
Divide and Conquer: a Two-Step Method for High Quality Face De-identification
with Model Explainability

Yunqian Wen1, Bo Liu2, Jingyi Cao1, Rong Xie1, Li Song1, 3,�

1Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
2 School of Computer Science University of Technology Sydney

3 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
1{wenyunqian, cjycaojingyi, xierong, song li}@sjtu.edu.cn 2{bo.liu}@uts.edu.au

Abstract

Face de-identification involves concealing the true iden-
tity of a face while retaining other facial characteristics.
Current target-generic methods typically disentangle iden-
tity features in the latent space, using adversarial training
to balance privacy and utility. However, this pattern of-
ten leads to a trade-off between privacy and utility, and the
latent space remains difficult to explain. To address these
issues, we propose IDeudemon, which employs a “divide
and conquer” strategy to protect identity and preserve util-
ity step by step while maintaining good explainability. In
Step I, we obfuscate the 3D disentangled ID code calculated
by a parametric NeRF model to protect identity. In Step II,
we incorporate visual similarity assistance and train a GAN
with adjusted losses to preserve image utility. Thanks to
the powerful 3D prior and delicate generative designs, our
approach could protect the identity naturally, produce high
quality details and is robust to different poses and expres-
sions. Extensive experiments demonstrate that the proposed
IDeudemon outperforms previous state-of-the-art methods.

1. Introduction
Concerns about individual private information disclo-

sure are growing with the development of computer vision
techniques and image understanding applications. Face de-
identification is a process which aims to remove all iden-
tification information of the person from an image, while
maintaining as much information on the action and its con-
text [1]. Ideally, while the identity information is protected,
other identity-agnostic features (e.g., pose, expression and
background) will not be affected. The de-identified images
can still be used for identity-agnostic tasks, such as face
detection and expression recognition. Accordingly, great
efforts are paid to achieve an effective privacy utility trade-
off [2–9]. Face de-identification can allow individuals to
share personal portraits with confidence, while eliminating
some ethical and legal restraints on facial data releasing.

Early face de-identification methods carry out various
obfuscation operations on detected private area, which se-
riously impair the image’s ornamental value and are not re-
liable when facing advanced face recognition tools [10]. K-
same family methods [11–13] are once hot, but they are re-
strained by their strict using conditions. At present, there
are two main types of methods. One kind uses adversarial
noise to generate de-identified faces which can be visually
indistinguishable from the original one [14–16]. However,
they are highly dependent on the accessibility to target sys-
tems, and lack generalization ability. The other kind ex-
ploits generative adversarial networks (GANs) to disentan-
gle, manipulate and finally protect identity features in the
latent spaces [2–9]. These methods strive to strike a balance
between privacy and utility through adversarial training in a
network. The results depend heavily on the degree of latent
space disentanglement, which is neither clear nor satisfac-
tory. Besides, most existing methods cannot preserve vari-
ous poses and expressions, which also need to be improved.

Unlike previous works, we aim to break away from this
traditional privacy utility trade-off in face de-identification
studies, and instead provide a reliable and explainable
method of protecting individual identities. Our inspiration
for this approach stems from the observation that wearing a
human skin mask can effectively change one’s identity. This
realization highlights that a convincing de-identification re-
quires substantial changes to the overall geometry of the
facial features such as eyes, nose, ears, mouth, and fa-
cial bones. Such transformations are practically impossible
to achieve with mere makeup or even surgical procedures
(since that surpass the physical limits of the human body).
In contrast, hairstyle, accessories, and skin color are exam-
ples of identity-agnostic features that can be easily altered
by a stylist. However, they significantly impact the human
perception of visual similarity between two faces. Thus, we
contend that protecting privacy and retaining utility can be
two distinct objectives that necessitate different strategies.
By separating these objectives, we can focus on each objec-
tive independently to achieve better results.
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Figure 1. IDeudemon for face de-identification at different resolutions. (a) 256 × 256, (b) 512 × 512, (c) 1024 × 1024. In each pair, left
is the original image and right is the corresponding de-identified result. The results show that face identities are changed in a perceptually
natural manner, while all other characteristics (hairstyles, accessories, backgrounds, poses, expressions, etc.) remain the same.

Our proposed solution, IDeudemon, adopts the “divide
and conquer” strategy to achieve privacy protection and util-
ity preservation in two distinct steps. In the first step, we
use a 3D parametric modeling approach to estimate the fa-
cial geometry and obfuscate the face’s 3D identity repre-
sentation to conceal the real identity. Specifically, we begin
by leveraging a monocular face reconstruction network to
approximate the coarse 3D parameters of the given face.
Using this initialization, we employ a neural radiance field
(NeRF) model to calculate the face’s accurate 3D parame-
ters (ID code, appearance code and camera code). Subse-
quently, we apply a protective perturbation to the real ID
code to get the protected ID code. Finally, the NeRF model
renders an identity-protected fitted face, which has a signif-
icant change in the facial features’ geometric structure.

In the second step, we focus on producing high qual-
ity images based on the fitted face, which is neither natural
nor realistic. We first use face parsing maps to preserve the
identity-agnostic features and maintain the visual similarity
with the original image as much as possible. Then, we train
a GAN to restore the de-identified face with realistic details
by referring to generative facial priors. Finally, we can ac-
quire high quality visual pleasing de-identified results.

Our main contributions are described as follows:

• We propose IDeudemon, a novel two-step NeRF-based
method for face de-identification. Instead of achieving
privacy utility trade-off in one network adversarially,
for the first time, we divide privacy protection and util-
ity preservation into two separate steps. IDeudemon
can protect identity without weighing the image utility
at the same time, and has good explainability [17].

• We confuse the real identity by a 3D parametric
NeRF model, which modifies the facial geometry and
changes the identity. Hence, our method has excel-
lent privacy performance and this process is explain-
able. The definition of the identity refers to the mature
3D prior from 3DMMs, and is refined by the NeRF

model. This verified disentangled identity code makes
IDeudemon well preserve non-identity features, such
as expression, pose and illumination.

• We propose a second step to intently restore high qual-
ity faces based on the fitted results of NeRF. We devise
visual similarity assistance to retain identity-agnostic
features and train a GAN to generate realistic facial de-
tails. These designs lead to good utility performance.

• Experimental results on two diverse face datasets (eth-
nicity, age, etc.) have shown the effectiveness of our
proposed IDeudemon. In particular, our method bril-
liantly maintain the original poses and expressions,
and can achieve face de-identification on megapixels.

2. Related Work
2.1. Face De-identification

Initial approaches are mainly obfuscation-based, such as
blur and pixelization. Although simple and fast, they have
been proved to be vulnerable [10]. Methods [11–13] based
on K-same algorithm were then proposed to improve the
protection ability and image utility. However, these meth-
ods have many harsh assumptions on the application sce-
nario. Furthermore, their anonymous effects are not natural.

With the rapid development of deep learning, the neural
network architectures have evolved and greatly flourished
the face de-identification research. Nowadays, adversar-
ial noise-based methods and GAN-based methods have be-
come the dominant paradigm. The former seeks to generate
a small but intentional worst-case disturbance to an origi-
nal image, which misleads specific face recognition models
without causing a noticeable difference perceptible to hu-
man eyes [14–16]. The latter achieves target-generic de-
identification, i.e., they are designed to work against any
recognizer. These methods typically first define the repre-
sentations of identity and other facial attributes in the la-
tent space. Then they design loss functions that aim at
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disentangling identity and maintaining utility respectively.
De-identification will be implemented in a neural network
by striking a balance adversarially [2–9]. Although these
methods have achieved promising progress, the explana-
tion of identity and other facial representations in the latent
space is still ambiguous. Besides, they only work well on
frontal facial images with neutral expression.

In contrast, our de-identification method possesses sev-
eral merits: (1) The identity protection process is explain-
able; (2) It eliminates the need for privacy utility trade-off;
(3) It can adapt to different poses and expressions; (4) The
results have photo-realistic details.

2.2. 3D Monocular Face Reconstruction

3D monocular face reconstruction refers to reconstruct-
ing the 3D model of a face from a 2D image. Methods
[18–20] based on 3D Morphable Models (3DMMs) [21]has
dominated this field. Besides, there exist some methods
advocating direct model-free reconstruction [22] or based
on other innovative models [23]. However, all these meth-
ods suffer from the problem that the reconstructed faces are
not realistic. Recently, NeRF shows encouraging results in
capturing implicitly-encoded complex scene structures and
fitting 3D-consistent images with fine details [24–26]. As
faces contain regular 3D structure, NeRF-based 3D face
modeling researches [27–30] are now in full swing.

2.3. Blind Face Restoration

Blind face restoration (BFR) aims at recovering high
quality faces from the low quality counterparts suffering
from unknown degradation [31]. Current BFR methods al-
ways require facial priors, which can be coarsely catego-
rized into three types according to the sources: geometric
priors [32, 33], reference priors [34–36] and generative pri-
ors [31, 37, 38]. Among them, the third kind is not limited
by the quality of corrupted faces, the accessibility of high-
resolution references having the same identity, or the ca-
pacity of the references. So it is the most suitable for the
restoration of fitted faces rendered by current NeRF.

3. Methodology
3.1. Overview of IDeudemon

Given an input face image X without any protection,
the purpose of face de-identification is to generate a photo-
realistic image X ′ which conceals the real identity. The de-
identified face X ′ is visually similar to the original image
X, but should be judged as a different person by recognition
tools when comparing with X .

Fig. 2 illustrates the overall pipeline of the proposed
IDeudemon, which protects privacy and guarantees utility
in distinct steps sequentially. In the following, we discuss
the two steps in detail.

3.2. Step I: Parametric Identity Protection

Coarse 3D Parameters Evaluation. 3DMMs are genera-
tive parametric models for the 3D representation of human
faces. They are built from a set of 3D facial scans, cou-
pled to each other with anatomical correspondences, and
can represent any unseen faces as a linear combination of
the training set [39]. Fitting 3DMMs, also known as 3D
face reconstruction, facilitates the estimation of identity,
pose, albedo and illumination related parameters from the
face images. In order to provide a good basis for real-time
NeRF-based fitting, we employ a 3DMM model [40], de-
noted as Mfr, to initialize the 3D parameters [41] of the
input face image X , which is denoted as:

cid, cexp, calb, cillu = Mfr(X). (1)

c∗ represent the coarse 3DMM parameters for four disen-
tangled factors: identity cid, expression cexp, and albedo
calb of the face X , and the illumination cillu of the scene.
These parameters are initialized by solving an inverse ren-
dering optimization [42] based on the 3DMM model [40].
Although the initial identity parameter only describes the
coarse geometry of the face area (without hair, teeth, etc.),
it will be adaptively adjusted and become accurate through
the NeRF model described below.
NeRF-based Identity Protection. With initialized 3DMM
parameters c∗, we employ a pretrained parametric NeRF
model [30], denoted as Mnerf , to obtain the accurate 3D
parameters and the fitted face Xf of original image X:

Xf , zid, zapp, zcam = Mnerf (X, cid, cexp, calb, cillu, C).
(2)

Xf is the fitted image. C is the camera parameter used for
rendering (detailed calculation is shown in [30]). z∗ rep-
resent the computed 3D codes for face image X , whose di-
mensionality is the same as that of the corresponding coarse
3D parameters. In particular, because our de-identification
task hopes to distinguish the identity feature from all other
facial features, we let zid represent the identity separately,
and name it as ID code. Then we let the appearance code
zapp contain not only the expression and albedo of the face
in x, but also the illumination of the whole scene. In addi-
tion, as the density field from NeRF can implicitly encode
the 3D geometry of the scene, we can also acquire a camera
code zcam, which reflects the pose of the face in X .

To protect the real identity information, we use a noise
generator to generate benign Gaussian noise n whose size
equals to the fitted ID code zid according to the actual re-
quirements. Then we directly add the protective noise on
zid to get a perturbed ID code z′id:

z′id = zid + n. (3)

In Sec 4.2, we perform a series of perturbation analysis ex-
periments, where we get the optimum scale range of pertur-
bation for identity protection.
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Figure 2. The architecture of IDeudemon. To protect identity, we first estimate the coarse 3D parameters of input image X as an initial-
ization. Then a NeRF model is employed to calculate X’s accurate 3D codes and fitted face Xf . After adding protective perturbation to
the real ID code, the NeRF generates the de-identified fitted face Xp. To preserve utility, we design visual similarity assistance to directly
retain the identity-agnostic areas and train a GAN referring to generative priors to produce the final high quality de-identified face X ′.

At the end of this step, the NeRF model takes the pro-
tected identity code z′id, the original appearance code zapp
and camera code zcam as input, and fits the final identity-
protected fitted face Xp. It is formulated as:

Xp, z
′
id, zapp, zcam = Mnerf (z

′
id, zapp, zcam). (4)

Since our parametric NeRF model refers to the 3DMM
model, the whole de-identification process has good ex-
plainability. Moreover, since the perturbation is directly
added on the disentangled ID code, the result with faithful
identity change still well retains identity-agnostic features
(i.e., expression, albedo, illumination and pose).

3.3. Step II: Utility Preservation

Despite the promising de-identified fitted result Xp of
parametric NeRF model, it has limitations in terms of real-
istic looks. In order to generate visual pleasing high quality
faces, we take several measures as follows.
Visual Similarity Assistance. As mentioned earlier,
hairstyles, accessories and background are weakly related to
the identity, but may occupy a pretty large space and greatly
affect human perception of visual similarity and the subse-
quent use. Therefore, we use face parsing maps [43, 44]
to generate a head mask (which segments the background
and the below-head body part) and a styling mask (which
segments the hair and accessories) for X and Xp. Here we
conbine the hair, accessories, background and below-head
body section in the original image X with the segmented
face except for the hair and accessories in the fitted image
Xp. Therefore, a hybrid face image Xl is produced, which
conceals the real identity and retains the identity-agnostic
areas. As seen in Fig. 2, Xl has realistic identity-agnostic
features, low-quality face regions, and some irregular white
gaps, which still needs to be improved.

High Quality Generation. The translation from hybrid
image Xl to desired high quality de-identified photo X ′

aims to accomplish a face restoration task, which trans-
forms degraded image to its photo-realistic counterpart with
distinct and discernible details. The domain gap is pretty
large, so this task is challenging. Thanks to the leaps and
bounds in BFR, here we employ a publicly available GAN
model [31] that leverages rich and diverse priors encap-
sulated in the pretrained StyleGAN2 [45] to achieve high
quality de-identified face generation. This GAN model is
mainly composed of two parts: a U-Net [46] which is re-
sponsible for removing degradation and extracting “clean”
features of Xl, and a pretrained StyleGAN2 that provides
facial priors. They are bridged by a latent code mapping and
several Channel-Split Spatial Feature Transform (CS-SFT)
layers in a coarse-to-fine manner. By training this GAN
model, we can obtain high quality de-identified image X ′.

IDeudemon enjoys the benefits of separating the imple-
mentation of protecting privacy and preserving utility, so
has the advantage of adjusting the degree of identity pro-
tection as practical need while maintaining remarkable util-
ity performance. Our approach no longer needs to struggle
with the annoying trade-off between privacy and utility.

3.4. Loss Function.

We train the GAN model with triplet of images X , Xl

and X ′. We inherit the validated loss functions from [31],
and adjust them as the requirements of our mission.
Reconstruction Loss. The widely-used L1 loss and per-
ceptual loss are summed as the reconstruction loss Lrec

[47, 48], which targets at making the output X ′ look like
the original face X:

Lrec = λl1 ∥X ′ −X∥1 + λper ∥ϕ(X ′)− ϕ(X)∥1 , (5)

where ϕ is the pretrained VGG-19 network [49] and we
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select the conv1, · · · , conv5 feature maps before activation.
Adversarial Loss. The adversarial loss Ladv is responsible
for restoring realistic textures, enforcing generated faces to
be indistinguishable from real images. It is formulated as:

Ladv = −λadvEX′ [softplus(D(X ′))], (6)

where D denotes the discriminator and λadv represents the
adversarial loss weight.
Facial Component Loss. Given that people easily detect
mistakes in the appearance of a human face (uncanny valley
effect), we also use the facial component loss with local
discriminators for left eye, right eyes and mouth, which is
defined as follows. The first term is the discriminative loss
[50] and the second term is the feature style loss [51]:

Lcomp =
∑
ROI

λlocalEX′
ROI

[log(1−DROI(X
′
ROI))]+

λfs ∥Gram(ψ(X ′
ROI))−Gram(ψ(XROI))∥1 ,

(7)

where ROI is region of interest [52] from the component
collection {left eye, right eye,mouth}. DROI is the lo-
cal discriminator for each region. The feature style loss at-
tempts to match the Gram matrix statistics [53] of real and
restored patches from multiple layers of the learned local
discriminators, which has been demonstrated to be conduc-
tive to generating realistic facial details and reducing un-
pleasant artifacts. Besides, ψ denotes the multi-resolution
features from the learned discriminators. λlocal and λfs
represent the loss weights of local discriminative loss and
feature style loss, respectively.
Identity Preserving Loss. During the process of high qual-
ity generation, the “fake” identity generated in the previous
step, i.e. the identity of Xl, must remain as constant as pos-
sible. We employ a pretrained state-of-the-art (SOTA) face
recognition model [55] to extract identity features. [55] is
chosen because it can provide highly discriminative iden-
tity features and has a clear geometric interpretation due to
the exact correspondence to the geodesic distance on the hy-
persphere. We use the identity preserving loss Lid to ensure
that the identity of X ′ is the same as Xl:

Lid = λid

(
1− rid(X

′) · rid(Xl)

∥rid(X ′)∥2 · ∥rid(Xl)∥2

)
, (8)

where rid represents the identity feature extract by [55]. λid
denotes the weight of identity preserving loss. Here we use
cosine similarity rather than the original L1 distance in [31]
because we think it better fits the angular margin based iden-
tity extractor [55] (and is proved in Sec 4.4).

The overall model objective is a combination of the
above losses:

Ltotal = Lrec + Ladv + Lcomp + Lid. (9)

The hyper-parameters are set as follows: λl1 = 0.1, λper =
2, λadv = 0.1, λfs = 200 and λid = 5.

4. Experiments
4.1. Experimental Setup

Datasets. We choose the FFHQ dataset [56], which con-
tains 70K high-resolution face images with diverse demo-
graphic information like age, gender, and race, to train our
GAN model in Step II. We randomly select 60K images for
training and 10K for testing. All images are aligned and
cropped to size 512× 512 covering the whole face, as well
as some background regions. Moreover, in order to com-
pare with other methods fairly, we also test IDeudemon on
the CelebA–HQ dataset [57] and show our generalization
ability (see Sec 4.3 for deatils).
Evaluation Metrics. We evaluate the proposed IDeudemon
in terms of two metrics, as described below.
(1) Privacy metrics. Following previous work [6], we mea-
sure the L2 distance of embedding vectors from the de-
identified and original faces extracted by a pretrained face
recognition model, denoted as DIS, to evaluate the qual-
ity of identity protection. For a fair comparison, we em-
ploy two models that are excluded from our training, i.e.,
the Face Recognition library1 (denoted as FR), and the
FaceNet [54] which is pretrained on two public datasets
(CASIA-Webface [58] and VGGFace2 [59]) respectively.
(2) Utility metrics. We evaluate not only the quality of the
de-identified images, but also the retention ability to pose
and expression. Specifically, PSNR, SSIM and FID are
chosen to evaluate the generation quality. PSNR and SSIM
are widely-used objective methods to measure the differ-
ence between two images, while FID can measure the dis-
tance between the generated distribution and the real dis-
tribution. Besides, the L2 distances between pose and ex-
pression vectors from the de-identified and original faces
extracted by an open-sourced pose estimator [60] and a 3D
facial model [61] are calculated as pose (denoted as POSE)
and expression (denoted as EXP) similarity.
Implementation Details. We implement our framework as
shown in Fig. 2. Since the value range of the ID code is
between [-1, 1], after Step I, the part out of the range needs
to be truncated to ±1, depending on which value is closer.
The sizes of different facial codes are cid, zid ∈ R100,
cexp ∈ R79, calb ∈ R100, cillu ∈ R27 and zapp ∈ R206 re-
spectively. During the training of the GAN model in Step II,
the mini-batch size is set to 6. We augment the training data
with horizontal flip and color jittering. We train our model
with Adam optimizer [62] for a total of 300k iterations. The
learning rate was set to 2×10−3 and then decayed by a fac-
tor of 2 at the 220k-th, 270k-th iterations.

4.2. Protective Perturbation Analysis.

This section analyzes the performance of our IDeude-
mon with different levels of perturbation applied on

1https://github.com/ageitgey/facerecognition
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Figure 3. Qualitative results of the influence of the noise scale on the FFHQ. The first column shows the original face images. The rest
columns demonstrate de-identified faces whose identity distances are closest to the mean distance under every scale value.

Figure 4. The de-identified performance variation with respect to the noise scale on the FFHQ. The x-axis indicates the scale value and the
y-axis indicates different metric values. The identity judgement threshold is 0.6 for Face Recognition library [6] and 1.1 for FaceNet [54].

the original ID code in Step I. The additive Gaus-
sian noise n is sampled from a normal distribution.
The loc is set to 0, the value of its scale belongs to
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} and the size
equals to zid. Ten de-identified faces are generated for ev-
ery test face image under each scale value. Various statisti-
cal mean metric results are calculated at each scale value.

Fig. 3 shows the qualitative results. It can be ob-
served that with the increase of the noise scale, the geomet-
ric difference between the de-identified and original faces
expands, while the identity-agnostic attributes (hairstyle,
background, etc.) are still maintained. The quality of the
de-identified images is consistently good, and is almost
comparable to the quality of the original images. All syn-
thetic images have sharp details such as eyelashes, wrinkles,
teeth, and lips. Quantitative results are shown in Fig. 4.
One can see that the degree of identity protection can be ad-
justed, along with the change of utility. It is worth noting
that the utility is kept at a good level (e.g., the FID values are
always low). Particularly, we note that when the noise scale
is smaller than 0.2, the results are too similar to the orig-
inal faces and the ability to protect identity is not strong;
when the scale is larger than 0.3, the geometric structure of
the faces begins to become exaggerated (such as eccentric
eyes, noses, wrinkles and shadows).

Based on the extensive experiments mentioned above,
taking into account the visual effects and evaluation metrics
comprehensively, we recommend the users to set the scale
of the protective perturbation between 0.2 and 0.3 to obtain
de-identified faces efficiently with well-preserved appear-

ance. We no longer show the case of adding Gaussian noise
with larger scale values, because the generated faces will be
quite visually exaggerated.

4.3. Comparison with State-of-the-art Methods.
To validate the effectiveness of the proposed IDeude-

mon, we compare it with several SOTA de-identification
methods: DeepPrivacy [2], AnonymousNet [4], CIAGAN
[3], Gu et al. [5], Cao et al. [6] and AMT-GAN [16]. For
fairness, the test dataset is CelebA–HQ [57] and all images
are aligned and cropped to size 256× 256.

To test on the dataset, we first bilinearly interpolate the
input image to 512 × 512, and then process it according
to the pipeline in Fig. 2. Because (1) the NeRF-based 3D
fitting in Step I can still handle the image without photo-
realistic details; (2) the GAN model in Step II is trained
to process this kind of degradation, our de-identification re-
sults are still outstanding in terms of generation quality. The
scale of protective Gaussian noise is set to 0.25. The final
outputs are rescaled to 256× 256.

Qualitative results are shown in Fig. 5 (a). One can see
that the competing methods fail to produce photo-realistic
faces, especially when the original face has a large pose (the
last two rows) or expression (the second row). In contrast,
our IDeudemon obfuscates the human identities in a percep-
tually natural manner, meanwhile, the de-identified face still
shares similar appearance, as well as the same pose, expres-
sion,illumination and background with the original face. It
is worth noticing that our results are high-fidelity and can
retain clear lips, teeth and even eyelashes, which is superior
to other methods.
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Figure 5. (a) Qualitative comparison on the CelebA-HQ for face de-identification. Our IDeudemon conceals the real identity and produces
photo-realistic details at the same time. Zoom in for best view. (b) User study results of different de-identification methods.

Figure 6. Comparison with StyleFace [8] at megapixel level
(1024× 1024, from the paper sample image).

Quantitative results are presented in Table 1. Our method
obtains the best scores in privacy metrics, clearly confirm-
ing our initial motivation that manipulating the 3D param-
etic ID code can greatly benefit the identity protection. One
can see that our IDeudemon achieves comparable PSNR
and SSIM indexes to other competing methods, but achieves
significantly better results on FID index, which is a better
measure for the image perceptual quality. In addition, our
method outperforms the other methods in retaining pose and
expression. These verify the efficiency of our designs in en-
suring utility and make IDeudemon have the least impact on
the subsequent use of the de-identified images.
User Study. The de-identified results of comparison meth-
ods and our IDeudemon on 100 face images are presented
in a random order to 10 volunteers for subjective evaluation.
The volunteers are asked to rank the 7 de-identified outputs
of each input image according to their perceptual quality.
Finally, we collect 7k votes, and the statistics are presented
in Fig. 5 (b). As can be seen, our IDeudemon receives much
more rank-1 votes than other SOTA methods.

Besides, IDeudemon can conduct face de-identification
at megapixel level (inherits from [45]), and we compare it
with one of the first high-resolution methods published last

Table 1. Quantitative comparison with SOTA methods on the
CelebA-HQ. ↑ means higher is better, and ↓ means lower is better.
Red and blue indicates the best and the second best performance.

Method DIS↑ PSNR↑ SSIM↑ FID↓ POSE↓ EXP↓
FR CASIA VGGFace2

DeepPrivacy [2] 0.783 1.091 1.187 21.3 0.791 24.6 6.22 5.27
AnonymousNet [4] 0.497 0.875 0.936 20.4 0.803 53.7 3.69 4.02

CIAGAN [3] 0.671 0.919 1.085 18.6 0.522 28.1 8.93 5.19
Gu et al. [5] 0.812 1.207 1.224 23.1 0.751 39.7 3.95 3.96
Cao et al. [6] 0.794 1.206 1.231 24.1 0.902 22.6 3.04 2.81

AMT-GAN [16] 0.596 0.927 0.941 21.0 0.799 33.3 3.02 2.86
IDeudemon 0.819 1.228 1.233 25.9 0.898 8.7 2.96 2.79

year, StyleFace [8] (see Fig. 6). Our results are at least vi-
sually as good as the original ones of [8], despite having to
run on the cropped faces extracted from the paper PDF.

4.4. Model Analysis and Ablation Study

3D Parametric Fitting Method Selection. In the first step
of our “divide and conquer” strategy, what we need is a fast,
accurate tool that can fit the disentangled facial parameters
in 3D space. The NeRF model [30] created last year is the
first work to accomplish this task. [30] has verified the va-
lidity of each part and its SOTA fitted effect. Therefore, we
adopt it for face parametric fitting in Step I. The brilliant
de-identification effects of IDeudemon have proven the cor-
rectness of this choice.
Ablation Study of Step II. In order to validate the effec-
tiveness of our various designs in Step II, in this section we
conduct an ablation study by introducing some variants of
our IDeudemon and comparing their performance.

We first pick and train five SOTA face restoration models
to respectively replace the GAN model [31] we used as five
variants. They are denoted as BOPB [37], GPEN [38], Re-
storeFormer [34], CodeFormer [36] and VQFR [35]. Then
w/o vsa refers to the IDeudemon model without visual sim-
ilarity assistance. Additionally, we validate the necessity
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Figure 7. Ablation studies on GAN model, visual similarity assistance and identity preserving loss on the FFHQ. Zoom in for best view.

Table 2. Ablation study results of Step II on the FFHQ. ↑ means
higher is better, and ↓ means lower is better. Red and blue indi-
cates the best and the second best performance.

Method DIS↑ PSNR↑ SSIM↑ FID↓ POSE↓ EXP↓
FR CASIA VGGFace2

BOPB [37] 0.803 1.083 1.224 26.2 0.899 17.63 2.963 2.783
GPEN [38] 0.794 1.186 1.236 24.8 0.895 11.65 2.975 2.772

RestoreFormer [34] 0.802 1.191 1.239 24.6 0.889 11.14 2.956 2.768
CodeFormer [36] 0.801 1.189 1.236 23.8 0.905 10.83 2.950 2.778

VQFR [35] 0.796 1.185 1.238 24.2 0.898 11.95 3.006 2.839
w/o vsa 0.815 1.193 1.244 20.4 0.728 25.78 3.084 3.854

w/o Lrec 0.801 1.188 1.236 24.2 0.847 10.07 3.112 2.847
w/o Ladv 0.799 1.191 1.231 24.6 0.863 11.53 2.993 2.788

w/o Lcomp 0.803 1.189 1.237 25.4 0.891 10.12 2.947 2.831
w/o Lid 0.417 0.816 0.965 26.3 0.912 9.613 2.973 2.754
idloss 0.768 1.079 1.203 25.5 0.901 10.06 2.958 2.762

IDeudemon 0.804 1.192 1.239 25.8 0.903 9.99 2.942 2.761

of the loss functions, which are indicated as w/o Lrec, w/o
Ladv , w/o Lcomp and w/o Lid. We specifically calculate
the identity preserving loss by using L1 distance (like [31])
rather than cosine similarity, and denote it as idloss.

We perform on the FFHQ dataset to evaluate IDeudemon
and its seven variants. After the common Step I, except that
w/o vsa takes the Xp as input, the other six variants have
Xl as input. Fig. 7 and Table 2 demonstrate the qualitative
and quantitative comparisons. One can see that IDeudemon
achieves overall better quantitative measures than its vari-
ants of high quality generation model. Specifically, BOPB,
GPEN, RestoreFormer and VQFR are weak in inpainting
the irregular white gaps in Xl, BOPB alters the hue of the
image, GPEN and RestoreFormer often suffer from artifacts
at face contours, and VQFR sometimes produces blurry de-
tails (see the teeth). Although CodeFormer does a good job
in filling in the white gaps, it tends to smooth out the whole
faces and changes the clothing.

By discarding the visual similarity assistance, the re-
sults of w/o vsa cannot retain the identity-agnostic features.
For instance, the background, hairstyle, accessories and
the clothing. Moreover, artifacts and unnatural splotches
appear randomly, which affect the visual perception. Al-
though w/o vsa performs slightly better in identity protec-
tion, its utility performance has deteriorated significantly.
These imply that visual similarity assistance plays an import
role in synthesizing realistic details and preserving utility.

It can be observed that only the complete loss function
combination achieves the optimal results. It proves that
Lrec reduces artifacts and preserves visual similarity, Ladv

enhances realism, Lcomp improves clarity in the eyes and
mouth, and Lid maintains the protected identity. The pri-
vacy indicators of idloss demonstrate that our adjustment of
original identity preserving loss can better protect the hu-
man identity.

Overall, IDeudemon shows superior performance to its
variants, demonstrating the effectiveness of Step II’s archi-
tecture and the adjusted identity preserving loss.

5. Discussion
We want to emphasize that, while elements of IDeude-

mon are built on well-understood 3D reconstruction prin-
ciples (dating back to Vetter and Blanz) and blind face
restoration, our core contribution is new and essential. The
key to making IDeudemon jump out of the annoying privacy
utility trade-off is the “divide and conquer” idea that pro-
tects privacy and preserves utility in two sequential steps,
the identity is protected at 3D space through a parametric
NeRF model, both of which have not appeared previously
in the literature. In addition, we pick the most suitable GAN
model and perturbation range for our approach through suf-
ficient experiments. We have also designed visual similarity
assistance and adjusted the loss function so as to better fin-
ish the de-identification task.

6. Conclusion
In this paper, we propose a novel two-step face de-

identification method that conducts “divide and conquer”
strategy to solve the challenging privacy utility trade-off
problem. By introducing advanced 3D parametric face fit-
ting and obfuscating the disentangled ID code, we hide the
real identity and endow the whole model with good explain-
ability. Equipped with the visual similarity assistance and
generative prior embedded GAN, our model can produce
photo-realistic de-identified faces, allowing us to adjust the
protection level while keeping good image utility. Extensive
experiments demonstrate the superior capability of IDeude-
mon in face de-identification, outperforming prior arts.
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