
SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving

Yi Wei1,2*, Linqing Zhao3*, Wenzhao Zheng1,2, Zheng Zhu4, Jie Zhou1,2, Jiwen Lu1,2†

1Beijing National Research Center for Information Science and Technology, China
2Department of Automation, Tsinghua University, China

3School of Electrical and Information Engineering, Tianjin University, China
4PhiGent Robotics

{y-wei19,zhengwz18}@mails.tsinghua.edu.cn; linqingzhao@tju.edu.cn;

zhengzhu@ieee.org; {jzhou, lujiwen}@tsinghua.edu.cn

Abstract

3D scene understanding plays a vital role in vision-
based autonomous driving. While most existing meth-
ods focus on 3D object detection, they have difficulty de-
scribing real-world objects of arbitrary shapes and infi-
nite classes. Towards a more comprehensive perception
of a 3D scene, in this paper, we propose a SurroundOcc
method to predict the 3D occupancy with multi-camera im-
ages. We first extract multi-scale features for each image
and adopt spatial 2D-3D attention to lift them to the 3D
volume space. Then we apply 3D convolutions to progres-
sively upsample the volume features and impose supervision
on multiple levels. To obtain dense occupancy prediction,
we design a pipeline to generate dense occupancy ground
truth without expansive occupancy annotations. Specifi-
cally, we fuse multi-frame LiDAR scans of dynamic ob-
jects and static scenes separately. Then we adopt Pois-
son Reconstruction to fill the holes and voxelize the mesh
to get dense occupancy labels. Extensive experiments on
nuScenes and SemanticKITTI datasets demonstrate the su-
periority of our method. Code and dataset are available at
https://github.com/weiyithu/SurroundOcc.

1. Introduction
Understanding the 3D geometry of the surrounding

scene serves as the basic procedure in an autonomous driv-
ing system. While LiDAR is a direct solution to capture
this geometric information, it suffers from high-cost sensors
and sparse scanned points, limiting its further application.
Recently, vision-centric autonomous driving has attracted
extensive attention as a promising direction. Taking multi-

*Equal contribution.
†Corresponding author.

Figure 1. The overview of SurroundOcc. Given multi-camera im-
ages, our method can predict volumetric occupancy of surrounding
3D scenes. To train the network, we design a pipeline to generate
dense occupancy labels with sparse LiDAR points. Better viewed
when zoomed in.

camera images as inputs, it has demonstrated competitive
performance in various 3D perception tasks including depth
estimation [17, 58], 3D object detection [30, 27, 36, 34, 20],
and semantic map construction [66, 19, 1].

Although multi-camera 3D object detection plays an im-
portant role [30, 27, 34, 20] in vision-based 3D perception,
it is easy to suffer from the long-tail problem and difficult
to recognize all classes of objects in the real world. Com-
plementary to 3D detection, reconstructing surrounding 3D
scenes can better help the downstream perception tasks. Re-
cent works [17, 58] incorporate information from multiple
views and predict surrounding depth maps. However, depth
maps only predict the nearest occupied point in each optical
ray and are unable to recover the occluded parts of the 3D
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scene. Different from depth-based methods, another trend
[7, 21] is to directly predict the 3D occupancy of the scene.
It describes a 3D scene by assigning an occupied proba-
bility to each voxel in the 3D space. We advocate 3D oc-
cupancy to be a good 3D representation for multi-camera
scene reconstruction, which naturally guarantees the multi-
camera geometry consistency and is able to recover oc-
cluded parts. Also, it is flexible to extend to other 3D down-
stream tasks such as 3D semantic segmentation [69, 73, 15].
As one of the pioneering works, MonoScene [7] infers the
dense 3D voxelized semantic scene with monocular images.
However, simply fusing multi-camera results with cross-
camera post-processing will lead to low performance [30].
TPVFormer [21] uses sparse LiDAR points as supervision,
which results in sparse occupancy prediction.

To address this, we propose a SurroundOcc method,
which aims to predict dense and accurate 3D occupancy
with multi-camera images input. We first use a 2D back-
bone network to extract multi-scale feature maps from each
image. Then we perform 2D-3D spatial attention to lift
multi-camera image information to 3D volume features in-
stead of BEV features. A 3D convolution network is then
employed to progressively upsample the low-resolution vol-
ume features and fuse them with high-resolution ones to ob-
tain fine-grained 3D representations. At each level, we use
a decayed weighted loss to supervise the network. To get
dense predictions, we need dense occupancy labels. How-
ever, the mainstream multi-camera dataset nuScenes [6]
only provides sparse LiDAR points. To avoid expensive oc-
cupancy annotations, we devise a pipeline to generate dense
occupancy ground truth only with the existing 3D detection
and 3D semantic segmentation labels. Specifically, we first
combine multi-frame points of dynamic objects and static
scenes respectively. Then we leverage Poisson Reconstruc-
tion [23] algorithm to further fill the holes. Finally, NN and
voxelization are used to obtain dense 3D occupancy labels.

With the dense occupancy ground truth, we train the
model and compare it with other state-of-the-art meth-
ods on nuScenes [6] dataset. Both the quantitative re-
sults and visualizations demonstrate the effectiveness of our
method. Moreover, we further conduct experiments on Se-
manticKITTI dataset [2]. Although our method is not de-
signed for the monocular setting, it achieves state-of-the-art
performance on the monocular 3D semantic scene comple-
tion benchmark.

2. Related Work
Voxel-based Scene Representation: How to effectively

represent a 3D scene lies at the core of autonomous driving
perception. Voxel-based scene representation voxelizes the
3D space into discretized voxels and describes each voxel
by a vector feature. It has empowered the success of numer-
ous methods on the lidar segmentation [33, 52, 11, 62, 61]

and 3D scene completion [7, 46, 9, 25, 59, 29, 28] tasks.
For the 3D occupancy prediction task, we also advocate the
voxel representation as it is more suitable to model the oc-
cupancy field of a 3D scene. MonoScene [7] is the first
work to reconstruct outdoor scenes using only RGB inputs.
TPVFormer [21] further generalizes it to multi-camera 3D
semantic occupancy prediction. However, its lack of dense
supervision results in sparse occupancy prediction. Differ-
ently, we devise a pipeline to generate dense occupancy
ground truth for training and our occupancy prediction is
much denser.

3D Scene Reconstruction: 3D reconstruction [42, 49,
48, 41, 71, 16, 4, 38, 50, 5] is a traditional but important
topic in computer vision. One way is through depth esti-
mation which predicts a depth value for each pixel in the
image. While early methods require full depth annotations
to supervise the depth estimation model [14, 24, 67], later
research focuses on self-supervised depth estimation as it
does not require intensive human annotations [71, 16, 4, 68,
63, 57, 70, 44, 8]. Recently, SurroundDepth [58] further
incorporates the interactions between surrounding views to
capture more spatial correlations. Different from depth esti-
mation, 3D scene reconstruction methods [22, 38, 50, 5, 7]
directly reconstruct a comprehensive and accurate 3D ge-
ometry of a scene. SurfaceNet [22] employs a 3D convolu-
tional network to transform RGB colors to 3D surface occu-
pancy from two images. Atlas [38] further extends it to the
multi-view setting and utilized learned features to predict
occupancy. NeuralRecon [50] and TransformerFusion [5]
fuse the learned image features from different views in an
online manner for more accurate 3D reconstructions. How-
ever, most of these 3D scene reconstruction methods are
designed for indoor scenes, which are different from the
multi-camera setting in the outdoor environment.

Vision-based 3D Perception: The lack of direct ge-
ometric input demands vision-based 3D surround percep-
tion methods to infer the 3D scene geometry based on se-
mantic cues. Depth-based methods explicitly predict depth
maps for image inputs to extract 3D geometric informa-
tion of the scene before perception [55, 37, 45, 40, 27, 36,
31, 43, 20, 66]. The widely adopted pipeline is to pre-
dict categorical depth distributions and leverage them to
project semantic features into 3D space [43]. Other meth-
ods implicitly learn 3D features without producing explicit
depth maps [54, 30, 56, 35, 53, 64]. For example, BEV-
Former [30] adopts cross attention to progressively refine
BEV grid features from 2D image features. While most
existing works employ BEV representation to describe a
scene, we propose to reconstruct a 3D scene using volu-
metric occupancy representation, which provides the more
fine-grained and comprehensive modeling of the scene.
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Figure 2. The pipeline of the proposed method. First, we use a backbone to extract multi-scale features of multi-camera images. Then we
adopt 2D-3D spatial attention to fuse multi-camera information and construct 3D volume features in a multi-scale fashion. Finally, the 3D
deconvolution layer is used to upsample 3D volumes and occupancy prediction is supervised in each level.

Figure 3. The comparison of 3D-based and BEV-based cross-view
attention. The 3D-based attention can better preseve 3D informa-
tion. For each 3D volume query, we project it to the corresponding
2D views to sample features.

3. Approach
3.1. Problem Formulation

In this work, we aim to predict the 3D occupancy
of surrounding scenes with multi-camera images I =
{I1, I2, · · · IN}. Formally, the 3D occupancy predcition is
represented as:

V = G(I1, I2, · · · IN ) (1)

where G is an neural network and V ∈ RH×W×Z is the
3D occupancy. The value of V is between 0 and 1, rep-
resenting the occupied probability of the grids. Lifting V
to an (L,H,W,Z) tensor, we can obtain the 3D semantic
occupancy, where L is the class number and class 0 means
non-occupied grids.

3D occupancy is a good representation for multi-camera
3D scene reconstruction. First, since 3D occupancy is

predicted in 3D space, it theoretically satisfies the multi-
camera consistency. Second, it is possible for networks to
predict occluded areas according to the surrounding seman-
tic information, which is unavailable in depth estimation.
Third, 3D occupancy is easy to extend to other downstream
tasks, such as 3D semantic segmentation and scene flow es-
timation.

3.2. Overview

Figure 2 shows the pipeline of our method. Given a set of
surrounding multi-camera images, we first use a backbone
network (e.g. ResNet-101 [18]) to extract N cameras’ and
M levels’ multi-scale features X = {{Xj

i }Ni=1}Mj=1. For
each level, we use a transformer to fuse multi-camera fea-
tures with spatial cross attention. The output of the 2D-3D
spatial attention layer is a 3D volume feature instead of the
BEV feature. Then the 3D convolution network is utilized
to upsample and combine multi-scale volume features. The
occupancy prediction in each level is supervised by the gen-
erated dense occupancy ground truth with a decayed loss
weight.

3.3. 2D-3D Spatial Attention

Many 3D scene reconstruction methods [7, 38] integrate
multi-view 2D features into 3D space by reprojecting 2D
features back to the 3D volumes with known poses. The
grid feature is calculated by simply averaging all 2D fea-
tures in this grid. However, this kind of method assumes
that different views contribute equally to the 3D volumes,
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Figure 4. Dense occupancy ground truth generation. We first traverse all frames to stitch the multi-frame LiDAR points of dynamic objects
and static scenes separately, and then merge them into a complete scene. Subsequently, we employ Poisson Reconstruction to densify the
points and voxelize the resulting mesh to obtain a dense 3D occupancy. Finally, we use the Nearest Neighbor (NN) algorithm to assign
semantic labels to dense voxels.

which does not always hold true, especially when some
views are occluded or blurred.

To tackle the issue, we leverage cross-view attention to
fuse multi-camera features. We project 3D reference points
to 2D views and use deformable attention [72, 30] to query
points and aggregate information. As shown in Figure 3,
instead of 2D BEV queries, we build 3D volume queries to
further reserve 3D space information. Specifically, 3D vol-
ume queries are defined as Q ∈ RC×H×W×Z . For each
query, we project its corresponding 3D point to 2D views
according to the given intrinsic and extrinsic. We only use
the views that the 3D reference point hits. Then we sam-
ple 2D features around these projected 2D positions. The
output F ∈ RC×H×W×Z of the cross-view attention layer
is a weighted sum of sampled features according to the de-
formable attention mechanism:

DeformAttn(q, p, x) =
Nhead∑
i=1

Wi

Nkey∑
j=1

Aij · W ′
ix(p+∆pij)

F p =
1

|Vhit|
∑
i∈Vhit

DeformAttn(Qp,P(qp, i), Xi)

(2)
where F p and Qp indicate the pth element of the output
features and 3D volume queries. qp is the corresponding
3D positions of queries and P is the 3D to 2D project func-
tion. Vhit represents the hit views of 3D query points. Wi

and W ′
i are the learnable weights and Aij ∈ [0, 1] is the at-

tention weight calculated by the dot product of query and
key. x(p+∆pij) is the 2D feature at location p+∆pij . In-

stead of performing expensive 3D self-attention, we use the
3D convolution to interact features between neighboring 3D
voxels.

3.4. Multi-scale Occupancy Prediction

We further extend the 2D-3D spatial attention to a multi-
scale fashion. Different from 3D detection task, 3D scene
reconstruction needs more low-level features to help the
network learn fine-grained details. To tackle the issue, we
design a 2D-3D U-Net architecture. Specifically, given
multi-scale 2D features {{Xj

i }Ni=1}Mj=1, we adopt different
number of 2D-3D spatial attention layers to extract multi-
scale 3D volume features {Fj ∈ RCj×Hj×Wj×Zj}Mj=1.
Then we upsample j − 1th level 3D volume features Yj−1

with 3D deconvolution layer and fuse it with Fj :

Yj = Fj + Deconv(Yj−1) (3)

For each level, the network outputs an occupancy predic-
tion result with different resolution Vj ∈ RCj×Hj×Wj×Zj .
To get powerful both high-level and low-level 3D features,
the network is supervised at each scale. Specifically, we
use the cross-entropy loss and scene-class affinity loss in-
troduced in [7] as the supervision signals. For 3D semantic
occupancy prediction, we adopt a multi-class cross-entropy
loss and for 3D scene reconstruction we change it to a two-
class formulation. Since the high-resolution prediction is
more important, we use a decayed loss weight αj = 1

2j for
jth level supervision.
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(a) RGB image (b) single-frame LiDAR points

(c) Sparse occupancy labels (d) Dense occupancy labels

Figure 5. Comparison on different occupancy labels. Compared
with single-frame LiDAR points and the sparse occupancy con-
verted from multi-frame points, our dense voxels are able to pro-
vide more realistic occupancy labels.

4. Dense Occupancy Ground Truth

In our experiments, we find that the network supervised
by sparse LiDAR points is unable to predict dense enough
occupancy. Thus, it is necessary to generate dense occu-
pancy labels. However, as mentioned in SemanticKITTI
[2], it is complex and needs huge human efforts to annotate
the dense occupancy of a 3D scene which has millions of
voxels. To this end, we design a pipeline to generate dense
occupancy ground truth leveraging existing 3D detection
and 3D semantic segmentation labels without extra human
annotations, which is shown in Figure 4. An intuitive way is
to directly transform a multi-frame LiDAR point sequence
into a unified coordinate system, and then voxelize the con-
catenated dense points into voxel grids. However, such a
straightforward solution is only applicable to completely
static scenes and ignores moving objects. Moreover, multi-
frame point clouds are not dense enough and there still exist
many holes, which will result in wrong occupancy labels.
To address these issues, we propose to stitch multi-frame
LiDAR points of dynamic objects and static scenes sepa-
rately. In addition, we adopt Poisson Reconstruction [23]
to fill up the holes and voxelize the obtained mesh to get
dense volumetric occupancy. Since the LiDAR scans sur-
face points, our method also generates surface occupancy.

4.1. Multi-frame Point Cloud Stitching

We propose a two-stream pipeline to stitch static scenes
and objects separately and merge them into a complete
scene before voxelization. Specifically, for each frame, we
first cut out movable objects from the LiDAR points accord-
ing to 3D bounding box labels, so that we can obtain the 3D
points of a static scene and movable objects. After travers-

ing all frames in the scene, we integrate the collected static
scene segments and object segments into a set respectively.
To combine the multi-frame segments, we then transform
their coordinates into the world coordinate system via the
known calibrated matrices and ego-poses. We denote the
transformed static scene segments and object segments as
Pss = {P 1

ss, P
2
ss, · · ·Pn

ss} and Pos = {P 1
os, P

2
os, · · ·Pm

os},
where n and m are the numbers of frames and objects in
the sequence, respectively. Note that the same objects in
different frames can be recognized according to the bound-
ing box index. Therefore, we can represent the whole
static scene as Ps = [P 1

ss, P
2
ss, · · ·Pn

ss] while the objects
as Po = [P 1

os, P
2
os, · · ·Pm

os ], respectively, where [·] is the
concatenation operator. Finally, according to the objects’
locations and ego-pose of the current frame, the 3D points
of this frame can be obtained by merging static scene and
objects: P = [Ts(Ps), To(Po)], where Ts and To are the
transformations of static scenes and objects from world co-
ordinate system to the current frame coordinate system. In
this way, the occupancy labels of the current frame leverage
the LiDAR points of all frames in the sequence.

4.2. Densifying with Poisson Reconstruction

While the density of P is much larger than a single-
frame LiDAR, there still exists many interspaces and the
points are not evenly distributed, which is caused by the
limited LiDAR beams. To address this, we first compute the
normal vectors according to the spatial distribution in local
neighborhoods. Then we reconstruct P to a triangular mesh
M via Poisson Surface Reconstruction [23], whose input is
point cloud with normal vectors, and the output is a triangu-
lar mesh (see Figure 4). The obtained mesh M = {V, E}
fills up the holes of point clouds with evenly distributed ver-
tices V , so that we can further convert the mesh into dense
voxel Vd.

4.3. Semantic Labeling with NN Algorithm

Having obtained the occupancy of dense voxels Vd, we
aim to assign semantic labels to each voxel, since position
reconstruction can only be applied to 3D space, not se-
mantic space. To this end, we propose to leverage Nearest
Neighbors (NN) algorithm to search the nearest semantic
label for each voxel. Specifically, we first voxelize P with
semantics into voxels Vs, which are sparser than Vd due to
limited LiDAR beams. Then for each occupied voxel in Vd,
we use NN to search the nearest voxel in Vs and assign the
semantic label to it. Note that this process can be acceler-
ated by parallel computing on the GPU. Thus, all occupied
voxels in Vd can obtain their semantic labels from Vs.

Figure 5 shows a detailed visual comparison between
single-frame LiDAR points, sparse occupancy labels and
dense occupancy labels. We observe that our dense vox-
els can provide much more realistic occupancy labels with
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MonoScene [7] 23.96 7.31 4.03 0.35 8.00 8.04 2.90 0.28 1.16 0.67 4.01 4.35 27.72 5.20 15.13 11.29 9.03 14.86
Atlas [38] 28.66 15.00 10.64 5.68 19.66 24.94 8.90 8.84 6.47 3.28 10.42 16.21 34.86 15.46 21.89 20.95 11.21 20.54
BEVFormer [30] 30.50 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer [21] 11.51 11.66 16.14 7.17 22.63 17.13 8.83 11.39 10.46 8.23 9.43 17.02 8.07 13.64 13.85 10.34 4.90 7.37
TPVFormer* 30.86 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81

SurroundOcc 31.49 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86

Table 1. 3D semantic occupancy prediction results on nuScenes validation set. Except TPVFormer [21], all methods are trained with
dense occupancy labels. To fairly compare, we further use dense ground truth to train the TPVFormer, which is denoted as TPVFormer*.

Acc meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp meanp∗∈P∗(minp∈P ||p− p∗||)
Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < 0.5)
Recal meanp∗∈P∗(minp∈P ||p− p∗|| < 0.5)
CD Acc + Comp
F-score (2× Prec × Recal)/(Prec + Recal)

Table 2. Evaluation metrics for 3D scene reconstruction. p and p∗

are the predicted and ground truth point clouds.

clear semantic boundaries.
We think it is not trivial to propagate the sparse seman-

tic label to a dense one since it is a ill-posed problem.
The proposed multi-frame point cloud stitching can aggre-
gate multi-frame semantic information and provide dense
enough reference points for NN. However, we find that NN
is sensitive to the annotation noise in original LiDAR se-
mantic labels, and we will try to solve it as the future work.

5. Experiments
5.1. Experimental Setup

Dataset: We conduct multi-camera experiments on
nuScenes dataset [6], which is a large-scale autonomous
driving dataset. Since the 3D semantic and 3D detection
labels are unavailable in test set and we cannot generate
dense occupancy labels, we use the training set to train the
model and validation set for evaluation. The occupancy
prediction range is set as [−50m, 50m] for X,Y axis and
[−5m, 3m] for Z axis. The final output occupancy has the
shape 200x200x16 with 0.5m voxel size. The input image
resolution is 1600x900.

To further demonstrate the effectiveness of our method,
we conduct monocular semantic scene completion experi-
ment on SemanticKITTI dataset [2]. SemanticKITTI has
annotated outdoor LiDAR scans with 21 semantic labels.
The ground truth is voxelized as 256x256x32 grid with
0.2m voxel size. We evaluate our model on the test set.
Implementation Details: The whole network architecture
obtains M = 4 levels and we do not add the skip connection
in level 0. For nuScenes dataset, we adopt ResNet101-DCN

[18, 13] with the initial weight from FCOS3D [54] as the
backbone to extract image features. The features of stage
1,2,3 are fed to FPN [32] and used as multi-scale image fea-
tures. The number of 2D-3D spatial attention layers are set
as 1, 3, 6 for three levels. For SemanticKITTI dataset, fol-
lowing MonoScene [7], we use a pretrained EfficientNetB7
[51] as the backbone to generate multi-scale image features.
We also adopt FPN to further fuse the features of different
levels. We set the number of 2D-3D spatial attention layers
as 1, 3, 8. All experiments are conducted on 8 RTX 3090s.
For Possion Reconstruction, we accumulate both key-frame
and non key-frame data. In details, we use LiDAR frames at
20Hz, resulting in 400 frames and around 13 million points
for a 20 second sequence.

Evaluation Metrics: For 3D semantic occupancy predic-
tion, we use the intersection over union (IoU) of occupied
voxels, ignoring their semantic class as the evaluation met-
ric of the scene completion (SC) task and the mIoU of all
semantic classes for the SSC task.

IoU =
TP

TP + FP + FN

mIoU =
1

C

C∑
i=1

TPi

TPi + FPi + FNi

(4)

where TP , FP , FN indicate the number of true positive,
false positive, and false negative predictions. C is the class
number.

For 3D scene reconstruction, we first convert occupancy
prediction to point clouds. Following [38, 5], we use 3D
metrics for evaluation, which is shown in Table 2. Cham-
fer distance (CD) and F-score are the main metrics since
they consider both precision and recall. Please refer to the
supplementary for more evaluation metric details. For all
evaluation, we adopt dense occupancy as ground truth since
sparse LiDAR points cannot fully evaluate the quality of
occupancy reconstruction.
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LMSCNet [47] 31.38 7.07 46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00
3DSketch [10] 26.85 6.23 37.70 19.80 0.00 0.00 12.10 17.10 0.00 0.00 0.00 0.00 12.10 0.00 16.10 0.00 0.00 0.00 3.40 0.00 0.00
AICNet [26] 23.93 7.09 39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00
JS3C-Net [60] 34.00 8.97 47.30 21.70 19.90 2.80 12.70 20.10 0.80 0.00 0.00 4.10 14.20 3.10 12.40 0.00 0.20 0.20 8.70 1.90 0.30
MonoScene [7] 34.16 11.08 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10
TPVFormer [21] 34.25 11.26 55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50

SurroundOcc 34.72 11.86 56.90 28.30 30.20 6.80 15.20 20.60 1.40 1.60 1.20 4.40 14.90 3.40 19.30 1.40 2.00 0.10 11.30 3.90 2.40

Table 3. Monocular Semantic scene completion results on SemanticKITTI test set. For fair comparison, we use the performances of
RGB-inferred versions of the first four methods, which are reported in MonoScene [7]. Although our method is not designed for monocular
perception, we still outperform other methods for a large margin.

Figure 6. An example of challenging scenes. Although the quality of RGB images degrades in rainy days and nights, our method can still
predict detailed occupancy. Better viewed when zoomed in.

Method Acc ↓ Comp ↓ Prec ↑ Recall ↑ CD ↓ F-score ↑
SurroundDepth [58] 1.747 1.384 0.261 0.353 3.130 0.293
AdaBins [3] 1.989 1.287 0.233 0.347 3.275 0.271
NeWCRFs [65] 2.163 1.233 0.214 0.348 3.396 0.257
Atlas [38] 0.679 1.685 0.407 0.546 2.365 0.458
TransformerFusion [5] 0.771 1.434 0.375 0.591 2.205 0.453

SurroundOcc 0.724 1.226 0.414 0.602 1.950 0.483

Table 4. 3D scene reconstruction results on nuScenes validation
set. F-score and CD are the main metrics.

5.2. 3D Semantic Occupancy Prediction

We first conduct multi-camera 3D semantic occupancy
prediction on nuScenes [6] dataset and compare with
several state-of-the-art methods [7, 30, 21, 38]. For
MonoScene [7], we concatenate the multi-camera occu-
pancy predictions and voxelize them with the 0.5m voxel
size, which is same as our setting. For BEVFormer [30], we
add a 3D segmentation head to predict semantic occupancy.
As shown in Table 1, our method achieves state-of-the-art
performance. We also show some qualitative results in Fig-
ure 6 and Figure 7. See supplementary material for more

video demos and qualitative comparisons.

Especially in Figure 6, we show rainy day and night vi-
sualization. Although the quality of RGB images degrades
in these two challenging scenes, our method can still pre-
dict fine details. The LiDAR sensor suffers from rainy days
and easily misses points. With multi-frame aggregation and
Possion Reconstruction, we dramatically densify the labels
and provide strong supervision, which is crucial for the
challenging scenarios. Moreover, we conduct color jitter
augmentation, which increases the robustness of brightness
change. We also note that some parts cannot be observed
by LiDAR sensor, such as the back side of the car. Surpris-
ingly, our model can predict the complete shape according
to the surrounding information.

To further demonstrate the superiority of our method,
we also conduct monocular 3D semantic scene completion
on SemanticKITTI dataset [2]. Table 3 shows the results.
Although our method is not designed for monocular per-
ception and cross-view attention will be ineffective for the
monocular setting, our method still achieves state-of-the-art
performance on this benchmark.
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Method SC IoU SSC mIoU

w/o spatial attention 29.78 17.34
BEV-based attention 30.45 18.94

Ours 31.49 20.30

Table 5. The ablation study of 2D-3D spatial attention. “w/o spa-
tial attention” indicates that we average all multi-camera features
in a grid.

Method SC IoU SSC mIoU

w/o multi-scale structure 30.41 18.22
w/o multi-scale supervision 31.16 19.73

Ours 31.49 20.30

Table 6. The ablation study of multi-scale occupancy prediction.
“w/o multi-scale structure” means that we do not add multi-scale
skip connection.

Supervision SC IoU SSC mIoU

sparse LiDAR points 11.96 12.17
sparse occupancy labels 30.58 18.83
dense occupancy labels 31.49 20.30

Table 7. The ablation study of dense occupancy supervision. The
model trained with our dense occupancy ground truth is much bet-
ter than that trained with sparse LiDAR points.

5.3. 3D Scene Reconstruction

Another important application of 3D occupancy pre-
diction is 3D scene reconstruction. Due to this reason,
we further evaluate 3D reconstruction performance with-
out using multi-class semantic labels. We do the com-
parison with state-of-the-art multi-camera depth estimation
methods (SurroundDepth [58]), monocular depth estima-
tion methods (AdaBins [3] and NeWCRFs [65]) and 3D
reconstruction method (Atlas [38] and TransformerFusion
[5]). For the self-supervised methods SurroundDepth [58],
we use depth ground truth to supervise them. To evaluate
depth estimation methods in 3D space, following [38, 5],
we run TSDF fusion [12, 39] to fuse multi-camera depth
as point clouds. Note that we fuse the multi-camera depth
maps of the same timestamp but not the multi-frame depths.
Thus, there is no need to specially deal with movable ob-
jects. As shown in Table 4, SurroundOcc achieves state-of-
the-art performance on most metrics, and outperforms other
methods by a large margin, which verifies the effectiveness
of the proposed method.

5.4. Ablation Study

2D-3D Spatial Attention: Table 5 shows the ablation re-
sults for 2D-3D spatial attention. Without spatial atten-
tion, we directly average all multi-camera features in a grid.
However, we find this straightforward fusion method per-
forms worse than spatial attention. The potential reason is

that the contribution of each view is different for a 3D grid.
Moreover, the ablation study shows that 3D-based cross-
view attention is more effective than BEV-based cross-view
attention since it can preserve 3D space information.
Multi-scale Occupancy Prediction: We conduct an abla-
tion study on multi-scale structure and multi-scale supervi-
sion in Table 6. The experimental results show that these
two multi-scale designs can boost the performance. The
multi-scale skip connection can help the network learn low-
level fine-grained features, which is important for detailed
high-resolution occupancy prediction. Moreover, the 3D
volume features in all levels will be enhanced by multi-scale
supervision.
Dense Occupancy Supervision: The results in Table 7
demonstrate the importance of using dense occupancy as
ground truth. Compared with sparse LiDAR points, the
sparse occupancy labels fuse multi-frame points and can
provide more powerful supervision. The possion recon-
struction and NN algorithm can fill the holes and further
densify the occupancy labels, which will boost model’s per-
formance. Figure 7 can better illustrate the effectiveness of
dense supervision. We can see that the model trained with
our occupancy labels can predict much denser occupancy
than that trained with LiDAR points.

5.5. Model Efficiency

We compare the inference time and inference memory
of different methods in Table 8. The experiments are con-
ducted on one RTX 3090 with six multi-camera images,
whose resolutions are 1600x900. We find that our method
can achieve both high performance and efficiency. Com-
pared with BEVFormer, our method slightly increases in-
ference time and memory and we think the increased burden
is acceptable

Method Latency (s) Memory (G)
SurroundDepth [58] 0.73 12.4
NeWCRFs [65] 1.07 14.5
Adabins [3] 0.75 15.5
BEVFormer [30] 0.31 4.5
TPVFormer [21] 0.32 5.1
MonoScene [7] 0.87 20.3
Ours 0.34 5.9

Table 8. The model efficiency of different methods. The experi-
ments are conducted on one RTX 3090 with six multi-camera im-
ages, whose resolutions are 1600x900.

6. Limitations and Future Work
Currently, we only explore single-frame occupancy pre-

diction. However, for the downstream modules, e.g. motion
prediction and planning, occupancy flow is more important.
As the future work, we will design a framework to build
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Figure 7. Visualizations on nuScenes validation set. Our generated dense occupancy labels are much denser than sparse LiDAR points.
Trained with dense groundtruth, the network can predict better and denser occupancy. Better viewed when zoomed in.

occupancy flow dataset and utilize multi-frame surrounding
images as the inputs. Moreover, LiDAR data is not always
available. Self-supervised occupancy prediction with only
RGB data is a valuable but challenging direction.

7. Conclusion
In this paper, we propose SurroundOcc for multi-camera

3D occupancy prediction. We utilize 2D-3D spatial atten-
tion to integrate 2D features to the 3D volume in a multi-
scale fashion, which is further upsampled and fused by the
3D deconvolution layer. Moreover, we devise a pipeline to

generate dense occupancy ground truth. We stitch multi-
frame LiDAR points of dynamic objects and static scenes
separately and utilize Poisson Reconstruction to fill the
holes. The comparison on nuScenes and SemanticKITTI
datasets demonstrates the superiority of our method.
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