, removing the clip en-
coder leads to 2.5 drop on AP, and 0.8 on F1. If the model
taken out the high-order relation extractor AP drops 3.7.
Furthermore, if we remove the high-order encoder, the per-
formance can degrade a lot, i.e. 6.2 on AP, 5.3 on mIoU.
This demonstrates that modeling context and high-order re-
lationships among the video shots is of great significance
for the video scene detection task. Besides, comparing the
last two lines in Table 5 can prove the necessity of clus-
tering shots within the same scene. Lacking the guidance
from scene-level representations, the results on AP drops
0.5, and mIoU drops 0.3.

Impact of Data Augmentation. Figure 4 demonstrates
the impact of different data augmentations. We add shot se-
quence samples from one video to another video with pos-
itive boundary on the central position, to make the model
to learn robust scene boundary pattern. If the two videos
are from the same video, we call this augmentation method
as ‘Intra’. Otherwise, as ‘Inter’. Hyperparameter ratio con-
trols the rate of newly constructed samples. When the ratio
equals zero, we only adopt shot sequence samples by slid-
ing window on every training video without any data aug-
mentation. Having appropriate numerical values for ratio is
crucial since setting it too low can prevent the model from

acquiring positive samples, while setting it too high can lead
to overfitting. Optimal outcome is obtained with a ratio of
0.3 for ‘Intra’ augmentation and 0.2 for ‘Inter’ augmenta-
tion. Therefore, we incorporate these two hyperparameters
in our complete model. Figure 4 shows that both of ‘In-
tra’ and ‘Inter’ can improve the performance, while ‘Intra’
is better. The reason may be that ‘Intra’ helps constructing
harder samples.

Qualitative Analysis. In this part, we visualize simi-
larity matrixes of 50 consecutive shot representations from
multimodal features, which can intuitively prove the impor-
tance of multimodal cues in the task of scene boundary de-
tection. Specifically, the models are trained with different
multimodal semantic settings, and output multimodal shot
features respectively. Then we visualize the matrix of co-
sine similarity between them. The ground-truth labels of
scenes (i.e. shot clusters) are marked by red rectangles. It is
obvious in Figure 5, shots are clearly clustered into scenes
by multimodal features, i.e. the similarities between the
shots before and after the boundaries are quite small. Be-
sides, we can see that audio features can hardly separate the
shots into different scenes, and the similarity matrix of place
or visual features can roughly cluster the shots into scenes
near the ground-truth. For single audio or place features,
the similarities around boundaries are smooth, which may
lead to confusing boundary detection results. Thus, we be-
lieve that audio, place and visual features can complement
with each other to achieve better performance.

5. Conclusion
In this paper, we propose a unified multimodal frame-

work for video scene boundary detection. And we design a
novel Multimodal High-order Relation Transformer, which
can model multimodal cues, high-order relation and scene
adaptive clustering in a unified structure. We extract multi-
modal shot representations and model their clip-level con-
text using expert networks and a clip encoder. Then we
use a high-order encoder to uncover complex associations
among the features and exploit contextual semantics. Then
an adaptive decoder in our transformer is proposed to dy-
namically merge shots in the same scene, which is effective
at discovering switch pattern between scenes rather than vi-
sual appearance. We have systematically studied the influ-
ence of our idea and carried out experiments. The result-
s demonstrate the effectiveness of our model by achieving
significant performance.
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Figure 5: Visualization of similarity matrixes between shot
representations in randomly sampled 50 consecutive shots.
The ground-truth labels of scenes (shot clusters) are marked
by red rectangles.
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