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Abstract

Label distribution learning (LDL) is a recent hot topic,
in which ambiguity is modeled via description degrees of
the labels. However, in common LDL tasks, e.g., age esti-
mation, labels are in an intrinsic order. The conventional
LDL paradigm adopts a per-label manner for optimization,
neglecting the internal sequential patterns of labels. There-
fore, we propose a new paradigm, termed ordinal label dis-
tribution learning (OLDL). We model the sequential pat-
terns of labels from aspects of spatial, semantic, and tempo-
ral order relationships. The spatial order depicts the rela-
tive position between arbitrary labels. We build cross-label
transformation between distributions, which is determined
by the spatial margin in labels. Labels naturally yield differ-
ent semantics, so the semantic order is represented by con-
structing semantic correlations between arbitrary labels.
The temporal order describes that the presence of labels is
determined by their order, i.e. five after four. The value of a
particular label contains information about previous labels,
and we adopt cumulative distribution to construct this rela-
tionship. Based on these characteristics of ordinal labels,
we propose the learning objectives and evaluation metrics
for OLDL, namely CAD, QFD, and CJS. Comprehensive
experiments conducted on four tasks demonstrate the supe-
riority of OLDL against other existing LDL methods in both
traditional and newly proposed metrics. Our project page
can be found at https://downdric23.github.io/.

1. Introduction
In the common machine learning paradigms, single-label

learning [27] predicts one specific label for an instance.

Multi-label learning [58] predicts multiple labels which can

handle some ambiguous cases where an instance is related

to more than one class. However, it treats each label equally

and only assigns the same degree to the related classes.

To tackle this problem, Geng [19] proposes label distribu-

tion learning (LDL). This new paradigm models the dif-

ferent relative importance between labels for describing an

instance. Due to the characteristics of LDL [19], it has

Metric (gt,pd-1) (gt,pd-2)

KL 0.1379 0.1379

Canberra 1.7293 1.7293

Cosine 0.2638 0.2638

0.3670 0.0217

0.1275 0.1125

0.0768 0.0434

(a) Image

(c) Metrics (b) Examples for order-sensitive distributions
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Figure 1. An example of image aesthetics rating using scores from

1 to 5. There exist obvious order relations in the label space. (a)

shows an example of the image. In (b), compared with prediction-

1 (pd-1), prediction-2 (pd-2) obviously fits better to the ground

truth label distribution. However, they both have equal perfor-

mance on the widely-used distances metrics (KL, Canberra, and

Cosine) as shown in (c). Our order-sensitive metrics including

MCAD , MQFD , and MCJS can reflect the difference between

the two predictions.

been widely used to solve various real-world ambiguous

tasks [57, 66, 74, 34], including age estimation [17, 28],

image aesthetics analysis [62], etc. Specifically, LDL al-

gorithms assign a number dyx less than or equal to 1 to the

potential label y for describing an instance x. Note that∑
y d

y
x = 1 is held in order to satisfy the condition that

label space is complete.

Generally, LDL tries to learn accurate results at each

label. However, in some common LDL tasks, such as

age estimation [47] and beauty rating [65], labels are in

order. The natural order of labels presents a sequential

pattern and is different from other LDL tasks like facial

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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expression recognition. In this case, existing algorithms

in LDL become insufficient to fully explore the distribu-

tion difference in OLDL tasks. Concretely, LDL algo-

rithms [19, 60, 48, 49, 23, 37] take mean squared error

(MSE), mean absolute error (MAE), and Kullback-Leibler

(KL) divergence [7] as learning objectives. These methods

mainly concentrate on the distance between distributions at

the same labels (per-label) and didn’t utilize the implicit

orders between them (label-by-label). As demonstrated in

Fig. 1, while measuring the prediction of image aesthetics

scores for the image in (a), prediction-2 is relatively closer

to the ground truth distribution shown in (b). However,

prediction-1 and prediction-2 have identical performance

when evaluated with the widely used per-label LDL metrics

in (c). Meanwhile, there are some previous works study-

ing ordinal labels. Li et al. [38] makes a unimodal assump-

tion in age predictions based on the distance relationship be-

tween ages. To process sequential words in the text, many

works [54, 9] take semantic relations between words into

account. Time series analysis [31] is a prevalent direction

to explore ordinal information. These theories further in-

spire the exploration of sequential patterns in labels.

In this paper, we propose a new paradigm, termed or-

dinal label distribution learning (OLDL). Following the in-

spiration above, we model the sequential patterns in labels

from three aspects: spatial, semantic, and temporal order

relationship. 1) From the perspective of spatial order, the

sequential pattern in labels describes whether the label is

adjacent or distant from the others [39]. Thus, the spa-

tial order can be naturally modeled via distance (margin).

In most cases, the labels in OLDL are real numbers, such

as scores [44]. So, the margin between label i and label j
is reasonably formulized as |i − j|. Based on the margin,

we introduce the Cumulative Absolute Distance (CAD). It

aims to find the minimal cost of transforming one distri-

bution to another label-by-label. 2) From the perspective

of semantic order, we transform the sequential pattern be-

tween labels into semantic similarities. Motivated by the

nearby labels are also close in the semantic space, we de-

sign an order-sensitive matrix and integrate it into the cal-

culation of Quadratic Form Distance (QFD) [1]. Each el-

ement in this matrix represents the semantic similarity be-

tween pairwise labels, which indicates their relations in or-

der. 3) From the perspective of temporal order, because the

cumulative density function can cumulate distributions in

sequence [45], it intrinsically contains temporal orders be-

tween labels. Moreover, based on the divergence that can

reflect the difference between two distributions, we pro-

pose to use the information theory-based divergence mea-

sure, termed Cumulative Jensen-Shannon divergence (CJS)

in OLDL.

Distances from these methods are directly adopted as

learning objectives. Further, we adopt these three distances

from the algorithms as new order-sensitive metrics, denoted

as MCAD, MQFD, and MCJS . These metrics are suggested

to better assess the prediction results in OLDL.

The contributions of the paper are three-fold:

• We propose a novel paradigm for label distribution

learning, termed OLDL, in which the sequential pat-

terns of labels are fully explored to further boost

OLDL tasks.

• We explore the sequential patterns of labels from three

aspects: spatial order, semantic order and temporal or-

der. The corresponding orders are modeled as mar-

gins, semantic similarities, and distribution cumula-

tion. Distances CAD, QFD, and CJS are derived from

the methods.

• We conduct comprehensive experiments on five widely

used datasets of four vision tasks. Evaluated by both

the existing and newly proposed metrics, the results

demonstrate the superiority of the proposed OLDL

paradigm.

2. Related Work
2.1. Label Distribution Learning

Label distribution learning (LDL) [19] aims at solving

the ambiguity problem. LDL [19, 53, 21, 59] exploits real-

valued probabilities to stand for the description degree of

labels. It has wide applications in downstream tasks like

facial landmark prediction [56], head pose estimation [20],

facial expression recognition [61, 5], emotion analysis [63,

73, 72], etc.

In [19], three strategies are introduced to tackle prob-

lems of LDL, including Problem Transform (PT), Algo-

rithm Adaption (AA), and Specialized Algorithms (SA).

PT transforms LDL to single-label classification, and the

SLL algorithms are applied to the learning process. AA ex-

tends the existing algorithms and adapts them to the LDL

task. AA-kNN and AA-BP are two representative methods.

To design algorithms based on the characteristic of LDL,

the maximum entropy model [2] is introduced in LDL.

Gauss-Newton and quasi-Newton methods are respectively

exploited in SA-IIS (IIS-LDL) [22] and SA-BFGS (BFGS-

LDL) [19] to optimize the model. Recently, [67] explores a

label enhancement method to refine noise annotations from

trusted data. To tackle the objective inconsistency in train-

ing and testing [60], they apply L1-norm loss as a learn-

ing metric and proposed a re-weighting strategy. [33] de-

signs a new loss function to learn more accurate ranking be-

tween labels. [32] proposes to use additional information

extracted by a local correlation vector and mine semantics

between labels on local samples.

In the recent years, CNNs achieve great progress in many

vision tasks [71, 41]. Due to the large labor and time cost

23482



of annotating data with label distributions, some methods

are designed to learn label distributions with incomplete la-

bel information or generate reliable complete distributions

using additional information sources [69, 68, 70]. They uti-

lize available prior knowledge to generate reliable ground-

truth [16, 17, 18, 6]. In [69], Xu et al. extend logical labels

(i.e. binary indicators indicating if items are instances of a

category or not) to label distributions using so-called graph

Laplacian label enhancement. Considering the inaccurate

label information of facial landmarks, Su and Geng [57]

propose a bi-variant label distribution learning algorithm for

tackling soft facial landmark detection tasks.

2.2. Ordinal Regression/Classification

Ordinal regression focuses on the order relations of dif-

ferent labels in classification tasks [75, 10]. They [24, 15]

aim to make the prediction fit better to the ground truth by

considering the inter-label relations. [14] first uses deci-

sion trees to solve ordinal classification problems. [52] in-

troduces the pairwise distance of labels to depict the ordi-

nal relations. Liu et al. [42] conduct a pairwise hinge loss

on tuples of instances of different categories, and the neg-

ative log-likelihoods for different categories are minimized

by the order relations. Some ordinal regression methods

also introduce LDL to improve the robustness [47] or per-

formance [38]. A mean-variance loss is proposed by Pan et
al. [47] to penalize the difference of regression results and

distributions simultaneously. To estimate the age groups,

Hou et al. [29] design a hybrid loss composed of cross-

entropy and squared earth mover’s distance (EMD2). More

recently, Li et al. [38] utilize a unimodal-concentrated loss

to enforce the predicted distributions to be unimodal and

have the highest prediction consistent with the ground-truth

label.

Compared with label distribution learning, ordinal

regression/classification focus on obtaining an accurate

ground-truth label. However, LDL requires the distributions

to be consistent. It is more challenging. Moreover, OLDL

model the ordinal relation between labels in the distribution

perspective, which is not fully explored in ordinal regres-

sion task.

3. Methodology

3.1. Problem Formulation of OLDL

In the OLDL paradigms, p(y|x;θ) is defined as a para-

metric model, where x and y are instance and labels, θ
represent parameters in the model. In the ordinal label

space y = {y1, y2, . . . , yC} of C different classes, we

aim to predict the description degrees of labels (i.e. la-

bel distribution) for the given i-th instance xi in the input

space. In this paper, we consider the natural orders in y,

y1 ≺ y2 ≺ · · · ≺ yC , where ≺ denotes the ordered rela-

tion between labels and does not exist in the normal label

space. For an instance xi, its label distribution is denoted

as Qi = {dy1
xi
, dy2

xi
, · · · , dyC

xi
}, where d

yj
xi denotes the de-

scription degree of yj to xi and we define Qi(j) = d
yj
xi .

Note that the constraints Qi(j) ∈ [0, 1] and
∑

j Qi(j) = 1
should be satisfied. Based on the definition, we naturally

introduce the sequential patterns of labels from these three

aspects as explained above: spatial order, semantic order,

and temporal order.

3.2. Spatial Order: Cumulative Absolute Distance

Spatial order between labels describes that one label is

adjacent or far from another label. We model this kind of

sequential pattern as distance (margin). As stated above,

we assume the labels are real numbers and the intervals be-

tween labels are equal. So, we define a margin between the

j-th and k-th labels as |j − k| to represent their relations in

order. Based on the margins between labels, we modify the

earth mover’s distance (EMD) [51] into OLDL.

the earth mover’s distance computes the minimal cost

that is needed to transform between two different distribu-

tions, and the margin mjk is defined as the cost of transfor-

mation between two labels. The orders are modeled via the

cost, where transforming between closer labels costs less.

Because the distributions in OLDL are all one-dimensional,

EMD is equivalent to Mallows distance [36]. For distribu-

tions Pi and Qi with equal length n, Mallows distance is

usually reduced to an assignment problem to get the simpli-

fied solution: 1
n

∑n
i=1 |P(i) − Q(i)| [36]. The association

of the i-th label with a different j-th label can be achieved.

However, such a simplified process makes EMD lose the

property that the i-th label could associate with multiple la-

bels. Because cumulative distribution integrates informa-

tion of previous labels in order, the value at each label in-

trinsically builds ordinal connections between multiple la-

bels. Therefore, we use CDFn(Pi) instead of P(i) in the

simplified solution. We introduce cumulative absolute dis-

tance (CAD) defined as follows:

CAD(Pi, Qi) =
C∑

n=1

|CDFn(Pi)− CDFn(Qi)|. (1)

where CDF(·) is the cumulative density function and

CDFn(Pi) =
∑n

j=1 Pi(j). By introducing CAD, the spatial

order relations of ordinal labels are modeled via a distance

measure.

3.3. Semantic Order: Quadratic Form Distance

Ordinal labels naturally yield different semantics, and

the adjacent labels, i.e. ages 26 and 27, are obviously close

in the semantic space. We propose to model the semantic

order of labels as a sort of semantic relation.

Specifically, we construct an order-sensitive matrix A
∈ R

C×C , where C represents the number of labels. The
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weight in A, denoted as ajk, represents the semantic sim-

ilarity of the j-th and k-th labels. The closer labels have

stronger semantic relations, thus, the value of ajk should be

approaching 1. On the contrary, ajk will be proximate to

zero if the j-th and k-th labels are far from each other. The

weight in A can be formulized as:

ajk = 1− mjk

mmax
, where mmax = max

j,k
(mjk). (2)

We integrate this matrix into previous evaluation metrics,

i.e. Quadratic Form Distance (QFD) [1]. Given ground truth

distribution Qi =
{
dy1
xi
, dy2

xi
, · · · , dyC

xi

}
and predicted distri-

bution Pi =
{
d̃y1
xi
, d̃y2

xi
, · · · , d̃yC

xi

}
. QFD can be formulized

as:

QFD(Pi, Qi) =
√

(Pi −Qi)T ·A · (Pi −Qi). (3)

The matrix A should be a positive semi-definite matrix

to make the inside of the square root hold a non-negative

value. In the label distributions,
∑C

j=0 (Pi(j)−Qi(j))
equals zero and the margin between the j-th and k-th la-

bels is represented as |j − k|, (Pi − Qi)
T · A · (Pi − Qi)

is non-negative [25]. Based on the matrix A, the semantic

order relations between each pairwise label are involved in

the QFD calculation.

3.4. Temporal Order: Cumulative JS Divergence

To depict the difference between two label distributions,

KL and Jensen-Shannon (JS) divergence are widely adopted

in previous approaches [19, 22]. Compared with these prob-

ability distribution-based divergences in which label d
yj
xi

only represents its own value, the distribution value of each

label in the cumulative distribution is cumulated through all

previous labels. It intrinsically integrates all the temporal

order information of previous labels.

We introduce the idea of cumulating label distributions

through the ordinal scale and adopt cumulative JS diver-

gence (CJS) [45] to make use of the order relations in di-

vergence measures. We show in detail how to extend JS

divergence into the cumulative version. JS divergence be-

tween Pi and Qi is formulized as:

Djs(Pi||Qi) =
1

2

C∑
j=1

(
Pi(j) log

Pi(j)

Mi(j)
+Qi(j) log

Qi(j)

Mi(j)

)
,

(4)

where Mi(j) = (Pi(j) +Qi(j))/2. Inspired by the cumu-

lative density function, CJS divergence can be formulized

as:

CJS(Pi, Qi) =

C∑
n=1

Djs

(
CDFn(Pi)||CDFn(Qi)

)
. (5)

In our method, we use CJS as an ordinal divergence mea-

sure.

Cos Inter CAD CJS Canb Cheby KL Clark QFD0

0.2

0.4

0.6

0.8

1.0

Figure 2. Dendrogram for the distance measures.

3.5. Hierarchical Clustering on Distance Measures

To further investigate the semantic similarity between

distance measures, we conduct clustering analysis [4, 19].

We randomly generate n = 100 reference distributions

{ri}ni=1 and query distribution q, the correlation between

two distances dx, dy is calculated by the formula:

Co(dx, dy) =

∑n
i=1(dx(ri, q)− dx) · (dy(ri, q)− dy)√∑n
i=1(dx(ri, q)− dx)2 · (dy(ri, q)− dy)2

(6)

Where d is the average between n distances. We calculate

the semantic distance between them by 1 − Co [4]. As the

results shown in Fig. 2, the clusters of distance measures

verify these distances can reflect different aspects of an al-

gorithm.

4. Experiments
4.1. Datasets

We evaluate the effectiveness of our method through ex-

periments on two aspects. We first analyze the results of

common LDL tasks, including facial beauty prediction and

image aesthetics analysis. Moreover, to show the general-

ity of OLDL algorithms, we further conduct experiments

on label distribution-related age estimation and joint acne

grading tasks. The detailed dataset information is shown

as follows: (1) To assess facial attractiveness [13], we

evaluate our methods on the SCUT-FBP5500 [39] dataset,

which consists of 5,500 images of frontal faces. Each im-

age is rated with scores in the range 1–5 by 60 partici-

pants. (2) For the image aesthetics analysis, we conduct

the experiments on a large-scale AVA [44] dataset. 210 par-

ticipants rated each image with scores ranging from 1 to

10. We follow the train and test split used in the previous

works [43, 35, 44]. (3) Age estimation is an OLDL-related

ordinal regression task. Experiments are conducted on two

age estimation datasets ChaLearn16 [12] and Morph [50].

ChaLearn16 contains 7,591 facial images, they are split into

23484



Table 1. Experimental results on the SCUT-FBP5500 and AVA datasets. The deep methods are based on the pre-trained VGG-16 network,

and they can be grouped into L1-based, L2-based, and KL-based. The methods of the proposed OLDL are presented in blue background.

Dataset SCUT-FBP5500 AVA

Metrics
L1-based L2-based KL-based L1-based L2-based KL-based

MAE CAD MSE QFD2 LRR JS CJS MAE CAD MSE QFD2 LRR JS CJS

Chebyshev↓ 0.155±.005 0.141±.004 0.171±.005 0.148±.004 0.145±.002 0.150±.004 0.142±.004 0.096 0.092 0.104 0.095 0.101 0.095 0.091
Clark ↓ 1.317±.019 1.327±.020 1.294±.016 1.303±.016 1.311±.032 1.321±.019 1.320±.010 1.307 1.326 1.363 1.322 1.301 1.310 1.299
Canberra ↓ 2.305±.046 2.300±.056 2.263±.048 2.235±.016 2.267±.057 2.303±.045 2.284±.050 3.190 3.221 3.382 3.217 3.163 3.196 3.139
KL div ↓ 0.148±.020 0.128±.016 0.173±.021 0.112±.009 0.135±.036 0.139±.014 0.128±.015 0.122 0.120 0.140 0.121 0.119 0.120 0.112
Cosine↑ 0.937±.008 0.947±.016 0.930±.009 0.953±.002 0.944±.016 0.941±.006 0.947±.006 0.943 0.946 0.937 0.947 0.941 0.944 0.949
Intersection ↑ 0.826±.006 0.827±.004 0.801±.007 0.852±.004 0.839±.025 0.827±.004 0.844±.005 0.821 0.827 0.810 0.831 0.826 0.827 0.836
MQFD ↓ 0.311±.020 0.281±.017 0.350±.023 0.266±.018 0.290±.045 0.302±.013 0.284±.015 0.305 0.295 0.334 0.300 0.309 0.304 0.289
MCAD ↓ 0.055±.005 0.048±.003 0.066±.005 0.045±.002 0.050±.009 0.053±.003 0.049±.003 0.052 0.049 0.059 0.050 0.050 0.052 0.048
MCJS ↓ 0.024±.003 0.019±.002 0.030±.003 0.018±.001 0.021±.006 0.022±.002 0.020±.002 0.031 0.030 0.040 0.030 0.029 0.033 0.028

4,113, 1,500, and 1,978 for training, validation, and test-

ing [17]. Morph is the largest released real-age dataset and

consists of 55,134 face images. Following the experimental

settings used in [17, 46], 80% and 20% images are used for

training and testing. (4) In acne grading, an acne severity

grading dataset termed ACNE04 [64] is presented, which is

labeled by the global acne severity. The images in which the

numbers of lesions are 1-5, 6-20, 21-50, and above 50 are

labeled as mild, moderate, severe, and very severe, respec-

tively. The dataset contains 1,457 images, which are split

into 1,165 for training and 292 for testing.

4.2. Implementation details

All our CNN-based methods are using VGG-16 [55] pre-

trained on ImageNet [8]. The original images are resized to

256×256 followed by 224×224 center cropping. The learn-

ing rate is initialized as 1.0×10−3 and reduces by one-tenth

every 60 epochs for facial age estimation; the initial learn-

ing rate is set to 1.0×10−4 for other tasks with the same

reduction setting. We fine-tune all layers of the network

for a total of 120 epochs with a batch size of 32. The pa-

rameters of the framework are optimized by SGD with a

weight decay of 0.0005 and a momentum of 0.9. We use six

existing metrics (i.e. Chebyshev, Clark, Canberra, KL, Co-

sine, and Intersection) and three proposed distance metrics

(MQFD,MCAD,MCJS) to measure the distance between

the predicted distribution P and real distribution Q.

In the comparison experiments, we evaluate the perfor-

mance of the general deep LDL methods (DLDL) [19, 22]

with VGG-16 as the baseline. As a representative distance

metric, KL loss or JS loss has been widely used as learning

objectives for various LDL tasks [40, 3, 49]. Besides, we

demonstrate the results of baselines MAE and MSE, the im-

portant loss functions for LDL and regression tasks, which

have been used in [60, 48]. Note that, we find optimiz-

ing with QFD2 achieves better performance compared with

QFD. So, we utilize QFD2 in the experiments.

4.3. Comparison on the Common OLDL Tasks

In Table 1, we present the experimental results of our

algorithms on OLDL tasks, i.e. facial beauty prediction

(SCUT-FBP5500) and image aesthetics analysis (AVA). For

a more convenient description and comparison with the

deep methods, we analyze them in groups. Formally, CAD

and MAE are L1-based methods, QFD2 and MSE are L2-

based methods. Both JS and CJS divergence are KL-based

divergences. LRR [33] is the state-of-the-art method devel-

oped on KL divergence and ranking-based loss. In general,

we present the results of L1-based, L2-based, and KL-based

methods.

First, our algorithms perform favorably against other

conventional learning objectives in both previous and

newly proposed metrics. We can observe that QFD2 and

CJS achieve the best results in SCUT-FBP5500 and AVA

datasets. Because learning label distributions requires a lot

of data [30], and SCUT-FBP5500 is a much smaller dataset

than AVA. Fitting the whole distribution by CJS is more

difficult in the SCUT-FBP5500 dataset. Second, in these

three groups, we achieve performance gains in most met-

rics. Within L1-based, L2-based, and KL-based methods,

the superiority of the proposed CAD, QFD2, and CJS has

been demonstrated. It is observed that while comparing any

two methods, the traditional metrics may give inconsistent

voting results among these methods, but our order-sensitive

metrics give consistent comparison results. This shows the

reliability of order-sensitive metrics in OLDL tasks. The

KL-based method includes LRR, JS, and CJS. Taking rank-

ing between labels into consideration, LRR outperforms JS

loss. The relation between labels is an important cue for

learning a distribution. Simultaneously, the proposed CJS

loss also has obvious improvement compared with JS loss.

For LRR and CJS, CJS gets obviously better performance in

the AVA and achieves comparable results in SCU-FBP5500

dataset (CJS is better in six of the nine metrics), while QFD2
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Table 2. Experimental results on age estimation datasets, i.e.

Morph and ChaLearn16.

Method
Morph ChaLearn16

MAE ↓ MAE ↓ ε-error ↓
DLDL (MAE, Max) 8.52 14.45 0.68

DLDL (MAE, Exp) 7.99 15.80 0.76

OLDL (CAD, Max) 6.51 8.56 0.54

OLDL (CAD, Exp) 6.41 8.27 0.51

DLDL (MSE, Max) 15.85 19.19 0.88

DLDL (MSE, Exp) 11.92 17.39 0.79

OLDL (QFD2, Max) 2.23 5.74 0.40

OLDL (QFD2, Exp) 2.24 5.56 0.41

DLDL (KL, Max) 2.96 6.23 0.48

DLDL (KL, Exp) 2.95 5.81 0.43

DLDL (JS, Max) 2.69 6.12 0.44

DLDL (JS, Exp) 2.52 5.79 0.42

OLDL (CJS, Max) 2.45 5.30 0.41

OLDL (CJS, Exp) 2.39 5.06 0.39

still outperforms LRR in SCU-FBP5500 dataset. As LRR

focuses on the ranking of each label, Chebyshev, Clark,

and Canberra measure the difference between the labels

at each label in two distributions, LRR performs better in

these three metrics. Compared to CJS which directly fits

the distribution, QFD directly calculates the difference be-

tween two labels and relates them with order information, it

has better results than LRR. All the analyses above demon-

strate that order-sensitive learning objectives significantly

improve performance and show the importance of consider-

ing order relations in OLDL tasks.

4.4. Comparison on Other OLDL-Related Tasks

4.4.1 Facial Age Estimation

Facial age estimation is a prevalent ordinal regression task,

one promising direction is to predict the age distribution.

We adopt Mean Absolute Error (MAE) to evaluate the per-

formance, which represents the average distance between

the prediction and ground-truth ages:

MAE =
1

N

N∑
i=1

|ŷi − yi|, (7)

where ŷi and yi are predicted and ground-truth age. In addi-

tion, there is also a specific metric used for the ChaLearn16

dataset, ε-error, introduced in the ChaLearn competition,

which is computed as:

ε =
1

N

N∑
i=1

(
1− exp

(
− (ŷi − yi)

2

2σ2
i

))
, (8)

where σi is the standard deviation of the i-th testing im-

age. For each method, the results of ‘Max’ and ‘Exp’ are

provided. To get the final age prediction, ‘Max’ means

that we use the argmax value of the predicted distribu-

tion, and ‘Exp’ is the expectation of P (i), formulized as

Exp =
∑

i yiP (i).

As shown in Table 2, generally, the proposed OLDL

losses outperform the corresponding conventional losses.

Within the deep LDL methods, MSE loss performs worst

because MSE weakens the penalty when the absolute error

is less than 1. The disadvantage increases as the number

of labels grows, because the value of the label is close to

zero (age ranges from 1 to 85). However, by using the cu-

mulative density function, the problem is largely alleviated.

The performance is improved from 15.85 (Max) and 11.92

(Exp) to 2.23 (Max) and 2.24 (Exp) on the Morph dataset,

respectively. The similar phenomenon also appears on the

ChaLearn16 dataset. Compared with the results of MSE,

QFD2 obviously improves the performance in terms of two

metrics, i.e., MAE and ε-error. In the MAE-based method

and KL-based method, the loss proposed for OLDL per-

forms better. As the symmetrical version of KL loss, JS loss

performs better than KL loss. It is mainly because JS loss

guarantees a more stable convergence of the model due to

its symmetry. Though KL loss and JS loss obtain high per-

formance on age estimation tasks, CJS can further improve

the results on both MAE and ε-error.

4.4.2 Acne Image Grading

Computer vision plays an increasingly important role in

medical disease diagnosis, especially in skin disease diag-

nosis. Acne vulgaris, a common skin disease, has infected

about 80% of adolescents as reported in [11], and they

require effective treatment immediately in order to avoid

scars and pigmentation. A fast and accurate diagnosis for

acne is necessary for subsequent treatment and recovery.

Nowadays, the Hayashi criterion [26] has been widely used

by dermatologists to grade acne severity. It is a measure-

ment determined by lesion counting and global assessment.

Based on the number of lesions, four levels of the severity

of acne are graded by the Hayashi criterion, including mild,

moderate, severe, and very severe. Obviously, there are nat-

ural order relations between severities of acne. Meanwhile,

similar levels of severity show similar appearance, resulting

in the ambiguity issue which can be tackled by OLDL. We

conduct experiments on the ACNE04 dataset [64], which

contains 1,457 images.

In the experiments, we plug our CJS into the algorithms

proposed in [64]. In [64], apart from using cross-entropy

for grade classification, KL loss is developed for grade la-

bel distribution learning and counting distribution learning.

We directly replace the KL loss with the proposed CJS to

conduct label distribution learning. For the evaluation of

methods, in addition to commonly used accuracy and pre-

cision, we also select some essential specific metrics in the

medical field following [64], including Specificity, Sensi-
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Table 3. Experimental results on the ACNE04 dataset. We show the results of the representative label distribution learning methods and

state-of-the-art method, i.e., JGC. The values following ‘±’ are plus/minus one standard deviation. The methods of the proposed OLDL

are presented in blue background.

Criterion PT-Bayes PT-SVM AA-kNN AA-BP SA-BFGS DLDL JGC Ours

Precision ↑ 45.30±0.09 44.60±0.07 67.61±0.13 65.36±0.10 73.85±0.03 78.51±0.03 84.37±0.02 86.32±0.02
Specificity ↑ 79.39±0.03 83.04±0.03 87.73±0.07 87.37±0.02 91.01±0.01 92.24±0.01 93.80±0.00 94.00±0.04
Sensitivity ↑ 45.06±0.12 46.05±0.05 67.33±0.15 58.65±0.10 72.03±0.03 78.57±0.05 81.52±0.02 83.50±0.03
Youden Index ↑ 24.44±0.15 29.10±0.08 55.05±0.22 46.02±0.11 63.03±0.04 68.81±0.05 75.32±0.02 76.89±0.02
Accuracy ↑ 45.38±0.07 48.15±0.11 68.15±0.17 66.44±0.04 76.16±0.03 79.31±0.02 84.11±0.01 84.80±0.01

GTCJSJSMSE

(a)

(b)

(c)

(d)

Figure 3. Visualization of predicted label distributions. We show the instances from the AVA dataset ((a) and (b)) and SCUT-FBP5500

dataset ((c) and (d)). The predictions of MSE loss, JS loss, and CJS loss, are presented from the second column to the fourth column. GT

represents ground-truth distribution. The quantitative results are also provided. The metrics include KL divergence, and MCJS .

tivity, and the Youden Index.

Specificity reflects the proportion of negatives that are

correctly identified and is also termed true negative rate.

Sensitivity reflects the true positive rate or recall, represent-

ing the proportion of positives that are correctly identified.

Youden Index is a more comprehensive metric, which is

computed as (Sensitivity + Specificity - 1).

In Table 3, we compare several traditional and CNN-

based SOTA methods. As the baseline of CNN-based meth-

ods, DLDL performs better than traditional methods, in-

cluding PT and AA algorithms. Compared with the new

state-of-the-art method, i.e., JGC [64], our algorithm further

improves the performance, especially on the Sensitivity (re-

call), which is the proportion of disease that can be success-

fully diagnosed. Generally, our methods can not only pro-

vide a stronger baseline for various ordinal LDL tasks, but

also can be used to replace a component in existing state-

of-the-art methods.

4.5. Visualization

To qualitatively demonstrate the effectiveness of our pro-

posed method, we provide visualizations of predicted distri-

butions for real instances selected from the AVA and SCUT-

FBP5500 datasets shown in Fig. 3. For each sample, we

show the results of optimizing the model with conventional

MSE loss, JS loss, and newly proposed CJS loss with the
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Figure 4. Visualization of predicted distribution of age estimation and corresponding ground truth. (a) and (b) are sampled from Morph

datset. (c) and (b) are sampled from ChaLearn16 dataset.

0 20 39 58 77 960 20 39 58 77 96

Max: 63
Exp:  59.98

Max: 42
Exp:  40.52

Apparent age:  23.10 Apparent age:  85.71

Figure 5. Failure cases of age estimation from CJS algorithm. The

two instances are from ChaLearn16 dataset.

best performance. We also demonstrate KL divergence

and CJS divergence (MCJS) as metrics. From Fig. 3, we

observe that the distributions learned by CJS loss are ob-

viously more similar to the ground truth. Quantitatively,

compared with the predictions using JS loss and MSE loss,

the performance of the predicted distributions using OLDL

losses have significant improvements according to the met-

rics. The model trained by CJS can capture relations be-

tween the labels, so that learning for each label can benefit

from the adjacent labels.

For Fig. 3 (a) and (b), when only focusing on each in-

dividual label, there is little difference between the ground-

truth and the predictions of both JS and CJS losses. How-

ever, from a holistic perspective, the distribution learned by

CJS loss is overall closer to that of ground-truth, which is

reflected by results on MCJS . Therefore, CJS divergence

(MCJS) can reflect the ordinal distance, overcoming the de-

ficiency of KL divergence. For Fig. 3 (c) and (d), CJS loss

achieves the correct top-1 position of the fourth label (score

4), while the positions of the top-1 predictions learned by

JS loss and MSE loss are at position of three.

We further present the predicted label distribution as well

as the estimated age of JS and CJS in Fig. 4. First, in the

results of CJS, the distance between ‘Max’ prediction and

‘Exp’ prediction is smaller than that of JS. Second, the pre-

diction learned by OLDL paradigm is closer to ground truth

in all the instances.

In most cases, our algorithms can accurately estimate the

age based on human faces. In Fig. 5, we show two failure

cases of the OLDL methods. For the first instance, the large

error of prediction may result from the occlusion on face.

Under the weak light, it is even difficult for human to clearly

see the face in second image, so the prediction has a certain

bias with ground truth.

5. Conclusion

In this paper, we propose a novel paradigm, named

OLDL, which is successfully employed in tasks where la-

bels have naturally ordered relations. Instead of computing

the per-label difference by existing methods, we explore the

sequential patterns of labels from spatial order, semantic or-

der, and temporal order relationships. Based on these char-

acteristics, we design three algorithms for OLDL, termed

CAD, QFD, and CJS to further improve network perfor-

mance. We also introduce order-sensitive metrics based

on the distances to evaluate the predicted distribution more

reasonably. The experiment results on five datasets of four

tasks demonstrate the effectiveness of our methods.
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