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Abstract

Spiking Neural Networks (SNNs) offer a highly promis-
ing computing paradigm due to their biological plausibil-
ity, exceptional spatiotemporal information processing ca-
pability and low power consumption. As a temporal en-
coding scheme for SNNs, Time-To-First-Spike (TTFS) en-
codes information using the timing of a single spike, which
allows spiking neurons to transmit information through
sparse spike trains and results in lower power consump-
tion and higher computational efficiency compared to tradi-
tional rate-based encoding counterparts. However, despite
the advantages of the TTFS encoding scheme, the effective
and efficient training of TTFS-based deep SNNs remains a
significant and open research problem. In this work, we
first examine the factors underlying the limitations of apply-
ing existing TTFS-based learning algorithms to deep SNNs.
Specifically, we investigate issues related to over-sparsity
of spikes and the complexity of finding the ‘causal set’. We
then propose a simple yet efficient dynamic firing threshold
(DFT) mechanism for spiking neurons to address these is-
sues. Building upon the proposed DFT mechanism, we fur-
ther introduce a novel direct training algorithm for TTFS-
based deep SNNs, called DTA-TTFS. This method utilizes
event-driven processing and spike timing to enable efficient
learning of deep SNNs. The proposed training method was
validated on the image classification task and experimen-
tal results clearly demonstrate that our proposed method
achieves state-of-the-art accuracy in comparison to existing
TTFS-based learning algorithms, while maintaining high
levels of sparsity and energy efficiency on neuromorphic in-
ference accelerator.

*Corresponding author

1. Introduction

Deep learning approaches have demonstrated remark-
able performance in various intelligent applications [18,
27, 24, 23] and innovative simulations [62, 61]. How-
ever, these achievements come at a significant cost of en-
ergy consumption, severely limiting the deployment of ar-
tificial neural networks (ANNs) on resource-limited plat-
forms [43, 9, 3, 50]. Brain-inspired spiking neural networks
(SNNs) have emerged as a promising and energy-efficient
alternative to ANNs [22, 31, 57]. SNNs have garnered at-
tention for their distinctive features of sparse-asynchronous
spikes and event-driven computing, which have played a
pivotal role in driving the development of neuromorphic
computing platforms such as ANP-I [54], TrueNorth [1],
Loihi [8], and Tianjic [39].

Despite the inherent energy efficiency of SNNs, their
extensive application to real-world practical scenarios has
been limited by the absence of efficient and scalable train-
ing algorithms [52, 35, 30, 14, 20]. Traditional training
techniques for ANNs, such as error backpropagation (BP)
and standard GPU-accelerated training packages, cannot be
leveraged directly by SNNs due to the complex temporal
dynamics and the non-differentiability of spiking neurons’
activity [33, 6, 56]. To address these challenges, various so-
lutions have been proposed, broadly categorized into three
distinct groups.

The first category of solutions proposed to address the
lack of scalable training algorithms for SNNs is ANN-to-
SNN conversion method [40, 41, 49, 45]. These methods
involve training an ANN first and then converting it to its
SNN counterpart. The resulting SNN may achieve com-
parable performance to pre-trained ANNs through manual
and careful setting of the SNN parameters such as the firing
threshold [28] and the chosen spiking neuron model [44].
However, such conversion often results in precision loss due
to approximation and requires longer time steps for lossless
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conversion [19]. Moreover, ANN-to-SNN conversion meth-
ods often encode the activation values of artificial neurons
using the firing rate of spiking neurons [11, 4, 5], which fails
to fully leverage the timing information of spikes. Further-
more, the runtime computation on neuromorphic hardware
can often be highly energy-intensive.

The second category of the proposed SNN training so-
lutions is RNN-like method, commonly known as surrogate
gradient learning [47, 48]. In these surrogate gradient-based
SNNs, information is conveyed through spikes during feed-
forward computation, while during backpropagation, gradi-
ent information is calculated by treating the neurons’ mem-
brane potential as a differentiable signal at the current time
step [42, 34]. To address the non-differentiability of spikes
in the direct training of SNNs, surrogate functions are em-
ployed to approximate the derivative of the spike generation
function during the backward process [53, 29]. However,
while these methods have successfully tackled the chal-
lenges associated with the non-differentiability of spiking
neurons, they necessitate updating synaptic weights at each
time step, regardless of whether there is a spike emission or
not [47, 15]. Consequently, this results in substantial energy
and memory demands as large intermediate activation val-
ues necessitate storage to facilitate gradient computation.

Unlike the above-mentioned methods, the third cate-
gory of learning algorithms in SNNs is spike-driven method
[2, 33, 58, 60, 38, 6], which operate in a strictly event-driven
manner during both forward and backward computations.
SpikeProp [2] and its various extensions [33, 6, 25] are typ-
ical examples of this category. However, these algorithms
remain limited to shallow network structures and relatively
simple classification tasks. To overcome this limitation,
Zhang et al. [58] and Zhou et al. [60] extended the spike-
driven algorithm to more complex network structures. De-
spite achieving competitive accuracy on large datasets [60],
the identification of the ‘causal set’1 in this approach re-
quires substantial computational resources. To improve the
training efficiency, Park et al. [38] proposed a surrogate
deep neural network (DNN) model that is subsequently con-
verted into a TTFS-based SNN. However, this conversion
method is prone to conversion errors, potentially impairing
the temporal learning capability of SNNs. Recently, sev-
eral multi-spike-based spike-driven algorithms have been
developed [59, 65]. While Zhang et al. [59] and Zhu et
al. [65] achieve competitive performance on CIFAR uti-
lizing the rate coding scheme, we focus on developing an
energy-efficient TTFS-based spike-driven algorithm.

In this paper, we introduce an effective and efficient
spike-driven learning algorithm that facilitates the training

1Assume a postsynaptic neuron fire a first spike at tout, only a subset
of input spikes had arrived before tout and contributed to the output spike.
This set of spikes, C = {i : ti < tout}, is called the causal set in this
work.

of high-performance TTFS-based deep SNNs. The main
contributions of this work are outlined as follows:

• We provide a comprehensive analysis of the main
shortcomings of existing methods in achieving high
performance in TTFS-based deep SNNs. Specifically,
we examine issues such as the over-sparsity of spikes
and the complexity of determining the ‘causal set’.

• We propose a simple yet efficient dynamic firing
threshold (DFT) mechanism for spiking neurons that
can effectively address the aforementioned issues.

• Building upon the proposed DFT, we further introduce
a novel direct training algorithm for TTFS-based deep
SNNs, which we refer to as DTA-TTFS. In this train-
ing method, the timing of a single spike is considered
the basic information carrier and the learning process
is performed strictly in an event-driven manner.

• The proposed method is validated through extensive
experiments on benchmark image classification tasks
and achieves state-of-the-art accuracy compared to ex-
isting TTFS-based learning algorithms. Furthermore,
we demonstrate the ultra-low power capability of the
SNN with DTA-TTFS on a recently developed neuro-
morphic accelerator.

2. Preliminaries and Problem Analysis
In this section, we first briefly review the TTFS coding

and the employed spiking neuron model. Subsequently, we
provide a comprehensive analysis of the primary shortcom-
ings in existing TTFS-based deep SNN methods.

2.1. Preliminaries

TTFS coding scheme: There are two primary coding
schemes utilized to represent information in SNNs: rate
coding and temporal coding. The rate coding method repre-
sents information based on the average firing rate of a spik-
ing neuron. However, this encoding scheme neglects the
temporal information carried by spikes, leading to higher
spike frequency and increased energy consumption. Con-
versely, temporal coding leverages the precise timing of
spikes to encode information, resulting in lower power con-
sumption and higher computational efficiency compared to
the rate-based coding method.

As a temporal coding method, TTFS encodes informa-
tion by the timing of the first spike. As depicted in Fig. 1,
the higher the activation value, the earlier the first spike is
emitted. The relationship between the input activation value
ai and the encoded spike time ti can be expressed as

ti =

(
1− ai

amax

)
× Tw, (1)
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Figure 1. (a) TTFS coding scheme. The larger intensity value cor-
responds to the earlier spike. (b) ReL-PSP spiking neuron model.
Neuron j accumulates the linear PSP and fires a spike when the
membrane potential crosses the firing threshold ϑ.

where amax is the maximum input activation value, Tw is
the length of the permissible spike time window. As the
TTFS coding scheme requires only a single spike to convey
information, it effectively diminishes the number of spikes
and significantly decreases the energy requirements. Con-
sequently, it achieves higher sparsity and energy efficiency,
making it a powerful coding scheme that maximizes the en-
ergy efficiency of SNNs.

Spiking neuron model: The Rectified Linear Postsy-
naptic Potential (ReL-PSP) spiking neuron [58] is chosen
for our method due to its simplicity and energy efficiency.
As shown in Fig. 1(b), the ReL-PSP neuron model utilizes
a rectified linear kernel function to shape the neuron’s PSP,
and its dynamics is defined as

V l
j (t) =

N∑
i=1

wl
ijK

(
t− tl−1

i

)
, (2)

where V l
j (t) is the membrane potential of neuron j in layer

l, and wl
ij is the synaptic weight between neuron j and its

presynaptic neuron i. N is the number of neurons in the
previous layer l − 1, tl−1

i is the spike time of input neuron
i, and K

(
t− tl−1

i

)
is the PSP function that is defined as

K
(
t− tl−1

i

)
=

{
t− tl−1

i , if t > tl−1
i ,

0, otherwise.
(3)

The neuron j emits a spike when V l
j (t) reaches the firing

threshold ϑ. Mathematically, the spike generation function
F is defined as

tlj = F{t|V l
j (t) ≥ ϑ, t ≥ 0}. (4)

The ReL-PSP neuron has proven its efficacy in tackling
the main challenges encountered during the training of deep
SNNs, such as the non-differentiability of the spike func-
tion, gradient explosion, and the dead neuron issue. De-
spite the successful performance on the MNIST dataset, its
performance is not ideal on deeper network structures and
more complex datasets, such as CIFAR-10 and CIFAR-100.

In the subsequent section, we will conduct a comprehensive
analysis to identify the underlying reasons for this limita-
tion.

2.2. Problem Analysis

Over-sparsity of spikes: Sparse neural networks offer
several advantages such as efficient variable-size represen-
tation, information decomposition, and energy efficiency.
However, over-sparsity may diminish the model’s effective
capacity and adversely affect its performance [17]. This is-
sue becomes more serious in TTFS-based deep SNNs, ow-
ing to their firing mechanism, asynchronous transmission,
and TTFS-based decision strategy.
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Figure 2. The over-sparsity problem caused by asynchronous
transmission and TTFS-based decision strategy. (a) The presynap-
tic (gray) neuron fires later than the postsynaptic (blue) neuron j,
making it ineffective in contributing to the firing of the postsynap-
tic neuron. As a result, this presynaptic neuron becomes invalid.
(b) After learning, the postsynaptic (blue) neuron fires at an earlier
time, leading to the appearance of additional invalid neurons.

According to the firing mechanism of spiking neurons,
a neuron emits one spike only when its membrane poten-
tial reaches the firing threshold. This leads to fewer acti-
vated spiking neurons compared to ANNs. In addition, the
asynchronous transmission of SNNs further diminishes the
number of valid activated neurons. As shown in Fig. 2(a),
when the presynaptic neuron i fires after the postsynaptic
neuron j, the spike of neuron i becomes invalid for neuron
j. Furthermore, TTFS-based SNNs make decisions based
on the earliest spike, and the synaptic weights are trained to
make the target neuron fire as early as possible. As shown in
Fig. 2(b), after learning, the firing time of the postsynaptic
neuron j may become earlier, thereby further exacerbating
the sparsity induced by asynchronous transmission.

In event-driven learning algorithms of SNNs, error back-
propagation depends on the timing of spikes. Therefore,
if a spiking neuron does not fire or does not contribute to
the postsynaptic neuron, it will not participate in learning.
The issue of over-sparsity not only limits the information
representation capability of SNNs but also leads to learn-
ing failure. Consequently, the achievement of a harmonious
balance between sparsity and performance in the training of
TTFS-based deep SNNs remains an open question.
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The complexity of finding the ‘causal set’: Due to the
sparsity and asynchronicity of SNNs, not all presynaptic
neurons {i|i = 1, . . . , N} contribute to their postsynap-
tic neuron j, where the contributory neurons are defined
as the ‘causal set’ of the postsynaptic neuron j, denoted
as Cj = {i|ti < tj} [33, 60]. To leverage standard GPU-
accelerated ANN training packages, it is crucial to iden-
tify the ‘causal set’ of each neuron during the feed-forward
computation process [33, 60]. However, this process is
highly complex and time-consuming. For example, in or-
der to find the ‘causal set’, Zhou et al. [60] proposed an
approach where they first sort all of this neuron input spikes
{ti|i = 1, · · ·N} in ascending order and subsequently con-
sider each individual spike ti for inclusion in the causal set.
This approach, however, is computationally expensive and
results in inefficient training even with the implementation
of a space-for-time strategy [60].

Despite the success of algorithms with this approach in
utilizing standard GPU-accelerated ANN training packages,
the training process involves a significant amount of sort-
ing and iteration. This results in higher demand for train-
ing resources and increased latency, especially as the net-
work depth increases. Consequently, the process of find-
ing the ‘causal set’ may become a bottleneck for training
deep SNNs. In the next section, we propose a dynamic fir-
ing threshold mechanism for spiking neurons to avoid this
resource-intensive process.

3. Method
In this section, we first introduce the dynamic firing

threshold (DFT) for spiking neurons and discuss how it ef-
fectively addresses the above issues. Then, based on the
DFT, we further propose a direct training algorithm for
TTFS-based SNN, referred to as DTA-TTFS.

3.1. DFT-based Spiking Neuron Model

As demonstrated in Fig. 3(a), the proposed DFT is a
layer-dependent and time-varying function, which is de-
fined as

ϑl (t) =

{
Tw(l + 1)− t, if Twl ≤ t ≤ Tw(l + 1),
+∞, otherwise,

(5)
where ϑl (t) represents the firing threshold of the neurons in
the l-th layer and Tw denotes the length of the permissible
spike time window. In this work, Tw is set to 1 (unless
otherwise stated) and the input layer is regarded as the 0-
th layer. Eq. 5 reveals that the firing threshold is infinite
outside the interval t ∈ [Twl, Tw(l+1)], and neurons in the
l-th layer can only generate a spike within this time interval.
Therefore, as shown in Fig. 4, the generated spikes are non-
overlapping across different layers, which we refer to as the
layer-dependent firing feature.

Based on the membrane potential dynamics in Eq. 2 and
the proposed DFT in Eq. 5, the output of neuron j can be
divided into three categories:

• Spikes at tlj = Twl: Since the firing threshold is infin-
ity when t < Twl, the neuron cannot fire a spike before
t = Twl even though the membrane potential is strong
(i.e., V l

j (t) ≥ ϑl(Twl) and t < Twl). As shown in
Fig. 3(b), the earliest spike time for DFT-based spik-
ing neurons in the l-th layer is tlj = Twl.

• Spikes within (Twl, Tw(l+1)]: The neuron generates a
spike when its membrane potential exceeds the thresh-
old, i.e.V l

j (t) ≥ ϑl(t). The firing threshold ϑl in this
time interval is a linear function, which decays linearly
from 1 to 0. As depicted in Fig. 3(c), by combining the
membrane potential in Eq. 2 and the firing threshold in
Eq. 5, the precise spiking time tlj can be calculated as

tlj =

Tw(l + 1) +
∑

i∈Cj

wl
ijt

l−1
i

1 +
∑

i∈Cj

wl
ij

. (6)

• Nonspike: The neuron will not fire a spike if its mem-
brane potential is below the dynamic firing threshold
(i.e., V l

j (t) < ϑl(t)). Fig. 3(d) shows three typical sce-
narios of nonspike.

Overall, the spike time of a DFT-based neuron j in the l-th
layer can be represented as

tlj =


Twl, if V l

j (Twl) ≥ ϑl(Twl),
Tw(l+1)+

∑
i∈Cj

wl
ijt

l−1
i

1+
∑

i∈Cj

wl
ij

, if Twl < tlj ≤ Tw(l + 1),

nonspike, otherwise.
(7)

In the following, we will analyze how the proposed DFT
effectively addresses issues of over-sparsity of spikes and
the complexity of finding the ‘causal set’.

1) Over-sparsity of spikes: As described in Eq. 5, the
DFT is a piecewise function, whose linearly decreased part
and layer-dependent firing feature effectively address the
over-sparsity of spikes.

The linearly decreased part of the DFT is purposefully
designed to tackle the over-sparsity arising from the spik-
ing neuron firing mechanism. By gradually decreasing the
firing threshold from 1 to 0, the neuron j remains active as
long as its membrane potential is non-negative at Tw(l+1).
As a result, the proposed DFT effectively reduces the num-
ber of inactive neurons. Moreover, the linear decay design
enhances the discriminative nature of information from ac-
tive neurons.
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Figure 3. Proposed dynamic firing threshold and output of the DFT-based spiking neurons. (a) Dynamic firing threshold function(DFT).
(b) Spikes at tlj = Twl. (c) Spikes within (Twl, Tw(l + 1)] . (d) Nonspike. This case is further divided into three sub-cases, which are
shown by the curves of different colors.
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Figure 4. The propagation pipeline of the SNN with DFT.

The layer-dependent firing feature enables SNN with
non-overlapping spike time windows. This effectively re-
solves the over-sparsity arising from asynchronous trans-
mission and TTFS-based decision strategy. Fig. 4 illustrates
that the spike time window of postsynaptic neurons occurs
later than that of presynaptic neurons. Consequently, when
the presynaptic neuron fires a spike, its postsynaptic neuron
absolutely receives it. Furthermore, the non-overlapping
spike window provides output layer neurons with a prede-
termined earliest spike time, preventing them from being
forced forward indefinitely during the training process.

2) The complexity of finding the ‘causal set’: The layer-
dependent firing feature of DFT circumvents the need for
SNNs to identify the ‘causal set’, resulting in efficient train-
ing. This efficiency is further improved by the output ana-
lytic equation of the DFT-based neuron.

As depicted in Fig. 4, the layer-dependent firing feature
ensures that in the l-th layer of the SNN utilizing DFT, the
spike time is controlled within the interval [Twl, Tw(l+1)].
Therefore, we can easily learn that neurons in the (l-1)-th
layer must fire earlier than neurons in the l-th layer. In other
words, all active presynaptic neurons must remain in the
‘causal set’ of their postsynaptic neurons. Therefore, the
DFT mechanism prevents the need for resource-intensive
sorting and iteration process, enhancing training efficiency
and facilitating its extension to deeper network architecture.

In addition, the employed ReL-PSP spiking neuron and
the DFT provide an analytical relation between input spikes
and output spikes, as described in Eq.7. Therefore, the dy-
namics of SNNs within the training loop need not be sim-
ulated using long time steps. This allows the utilization

of standard GPU-accelerated training packages of ANNs,
which further leads to an efficient training process.

3.2. DTA-TTFS Learning Algorithm

Consider a task with n categories, where each output
neuron corresponds to a specific category. In this task,
the target category is represented by the output neuron that
fires the earliest. To assess the effectiveness of the model,
we adopt the widely utilized cross-entropy loss function L,
which aims to maximize the output value of the target neu-
ron. In order to ensure the desired neuron fires earliest and
others fire as late as possible, we utilize the negative spike
times of the output layer [58, 6], i.e., −t, for evaluation.
Therefore, the loss function is given by

L (t, d) = − log
exp(−t[d])∑n
i=1 exp(−t[i])

, (8)

where t is the vector of spike times in the output layer, and
d is the desired category index.

In order to minimize the L(t, d), the DTA-TTFS algo-
rithm adjusts spike times by modifying the synaptic weights
during gradient backpropagation. For driving the gradient
backpropagation, it is necessary to calculate derivatives of
the output spike time tlj with respect to the synaptic weight
wl

ij and the input spike time tl−1
i . According to Eq. 7, we

can easily get these two derivatives,

∂tlj
∂wl

ij

=


tl−1
i −tlj

1+
∑

i∈Cj

wl
ij

, if Twl < tlj < Tw(l + 1),

0, otherwise,
(9)

∂tlj

∂tl−1
i

=


wl

ij

1+
∑

i∈Cj

wl
ij

, if Twl < tlj < Tw(l + 1),

0, otherwise.
(10)

Following Eq. 9 and Eq. 10, gradient backpropagation can
be directly applied.
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Datasets Models
Network

Architecture
Neural
Coding Method Accuracy Sparsity

MNIST
Mostafa 2017 [33] MLP1 TTFS DT 97.55% 0.51

Zhang et al. 2020 [58] CNN1 TTFS DT 99.4% 0.6614
Zhou et al. 2021 [60] CNN2 TTFS DT 99.33% 0.94

DTA-TTFS CNN1 TTFS DT 99.4% 0.3913

CIFAR-10

Wu et al. 2022 [46] VGG11 Rate conv 91.24% no
Park et al. 2020 [37] VGG16 TTFS conv 91.43% 0.2459
Zhou et al. 2021 [60] VGG16 TTFS DT 92.68% 0.62
Park et al. 2021 [38] VGG16 TTFS DT 91.90% 0.1746

DTA-TTFS VGG11 TTFS DT 91.17% 0.4387
DTA-TTFS VGG16 TTFS DT 93.05% 0.2561

CIFAR-100

Park et al. 2020 [37] VGG16 TTFS conv 68.79% 0.2994
Park et al. 2021 [38] VGG16 TTFS DT 65.98% 0.2780

DTA-TTFS VGG16 TTFS DT 69.66% 0.2845

Table 1. Comparison of accuracy and sparsity between the DTA-TTFS method and other related works. DT: direct training. conv: ANN-
to-SNN conversion. MLP1: 784-800-10. CNN1: 784-16C5-P2-32C5-P2-800-128-10. CNN2: 784-32C5-16C5-10.

4. Experiments
In this section, we first evaluate the performance of the

DTA-TTFS algorithm. Then, we carry out validation stud-
ies to illustrate the impact of the DFT. Finally, we employ
theoretical analysis along with the neuromorphic hardware
simulator to evaluate the energy consumption during the in-
ference process.

4.1. Details

We conduct experiments on three image classification
benchmark datasets: MNIST2, CIFAR-10, and CIFAR-
1003. All experiments are conducted using the PyTorch li-
brary, which allows for efficient training on multi-GPU ma-
chines with accelerated computations and optimized mem-
ory usage. For the MNIST dataset, we employ a network
structure with 784-16C5-P2-32C5-P2-800-128-10 and train
it for 150 epochs. As for CIFAR datasets, we adopt augmen-
tation techniques [7, 10] and train the VGG11 and VGG16
network structures without Batch Normalization (BN) for
300 epochs. Moreover, in order to maintain the initial pa-
rameter domain at a good level, the SNN is initialized with
the parameters from the pre-trained identical ANN when
training CIFAR datasets. During the training process, we
adopt the Adam optimizer and implement milestones learn-
ing rate decay, with an initial learning rate 1e−3 for MNIST
and 1e−4 for CIFAR datasets.

4.2. Comparison with Related Works

Tab. 1 presents a comparison of the accuracies and spar-
sity achieved by DTA-TTFS and other related works. Ex-
perimental results demonstrate that the DTA-TTFS algo-

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html

rithm exhibits excellent performance, with an accuracy of
99.4% on MNIST, 93.05% on CIFAR-10, and 69.66% on
CIFAR-100. Obviously, our method outperforms all previ-
ous direct learning algorithms of TTFS-based SNNs. More-
over, our method still maintains competitive sparsity when
achieving high performance. The sparsity is calculated by
S/N averaged on the entire testing set, where S represents
the total number of spikes and N denotes the total number
of neurons. Specifically, the DTA-TTFS achieves sparsity
of 0.3913 on MNIST, 0.2561 on CIFAR-10, and 0.2845 on
CIFAR-100. For the MNIST dataset, when employing the
identical network structure as described in [58], our method
achieves the same accuracy while significantly reducing the
sparsity from 0.6614 to 0.3913. For CIFAR datasets, our
method surpasses related works in terms of accuracy while
maintaining a competitive sparsity. In summary, the DTA-
TTFS algorithm achieves a harmonious balance between
accuracy and sparsity.

4.3. Validation Study

We conduct a series of validation experiments to confirm
the functionality of the proposed DFT. These experiments
aim to display two aspects. Firstly, the DFT provides SNNs
with the layer-dependent firing feature. Additionally, it ef-
fectively addresses the over-sparsity of spikes. Validation
experiments choose the well-trained VGG11 structure on
the CIFAR-10 dataset.

In order to show the layer-dependent firing feature of the
SNN with DFT, we record the spike activity in each layer
for the first sample of the testing set. For the purpose of
comparison, we also provide the spike activity of the SNN
without DFT. The results are visualized in Fig. 5, elucidat-
ing the evident regulation of spike activity in each layer
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Figure 5. Spike activity in each layer of SNN with and without
DFT. The vertical axis represents the neuron index scaled to [0,1].

within a permitted time window for the SNN incorporat-
ing DFT. In contrast, the spike activity in the SNN without
DFT exhibits a disorderly and chaotic pattern.

In order to verify the efficacy of the DFT in addressing
the over-sparsity of spikes, we count the number of inac-
tive neurons per layer averaged on the whole testing set.
This experiment is conducted on three models: the ANN,
the SNN with DFT, and the SNN without DFT [58]. As
shown in Fig. 6, the SNN without DFT displays significant
sparsity, however, with only 10% accuracy. Conversely, the
SNN with DFT exhibits a comparable amount of inactive
neurons to that of ANN. As a result, the DFT achieves a
harmonious trade-off between sparse representation and in-
formation representation ability.

4.4. Energy Estimation

4.4.1 Theoretical Analysis

Energy consumption is a critical metric to evaluate the effi-
ciency of SNNs. To prove the energy efficiency of the pro-
posed DTA-TTFS, we employ the theoretical analysis pre-
sented in [37]. This method analyzes energy consumption
based on multiple factors, including latency, spike counts,
as well as data related to neuromorphic architecture. More
specifically, the estimated energy is defined as

ETotal = EStatic×Latency+EDynamic×Spikes, (11)
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Figure 6. Percentage of inactive neurons per layer of the ANN, the
SNN with DFT, and the SNN without DFT.

where Latency is the required time steps, Spikes is the to-
tal number of spikes, EStatic and EDynamic are static and
dynamic energy coefficients depending on the neuromor-
phic architecture. We choose two neuromorphic architec-
tures, TrueNorth [32] and SpiNNaker [16], to conduct anal-
ysis. The energy parameters (EStatic, EDynamic) are set to
(0.6, 0.4) for TrueNorth and (0.36, 0.64) for SpiNNaker. For
comparison, we analyze various coding schemes, such as
rate coding [19], phase coding [26], burst coding [36], and
TTFS coding [37, 38]. Theoretical analysis is performed on
CIFAR-10 with the well-trained VGG16 structure, and we
normalized estimated energy consumption based on the rate
coding. As indicated in Tab. 2, under the same conditions,
the DTA-TTFS outperforms other methods in terms of en-
ergy efficiency. It is worth noting that, despite the fewer
spikes achieved by [37, 38], their energy consumption re-
mains higher than ours due to their demand for long latency.

Neural
Coding

Time
Step

Spike
(106)

Acc.
(%)

Normalized Energy
TrueNorth SpiNNaker

Rate [19] 512 2.612 93.39 1 1
Phase [26] 1500 35.196 91.21 7.1476 9.6785
Burst [36] 1125 6.92 91.41 2.3781 2.4865
TTFS [37] 680 0.069 91.43 0.8074 0.4950
TTFS [38] 544 0.067 91.9 0.6478 0.3989

DTA-TTFS 160 0.073 93.05 0.1987 0.1304

Table 2. Theoretical analysis of energy consumption.

4.4.2 Hardware Simulation

In order to further verify the energy efficiency and hardware
friendliness of our method, we map the SNN trained by the
DTA-TTFS algorithm on a recently developed neuromor-
phic hardware simulator, called configurable asynchronous
neuromorphic hardware simulator (CanMore) [55]. Can-
More estimates hardware performance through system-
level modeling and simulation. Fig. 7 illustrates the main
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framework of the CanMore, including neuromorphic cores
comprised of neurons and SRAM, and network-on-chip
(NoC) routers consisting of buffers, route computation unit,
switch allocator and crossbar switch. With the system-level
asynchronous circuit modeling, CanMore is able to simulate
various neuromorphic hardware architectures by changing
the parameters and configuration files, estimate latency and
energy consumption, and analyze spike messages routing
information such as routing hops, congestion latency, rout-
ing directions, and so on.

In [13], a deep ANN is mapped to TrueNorth neuromor-
phic hardware. To the best of our knowledge, this is the
only work that verifies the energy efficiency of SNNs on the
CIFAR-10 dataset, while the majority of existing works fo-
cus on smaller datasets, such as MNIST [12, 58]. Here, we
train an SNN on the CIFAR-10 dataset with the proposed
DTA-TTFS method. After learning, the learned weights are
transferred to CanMore for accelerating the inference op-
erations. Specifically, our network structure is mapped by
partitioning each layer into equally sized groups along the
feature dimension, with each group being mapped to a neu-
romorphic core with a maximum of 1024 neurons. In ad-
dition, we compress the network by quantizing the weights
to 4 bits. The mesh topology and XY routing algorithm are
adopted in the simulated architecture. The energy consump-
tion per frame during the inference process is calculated by

ETotal = ESOP×Spikes+EHop×Hops+EStatic, (12)

where ESOP is the dynamic energy consumption per synap-
tic operation (SOP), which is calculated with the real tech-
nology parameters of the CMOS 22nm process in the sim-
ulation. In our work, ESOP is 20pJ. EHop is the dynamic
energy consumption per hop between the mesh routers on
the NoC, which is 100pJ according to [21]. EStatic

is static energy consumption, which is 3.52 µJ/frame in
CMOS 22nm process. The average Spikes and Hops per
frame during the inference process are 71M and 45.4M re-
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Figure 8. The accuracy and energy consumption of Esser et al. [13]
and DTA-TTFS on CIFAR-10 dataset.

spectively, given by CanMore. Therefore, we obtain the
energy consumption ETotal during the inference process
50.36 µJ/frame.

The accuracy and energy consumption are reported in
Fig. 8. our work achieves a classification accuracy of
90.67% on CIFAR-10, surpassing the accuracy reported
in [13] by 7.26%. In addition, the energy consumption of
our work is 50.36 µJ/frame, which is 69.2% reduced com-
pared with the energy consumption 163.65µJ/frame in [13].
These results confirm that the proposed DTA-TTFS algo-
rithm is effective and energy-efficiency.

5. Conclusion
In this study, we analyze the shortcomings of existing

methods in achieving high-performance TTFS-based deep
SNNs. In order to overcome these issues, we propose an ef-
ficient DFT mechanism for spiking neurons and introduce
the DTA-TTFS algorithm for TTFS-based SNNs. We eval-
uate our method on the image classification task, and the re-
sults demonstrate that our method achieves a fine trade-off
between accuracy and sparsity. Additionally, we estimate
the energy consumption of our method through theoretical
analysis and the neuromorphic hardware accelerator Can-
More. Both theoretical analysis and hardware verification
confirm the energy efficiency of the DTA-TTFS algorithm.
Overall, our method not only attains high performance but
also is quite hardware friendly. In our future work, we in-
tend to leverage DTA-TTFS to train more advanced network
models, including SNN-based Attention [64, 51] and Trans-
former architectures [63].
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