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Abstract

In this paper, we focus on a general yet important learning
problem, pairwise similarity learning (PSL). PSL subsumes
a wide range of important applications, such as open-set
face recognition, speaker verification, image retrieval and
person re-identification. The goal of PSL is to learn a pair-
wise similarity function assigning a higher similarity score
to positive pairs (i.e., a pair of samples with the same label)
than to negative pairs (i.e., a pair of samples with differ-
ent label). We start by identifying a key desideratum for
PSL, and then discuss how existing methods can achieve
this desideratum. We then propose a surprisingly simple
proxy-free method, called SimPLE, which requires neither
feature/proxy normalization nor angular margin and yet is
able to generalize well in open-set recognition. We apply the
proposed method to three challenging PSL tasks: open-set
face recognition, image retrieval and speaker verification.
Comprehensive experimental results on large-scale bench-
marks show that our method performs significantly better
than current state-of-the-art methods. Our project page is
available at simple.is.tue.mpg.de.

1. Introduction

How to learn discriminative representations is arguably
one of the most fundamental and important problems in com-
puter vision, speech processing and natural language process-
ing. For closed-set classification (e.g., image recognition),
it is sufficient to learn class-separable representations as the
goal is to infer the label of the input sample. However, for
open-set recognition problems such as face recognition [14],
speaker verification [1], person re-identification [80] and
image retrieval [11], learning class-separable representations
is not enough, because the goal becomes learning a similar-
ity function that separates positive and negative pairs well.
We study a general problem that is abstracted from these
applications – pairwise similarity learning (PSL).

PSL aims to learn a pairwise similarity function such
that minimal intra-class similarity is larger than maximal
inter-class similarity (or in other words, maximal intra-class
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Figure 1: Comparison between classification and PSL.

distance is smaller than minimal inter-class distance). When
this criterion is satisfied, one can easily find a universal
threshold that perfectly separates arbitrary positive and neg-
ative sample pairs. This property suggests that (i) perfect
verification can be achieved and (ii) labels can be fully recov-
ered by simple hierarchical clustering. Compared to classifi-
cation, PSL presents a more challenging problem of learning
large-margin representations, as illustrated by Figure 1.

PSL can be viewed as a generalization of deep metric
learning (DML). While DML requires the dissimilarity func-
tion to be a distance metric that satisfies non-negativity and
the triangle inequality, PSL does not necessarily need to
follow these criteria. For example, [13, 37, 67, 68] learn a
cosine similarity that separates positive and negative pairs.

1.1. Desideratum for Pairwise Similarity Learning

We start by formally describing the desideratum of PSL.
PSL seeks to learn a pairwise similarity function S(x1,x2)
that is typically symmetric (i.e., S(x1,x2) = S(x2,x1)).
The desired pairwise similarity function needs to always
satisfy the following inequality: S(xi,xj) > S(xp,xq)
where xi,xj denote an arbitrary pair of samples with the
same label, and xp,xq denote an arbitrary pair with different
labels. This inequality implies that no negative pair has a
larger similarity score than positive pairs. With a labeled
dataset, we can further interpret the criterion as

min
k,i̸=j

S(x[k]
i ,x

[k]
j )︸ ︷︷ ︸

Minimal intra-class similarity score

> max
m ̸=n,p,q

S(x[m]
p ,x[n]

q )︸ ︷︷ ︸
Maximal inter-class similarity score

(1)

where x
[k]
i denotes the i-th sample in the k-th class. Nor-

mally, there are two ways to parameterize the similarity
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function. A naive way is to directly parameterize the similar-
ity function as a neural network θ, resulting in Sθ(xi,xj).
However, this parameterization is not scalable for inference,
since obtaining all the pairwise similarity scores for N sam-
ples requires network inference with complexity O(N2). A
more sensible way is to, instead, parameterize the similarity
score as S(fθ(xi), fθ(xj)), where S is usually a simple and
efficient similarity measure (e.g., cosine similarity) and fθ is
a neural feature encoder parameterized by θ. Such a param-
eterization only requires O(N) time for network inference
andO(N2) time for simple pairwise similarity function eval-
uation. Current PSL methods really boil down to learning a
feature encoder that can achieve Eq. 1.

The criterion of Eq. 1 essentially suggests that simple
clustering of features leads to perfect classification. Unlike
classification problems seeking separable feature representa-
tions, PSL aims at large-margin features such that the labels
can be recovered by hierarchical clustering. Bearing the
desideratum in mind, we first examine how existing PSL
methods approach this goal, and then propose a PSL frame-
work that is surprisingly simple yet effective to achieve this.

1.2. Taxonomy of Pairwise Similarity Learning

Towards such a desideratum, there are currently two main
types of method: proxy-based PSL (e.g., [13, 37, 67, 69])
and proxy-free PSL (e.g., [17, 57, 63]). Proxy-based PSL uti-
lizes an intermediate parametric sample to serve as a proxy
for a group of samples (typically one proxy for one class),
which has been shown to benefit convergence and training
stability. However, these advantages also come at a price
in the sense that it is more difficult for proxy-based PSL
to achieve the desideratum. How to achieve Eq. 1 with the
presence of proxies is highly nontrivial and usually requires
additional design to the loss function [37, 38]. Typical ex-
amples of proxy-free PSL include contrastive loss [8, 17]
and triplet loss [73], where no proxies are used during train-
ing. Although proxy-free PSL can easily use Eq. 1 as the
training target, how to construct pairs or triplets becomes
especially crucial for convergence and generalization. Hard
sample mining matters significantly for performance [77].
Because Eq. 1 is generally intractable to achieve for large
training sets, the key difference between proxy-based PSL
and proxy-free PSL originates from how they approximate
this criterion. Proxy-based PSL achieves Eq. 1 by crafting a
relationship between samples and proxies. Proxy-free PSL
implements Eq. 1 by sampling a few representative intra-
class and inter-class sample pairs, rather than enumerating
all the possible pairs. Therefore, how these representative
pairs are selected plays a crucial role in determining whether
Eq. 1 can be effectively achieved.

Categorization of PSL can also be made from the per-
spective of how the similarity scores between different pairs
interact with each other during optimization [74]. Specif-

Proxy-based Proxy-free
Angular Non-angular Angular Non-angular

Triplet

VGGFace [52]
Triplet [45]

SphereFace [37]
NormFace [68]

CosFace [67, 69]
ArcFace [13]

SoftTriple [55]
Circle Loss [61]

HUG [39]

DeepID [62]
DeepFace [63]
DeepID2* [60]
L-Softmax [38]

Center Loss* [75]
Proxy NCA [47]

Proxy-Anchor [27]

FaceNet [57]
Angular Loss [70]

Tuplet [81]
SupCon [25]

Smooth-AP [2]
HUG [39]

Triplet Loss [73]
N-pair [58]

LiftedStruct [59]
InfoNCE [51]
Log-ratio [28]

Ranked List [72]
SNR [82]

Pair SphereFace2 [74]
BCE [24, 30]

Center Loss* [75]
AMC-Loss [7]

RBM [49]

Siamese [8, 17]
DeepID2* [60]
Multi-sim [71]

SNR [82]
SimPLE

Table 1: Taxonomy of some representative PSL methods. * indi-
cates that the method has hybrid components.

ically, if the training involves comparing the similarity
scores between different pairs, then we call it triplet-based
learning. Typical examples include triplet loss [57, 73]
and almost all the margin-based softmax cross-entropy
losses [13, 26, 37, 43, 67, 69]. In contrast, if the training
directly compares the pair similarity scores to a universal
value, then we call it pair-based learning. Examples include
contrastive loss [8] and binary cross-entropy [74]. For down-
stream tasks that focus on comparing pairs of samples, pair-
based learning can be preferable since its training objective
is more aligned with the testing scenario.

There are also several similarity functions that are widely
adopted in PSL: angular similarity [13, 37, 57, 67, 69, 70],
inner product [60, 62] and Euclidean distance [8, 17]. An-
gular similarity has become a de facto choice in open-
set recognition, since it can effectively avoid degenerate
solutions in triplet-based learning [36, 57] and also help
to incorporate angular margin for softmax cross-entropy
losses [13, 36, 37, 67, 69, 74]. We summarize a taxonomy
for some representative PSL methods in Table 1.

1.3. Motivation and Contribution

Looking into Eq. 1 for PSL, we can observe a few char-
acteristics: (1) similarity is only computed between sam-
ples and no proxies are involved; (2) there exists a univer-
sal threshold that separates intra-class similarity score and
inter-class similarity score. The two observations suggest
that pair-based proxy-free learning is best aligned with the
desideratum. Despite the perfect alignment between the
training target of pair-based proxy-free learning and the
desideratum, this category remains largely unexplored and
existing methods from it are not particularly competitive.
Some natural questions arise: Why don’t pair-based proxy-
free PSL methods work as well as expected? Can we realize
the full potential for this type of method? Driven by these
questions, our paper studies pair-based proxy-free learning
and develops a working algorithm for this approach.
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To this end, we first challenge the necessity of a few de
facto components in state-of-the-art PSL methods, such as
angular similarity [37, 40, 57, 68] and angular margin [37],
and then propose a surprisingly simple yet effective pair-
based proxy-free PSL framework, dubbed SimPLE, where
neither angular similarity nor margin is needed. Our major
contributions can be summarized as follows:
• We rethink the desideratum of pairwise similarity learning,

which effectively subsumes many important applications.
We identify that pair-based proxy-free learning is most
aligned with such a desideratum.

• We challenge a few dominating components in current PSL
methods (e.g., angular similarity and margin), and find that
they are not necessary in the pair-based proxy-free regime.

• We propose SimPLE, a surprisingly simple yet effective
pair-base proxy-free learning framework that is designed
directly based on the desideratum of PSL.

• Most importantly, we show that SimPLE can easily
achieve state-of-the-art performance on open-set face
recognition, image retrieval, and speaker verification. We
note that this is the first time that a PSL method achieves
state-of-the-art performance without the help of angular
similarity and margin in open-set face recognition.

2. Rethinking Pairwise Similarity Learning
We start by examining how different types of PSL meth-

ods achieve Eq. 1. Since proxy-based PSL models the rela-
tionship between samples and proxies, it approximates Eq. 1
through the constraint embedded in the similarity function.
Specifically, we consider a two-class scenario. We have sam-
ples xi and xj from the first class constitute the minimal
intra-class similarity. xk (class 1) and zk (class 2) yield
the maximal inter-class similarity. Then PSL’s desideratum
requires us to have S(x̃i, x̃j) > S(x̃k, z̃k) where we de-
fine x̃ = fθ(x) for notation convenience. For proxy-based
PSL to achieve this inequality, we first consider a triangular
inequality for the similarity score function:

S(v1,v3)− S(v2,v3) ≥ S(v1,v2) ≥ S(v1,v3) + S(v2,v3)

which is also satisfied by the prominent angular similarity,
i.e., S(v1,v2) = 1− 1

π arccos(
v⊤
1 v2

∥v1∥·∥v2∥ ). Then we have

S(x̃i,w1)− S(x̃j ,w1) ≥ S(x̃i, x̃j)

S(x̃k, z̃k) ≥ S(x̃k,w2) + S(z̃k,w2)
(2)

which leads to the following sufficient condition for
S(x̃i, x̃j) > S(x̃k, z̃k) to hold:

S(x̃i,w1)︸ ︷︷ ︸
Intra-class similarity

−
(
S(x̃j ,w1) + S(x̃k,w2)

)︸ ︷︷ ︸
Margin between similarity scores

> S(x̃k,w2)︸ ︷︷ ︸
Inter-class similarity

where w1 and w2 denote the proxy for class 1 and 2, re-
spectively. For proxy-based PSL to achieve the desideratum,

margin

proxy

proxy

anchor

positive
negativeSp Sn>

(b) Triplet Proxy-free PSL(a) Triplet Proxy-based PSL

margin
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proxy

(c) Pair Proxy-based PSL
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proxy

(d) Pair Proxy-free PSL

Sp<t

Sn>t
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negative

Figure 2: Comparison of different types of PSL.

we have to introduce a margin between intra-class and inter-
class similarity score. Without the margin, S(x̃i,w1) >
S(x̃k,w2) is the criterion for standard classification and
only implies separable features. The triangular inequality
indicates that with a proper distance metric being the dis-
similarity function, it will be easier for proxy-based PSL
to achieve the desideratum in Eq. 1. Therefore, margin is
actually indispensable for proxy-based PSL.

Then we discuss why angular similarity is widely adopted
in PSL. We consider the softmax cross-entropy loss:

LCE = log
(
1 +

∑
i̸=y

exp(w⊤
i x̃−w⊤

y x̃)
)

(3)

where wi denotes the i-th class proxy (i.e., last-layer classi-
fier) and x̃ is the feature (y is the label). We have that

lim
∥x∥→∞

LCE =

{
0 if ∀i ̸= y, w⊤

y x̃ > w⊤
i x̃

+∞ if ∃i ̸= y, w⊤
y x̃ < w⊤

i x̃
(4)

which implies that as long as the feature can be classified
to the correct class (i.e., features are separable), then the
softmax cross-entropy loss can be trivially minimized by
increasing the feature norm. In order to eliminate these
degenerate solutions, common practice [13, 34, 37, 67–69]
resorts to normalizing both proxy weights and features to a
fixed length, leading to the popular angular similarity. One
may notice an obvious caveat here – both angular margin and
angular similarity are especially designed for proxy-based
learning. Neither is necessary for proxy-free learning.

Now we discuss how proxy-free learning approximates
the desideratum in Eq. 1. Contrastive loss [8, 17] and triplet
loss [57, 73] are arguably the most representative proxy-
free PSL methods. Since it is computationally intractable
to enumerate all the possible sample pairs or triplets, both

5310



contrastive and triplet losses heavily rely on hard sample
mining which essentially seeks representative samples to
approximate the minimal intra-class and maximal inter-class
similarity. Moreover, triplet loss also has similar degenerate
solutions as the softmax cross-entropy loss, so it is usually
used together with feature normalization [57]. One signifi-
cant difference between triplet-based learning and pair-based
learning is the use of a universal threshold. For example, a
triplet loss enforces the similarity between an anchor and a
positive sample to be larger than the similarity between the
anchor and a negative sample. In contrast, pair-based learn-
ing (e.g., contrastive loss and SphereFace2 [74]) compares
both positive and negative pairs to a universal threshold,
which inherently draws a consistent decision boundary be-
tween positive pairs and negative pairs and is more aligned
with PSL’s desideratum.

We give an intuitive comparison of different types of PSL
in Figure 2. The target of pair-based proxy-free PSL is per-
fectly aligned with the desideratum that minimal intra-class
similarity score is larger than maximal inter-class similarity
score. Surprisingly, we find that neither angular similarity
(i.e., feature/proxy normalization) nor angular margin is nec-
essary. Further, we identify two important aspects that are
essential for pair-based proxy-free PSL: (1) pair sampling,
which affects how accurately it can approximate the desidera-
tum in Eq. 1; (2) similarity score, which should be consistent
across training and testing. In Section 3, we discuss how we
use a simple design to address these issues.

3. An Embarrassingly Simple PSL Framework
We aim for SimPLE to be as simple as possible without

introducing additional assumptions or priors. We formulate
pair-based proxy-free PSL as a pair classification problem,
which yields the following naive loss formulation:

Ln =E{x̃1,x̃2}∼D

{
yp · log

(
1 + exp(−S(x̃1, x̃2)− b)

)
+

(1− yp) · log
(
1 + exp(S(x̃1, x̃2) + b)

)} (5)

where yp = 1 if x̃1 and x̃2 are from the same class, and yp =
0 otherwise. This is essentially a binary logistic regression
without classifiers (i.e., binary cross entropy). The advantage
of such a formulation can be better understood from its
decision boundary S(x̃1, x̃2) + b = 0. When S(x̃1, x̃2) is
larger than −b, then x̃1 and x̃2 are predicted to the same
class. Otherwise, they are predicted as a negative pair.

Similarity score. Cosine similarity (or angular similarity)
has been the de facto standard in open-set face recogni-
tion [13, 37, 67–69], speaker verification [9, 41, 66] and
image retrieval [48]. Despite its popularity, angular similar-
ity introduces an assumption that features are supposed to be
discriminative on the unit hypersphere. However, Eq. 1 does

...

...
Current mini-batch Future mini-batch

Oldest mini-batchCurrent mini-batch

Queue

Pair construction

Figure 3: Illustration of SimPLE’s pair construction.

not necessitate angular similarity. As long as the similarity
score is consistent across training and testing, then we can
expect it to generalize well. We start with the simplest case
without any assumption – the inner product as the similarity
score: S(x̃1, x̃2) = ⟨x̃1, x̃2⟩ = ∥x̃1∥ · ∥x̃2∥ · cos(θx̃1,x̃2

).
However, the sign of the inner product completely depends
on the angle between two features. When the angle is smaller
than π

2 , then increasing the similarity can trivially become
increasing the feature magnitude. When the angle is larger
than π

2 , then decreasing the similarity can also trivially be-
come decreasing the feature magnitude. We find it to be a
strong assumption to use π

2 as the sign boundary. Therefore,
we remove such an assumption by adding an angular bias:

S(x̃1, x̃2) = ∥x̃1∥ · ∥x̃2∥ ·
(
cos(θx̃1,x̃2)− bθ

)
(6)

where bθ is learned directly from data and stays constant
during inference. How does this angular bias term differ
from the bias term in Eq. 5? We write down the decision
boundary for the new similarity functions:

∥x̃1∥ · ∥x̃2∥ · cos(θx̃1,x̃2)︸ ︷︷ ︸
Inner product similarity

−∥x̃1∥ · ∥x̃2∥ · bθ︸ ︷︷ ︸
Data-dependent bias

+ b︸︷︷︸
Constant bias

= 0

which is not equivalent to the decision boundary induced
by the inner product similarity. The data-dependent bias
serves a different role to the constant bias, and also removes
a prescribed assumption in inner product. Our experiments
show that removing this assumption is important and leads
to consistently better performance. One delicate difference
to the angular similarity is that the angular bias is redundant
since ∥x̃1∥ · ∥x̃2∥ · bθ also becomes some fixed constant and
can be trivially merged to b with ∥x̃1∥ = ∥x̃2∥ = 1.

Pair sampling. How to construct pairs is arguably one of
the most important factors in determining the performance
of proxy-free learning [77]. We consider two aspects of pair
sampling: pair coverage and pair importance.

Because it is impossible to enumerate all the pair combi-
nations for a large dataset, we seek to enlarge the coverage of
pairs. The size of mini-batches also limits the pair coverage.
To address this, we maintain a queue of samples encoded by
a moving-averaged encoder [18] and then form pairs from
samples in the queue. Specifically, we use a first-in-first-
out queue where the oldest mini-batch is dequeued as the
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Figure 4: The effect of r for hard pair mining.

current mini-batch is enqueued. We denote the size of the
mini-batch as m and the size of the queue as q. We can form
m · q pairs in total. We note that the samples in the queue
are encoded by a moving-averaged encoder instead of the
original encoder. The moving-averaged encoder is updated
by θq ← ηθq + (1 − η)θ where η is the moving average
parameter, θq are the parameters of the moving-averaged
encoder and θ are the parameters of the current encoder that
is trained with back-propagation.

With a sufficient number of pairs, we now consider how
to weight them based on their importance. We implement the
pair reweighting in the loss function. The way we construct
pairs will inevitably result in a highly imbalanced number
of positive and negative pairs. To address this problem, we
first introduce a weighting hyperparameter to balance the
importance of positive and negative pairs, yielding

Lb = E{x̃1,x̃2}∼D

{
α · yp · log

(
1 + exp(−S(x̃1, x̃2) + b)

)
+ (1− α) · (1− yp) · log

(
1 + exp(S(x̃1, x̃2) + b)

)} (7)

where α is a hyperparameter for balancing positive and neg-
ative pairs. Then we consider the final problem of hard pair
mining. We note that hard pair mining is highly nontrivial
without angular similarity (i.e., feature and proxy normal-
ization). For example, if we multiply the similarity score
by a scaling parameter (i.e., simply replace S(x̃1, x̃2) with
r · S(x̃1, x̃2) in Eq. 7), this parameter will not have the
same effect of hard pair mining as SphereFace2 [74]. This is
because the network can trivially learn to decrease the fea-
ture magnitude and r will be compensated by the decreased
magnitude, whereas features are normalized in [74]. This
phenomenon suggests that the effect of hard pair mining
within positive and negative pairs tends to cancel out each
other in our formulation (without angular similarity).

To address this critical problem, we propose a simple
yet novel remedy – perform hard pair mining in a reverse
direction for positive and negative pairs. Specifically, we
seek a hyperparameter that simultaneously controls the hard
pair mining for both positive and negative pairs. As it gets
larger, the loss function focuses more on easy pairs within
positive pairs, and at the same time, focuses more on hard
pairs within negative pairs. The core idea is that as long as

the mining directions are reversed for positive and negative
pairs, then their effect will no longer cancel out each other.
To this end, we multiply 1

r to the similarity score in the loss
of positive pairs (instead of r), and simultaneously multiply
r by the similarity score in the loss of negative pairs. We
arrive at the final form of the loss function below:

Lf =E{x̃1,x̃2}∼D

{
α·yp ·log

(
1+exp

(
− 1

r
(S(x̃1, x̃2)+b)

))
+ (1−α) · (1−yp) · log

(
1 + exp

(
r(S(x̃1, x̃2) + b)

))} (8)

where r is a hyperparameter that scales the loss curve with
respect to the similarity score. Specifically, larger r corre-
sponds to more importance on easy positive pairs and hard
negative pairs. We define Q1(t) = log(1 + exp(−t/r)) and
Q2(t) = log(1 + exp(r · t)), and then plot their curves to
illustrate how they achieve hard pair mining of reverse direc-
tions. For the function Q1(t), the loss focuses more on easy
pairs as r gets larger. For the function Q2, the loss focuses
more on hard samples as r gets larger.

Simplicity and significance of SimPLE. With similarity
score, pair coverage and pair importance taken into account,
we end up with a surprisingly simple formulation in Eq. 8
which only requires simple modifications from standard bi-
nary cross-entropy. Most importantly, SimPLE completely
drops the dependency on angular similarity and margin while
still achieving state-of-the-art performance on almost all
open-set recognition problems. We believe this method is
significant since it opens up new possibilities for PSL and
also demonstrates that angular similarity and margin are no
longer requisite to achieve state-of-the-art performance.

4. Discussions and Insights
SimPLE closes the gap between training and testing. One
of the most challenging problems in open-set recognition is
the gap between training and testing. Almost all previous
innovations were made towards bridging this gap. For exam-
ple, angular margin [13, 36, 37, 67, 69, 74] is widely adopted
in proxy-based learning such that the training target can be
closer to the testing scenario. Recently, SphereFace2 [74]
was proposed to further bridge this gap by switching from
triplet-based learning to pair-based learning, because only
pair comparison is performed during testing. However, the
use of proxies still prevents SphereFace2 from closing this
gap, and moreover, SphereFace2 remains heavily dependent
on angular similarity and margin. Our work can actually be
viewed as a novel proxy-free generalization of SphereFace2.
By dropping the use of class proxies, angular similarity and
margin, SimPLE takes one step further towards closing the
gap between training and testing in open-set recognition.

SimPLE as a general framework. SimPLE gives a simple
yet working variant for pair-based proxy-free learning, but
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more importantly, SimPLE identifies a few critical design as-
pects (e.g., similarity score, pair coverage, pair importance)
to achieve PSL’s desideratum and opens new possibilities.
For example, the optimal similarity score is yet to be de-
signed and how to effectively incorporate hard pair mining
without the use of angular similarity remains an open prob-
lem. Solving any of these open problems might easily lead
to better loss functions in pair-based proxy-free learning.

5. Experiments and Results
We evaluate SimPLE with multiple open-set recognition

problems, including face recognition, image retrieval, and
speaker verification. We adopt the standard training and
testing protocols, network configurations, and optimization
strategy, so that our results can be transparently and fairly
compared to previous methods. The detailed experimental
settings are given in the corresponding subsections.

5.1. Open-set Face Recognition

Experimental setup. We generally follow the data process-
ing and augmentation strategy from [26]. Specifically, the
face images are cropped based on the 5 face landmarks de-
tected by MTCNN [83] or RetinaFace [12] using similarity
transformation. The cropped image is resized to 112×112,
and RGB pixels are normalized to [-1, 1]. In training mode,
random cropping, rescaling, and photometric jittering are
applied to the face images with a probability of 0.2, while
horizontally flipping is applied with the probability of 0.5.

We first evaluate the design of SimPLE by performing
ablation studies. SFNet-64 [37] and MS1MV2 [13, 16]
are adopted as the backbone and training set, respectively.
The validation set is constructed by combining LFW [20],
AgeDB-30 [46], CALFW [85], and CPLFW [84], containing
12,000 positive and 12,000 negative pairs. SimPLE models
are trained with different r and α. The equal error rates
(EER) and the true positive rates at different false positive
rates (TPR@FAR) on the validation set are reported.

Ablation: hyperparameter r, α, and bθ. Hyperparameter
r is used to control the strength of sample mining. When
r = 1, SimPLE is equivalent to vanilla binary cross-entropy.
As r increases, SimPLE focuses more on the hard negative
pairs. Table 2 shows that SimPLE yields large performance
gains when r > 1 is used. With r = 3 and α = 0.001,
SimPLE yields 3.23% EER, which outperforms the best
result with r = 1 (3.72%) by a considerable margin.

We also perform a similar ablation study with different
bθ, and the results are given in the Appendix. In general,
bθ = 0.3 or 0.4 works well for all the experiments. We also
observe that higher α is usually paired with higher r for
the best performance. With optimal r and α pairs, SimPLE
performs equally well. Therefore, we fix r = 3, α = 0.001,
and bθ = 0.3 in the following experiments.

r α EER (↓) TPR@FAR=1e-4 TPR@FAR=1e-3 TPR@FAR=1e-2

1 0.0002 3.98 87.88 90.56 93.78
1 0.0005 3.72 89.23 92.20 94.49
1 0.001 3.85 88.43 90.91 94.11
1 0.002 4.2 85.45 89.89 93.46
2 0.0005 3.35 90.5 92.38 94.93
2 0.001 3.38 88.84 92.10 94.55
2 0.002 3.34 90.36 92.25 94.61
3 0.0005 3.38 89.80 92.00 94.81
3 0.001 3.28 91.07 92.45 94.80
3 0.002 3.23 89.62 92.27 94.84

Table 2: Ablation study of r and α for SimPLE (%).

Ablation: score functions. To investigate the importance
of score functions, we run experiments for SimPLE using
cosine similarity or generalized inner product (i.e., Eq. 6)
as the score function. Experimental results show that the
generalized inner product leads to a significantly lower EER
over cosine similarity (with optimal hyperparameters), i.e.
3.23% vs. 4.81%. The results suggest that a proper score
function plays a key role in the success of SimPLE.

In our early experimentation, we also attempted to in-
corporate generalized inner product into the proxy-based
framework. However, we did not manage to obtain meaning-
ful results (as shown in the Appendix). This further shows
that our SimPLE framework is promising in the sense that it
can easily adopt various score functions.

Comparison with previous methods. For a comprehen-
sive comparison, we conduct experiments under three differ-
ent settings: (A) SFNet-20 trained with VGGFace2 dataset
[4] (8.6K subjects), (B) SFNet-64 trained with MS1MV2
dataset (85.7K subjects), and (C) IResNet-100 trained with
MS1MV2 dataset. The goal is to explore SimPLE under
different network capacities and data scales. The evaluations
are performed on IARPA Janus Benchmark (IJB) [42, 76].
This is a challenging dataset since it contains mixed-quality
samples, e.g. low-quality video frames from surveillance
cameras and high-quality images. For setting A and B, we
train the face models of different methods using their re-
leased code, which ensures all methods use the same training
recipes except loss functions. For setting C, we directly use
the released models or results reported in their published
papers, since they represent the current best performance.

Setting A: small model and training set. We first explore
SimPLE in a relatively lightweight setting. As can be seen
from Table 3, SimPLE outperforms all competitors by large
margins in both verification and identification tasks. In par-
ticular, SimPLE respectively outperforms SphereFace2 by
7.38% and 8.30% in TAR@FAR=1e-5 and TPIR@FPIR=1e-
2 on IJB-B dataset. Similar performance gains can also be
observed on the IJB-C dataset, and it shows that SimPLE is
effective for low-capacity architectures and small-scale train-
ing sets. Using cosine similarity as score function, SimPLE
yields inferior results, which is consistent with the perfor-
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IJB-B IJB-C
1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR 1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR

Method 1e-6 1e-5 1e-4 top 1 1e-2 1e-1 1e-6 1e-5 1e-4 top 1 1e-2 1e-1

NormFace [68] 32.53 68.20 82.24 91.17 58.85 78.99 65.64 76.31 86.15 92.09 70.60 81.43
SphereFace [36, 37] 40.11 75.44 87.43 92.97 67.70 84.87 73.79 83.02 90.37 94.19 78.18 86.90
CosFace [67, 69] 40.77 73.66 85.51 91.96 67.97 82.77 70.43 80.21 88.75 93.09 75.36 84.90
ArcFace [13] 40.15 76.52 87.50 92.26 70.25 85.02 74.32 82.49 90.17 93.79 78.22 86.71
Circle Loss [61] 36.56 72.81 86.51 91.41 65.58 83.73 69.69 80.66 89.67 92.96 75.41 85.63
CurricularFace [21] 22.16 63.35 88.23 92.66 47.59 84.93 35.54 76.49 91.10 93.73 54.13 85.77
SphereFace2 [74] 40.19 77.13 87.95 92.36 72.14 87.32 75.38 83.38 90.82 93.24 80.03 87.54
SimPLE (cosine) 40.90 63.09 80.86 91.02 58.06 76.94 51.72 69.49 84.40 92.22 62.10 77.92
SimPLE 47.00 84.51 90.72 93.19 80.44 89.18 82.34 88.62 92.92 94.51 85.66 90.84

Table 3: Comparison on IJB-B and IJB-C. We use SFNet-20 as the backbone architecture and VGGFace2 as the training set. Results are in
% and higher number indicates better performance.

IJB-B IJB-C
1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR 1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR

Method 1e-6 1e-5 1e-4 top 1 1e-2 1e-1 1e-6 1e-5 1e-4 top 1 1e-2 1e-1

NormFace [68] 40.56 75.30 90.22 92.49 64.62 88.19 70.17 85.88 92.69 93.70 77.97 89.81
SphereFace [36, 37] 48.83 86.66 94.36 94.84 76.35 93.20 83.57 92.79 95.82 96.07 87.74 94.47
CosFace [67, 69] 37.82 82.99 94.20 94.69 70.61 93.03 78.01 92.29 95.87 95.91 84.59 94.53
ArcFace [13] 41.02 86.16 94.82 94.88 77.92 93.79 84.47 93.25 96.25 96.12 88.80 95.08
Circle Loss [61] 41.65 82.76 94.09 94.64 74.63 92.83 81.18 91.59 95.83 95.77 84.56 94.15
CurricularFace [21] 43.76 85.55 94.61 94.82 76.01 93.37 83.35 92.95 96.11 96.04 87.88 94.76
SphereFace2 [74] 40.31 85.89 94.04 94.59 78.05 93.02 84.60 92.37 95.74 95.81 88.87 94.52
SimPLE 46.67 90.34 94.49 95.15 83.56 93.62 88.49 93.48 95.91 96.36 91.88 94.76

Table 4: Comparison on IJB-B and IJB-C. We use SFNet-64 as the backbone architecture and MS1MV2 as the training set.

IJB-B IJB-C
1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR 1:1 Verification TAR @ FAR 1:N Identification TPIR @ FPIR

Method 1e-6 1e-5 1e-4 top 1 1e-2 1e-1 1e-6 1e-5 1e-4 top 1 1e-2 1e-1

SphereFace [36, 37] 47.33 90.14 94.87 95.13 82.57 94.30 87.86 94.36 96.25 96.45 91.68 95.36
CosFace [67, 69] 43.67 88.83 95.23 95.35 80.50 94.49 85.29 94.33 96.62 96.53 90.69 95.61
ArcFace [13] 43.43 90.40 95.02 95.14 81.36 94.26 86.00 94.49 96.39 96.47 91.91 95.51
CurricularFace† [21] - - 94.86 - - - - - 96.15 - - -
BroadFace† [29] 40.92 89.97 94.97 - - - 85.96 94.59 96.38 - - -
SCF-ArcFace† [31] - 90.68 94.74 - - - - 94.04 96.09 - - -
SphereFace2 [74] 41.53 89.92 95.02 95.24 83.46 94.36 87.63 94.49 96.42 96.41 92.08 95.47
MagFace+ [43] 42.32 90.36 94.51 94.81 83.65 93.87 90.24 94.08 95.97 96.02 91.95 95.06
AdaFace [26] 46.78 90.04 95.67 95.54 80.73 95.07 89.74 94.87 96.89 96.75 92.12 96.20
SimPLE 49.87 91.13 94.78 95.54 85.92 94.28 90.30 94.34 96.27 96.81 92.88 95.49

Table 5: Comparison on IJB-B and IJB-C. We use IResNet-100 as the backbone architecture and MS1MV2 as the training set. ’-’ indicates
that neither the model is released nor the result is reported in their paper. † Results are obtained from their papers.

mance on the validation set. The results indicate that a lot
more small insights (e.g. margin) are required before it can
achieve competitive performance.

Setting B and C: larger model and training set. These ex-
periments are designed to investigate if SimPLE can benefit
from larger models and training sets. Again, the compar-
ison is conducted on the IJB datasets and the results are
given in Table 4 and Table 5. We observe that SimPLE
achieves competitive results on IJB datasets under both set-
tings. Compared to other methods, SimPLE improves more
at low accept rates, e.g. FPR=1e-6, 1e-5, and FPIR=1e-2.
The results validate that SimPLE can benefit from a stronger
backbone and more training data.

Proxy-based vs Proxy-free. Both SphereFace2 and Sim-
PLE are pair-wise learning frameworks, while SimPLE re-
moves the proxy, angular assumption, and margin term. As
shown in Tables 4 and 5, the improvement of SimPLE over
SphereFace2 suggests that these dominating components
might not be necessary in the open-set recognition prob-
lem. We hope this observation will encourage researchers to
rethink the use of each component in the PSL framework.

We further evaluate our SimPLE model trained with set-
ting C on several high-quality datasets, as given in Table
6. SimPLE achieves the highest accuracies on cross-age
and cross-pose datasets, i.e. 96.25% on CALFW, 94.00% on
CPLFW, and 98.77% on CFP-FP, showing the robustness
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Method LFW AgeDB CALFW CPLFW CFP-FP

SphereFace [36, 37] 99.78 98.02 95.56 92.11 98.08
CosFace [67, 69] 98.81 98.11 95.76 92.28 98.12
ArcFace [13] 98.83 98.28 95.45 92.08 98.27
CurricularFace [21] 99.80 98.32 96.20 93.13 98.37
BroadFace [29] 99.85 98.38 96.20 93.17 98.63
SCF-ArcFace [31] 99.82 98.30 96.12 93.16 98.40
SphereFace2 [74] 99.80 98.07 95.38 92.20 98.15
MagFace [43] 99.83 98.17 96.15 92.87 98.46
AdaFace [26] 99.82 98.05 96.08 93.53 98.49
SimPLE 99.78 98.28 96.25 94.00 98.77

Table 6: Comparison on multiple high-quality face datasets. Results
are in % and higher number indicates better performance.

Method Precision@1 R-Precision MAP@R

Contrastive [17] 68.13 37.24 26.53
Triplet [73] 64.24 34.55 23.69
NT-Xent [5, 51, 58] 66.61 35.96 25.09
ProxyNCA [47] 65.69 35.14 24.21
Margin [77] 63.60 33.94 23.09
Margin/class [77] 64.37 34.59 23.71
N. Softmax [68, 86] 65.65 35.99 25.25
CosFace [67, 69] 67.32 37.49 26.70
ArcFace [13] 67.50 37.31 26.45
FastAP [3] 63.17 34.20 23.53
SNR [82] 66.44 36.56 25.75
MS [71] 65.04 35.40 24.70
MS+Miner [71] 67.73 37.37 26.52
SoftTriple [55] 67.27 37.34 26.51
SimPLE 68.58 37.62 26.84

Table 7: Performance of Image Retrieval on CUB-200-2011.

of SimPLE to varying age and pose. The best performance
on the LFW and AgeDB datasets (99.85% and 98.38%) is
obtained by BroadFace, which is a hybrid method that com-
bines proxy-based and proxy-free PSL. Our results suggest
that the proxy-free PSL paradigm is still worth exploring
and should not be ignored for open-set recognition.

5.2. Image Retrieval and Speaker Verification

We evaluate SimPLE on two more open-set recognition
problems: image retrieval and speaker verification.

Image Retrieval. We use the codebase in [48], which is a
well-known benchmarking toolkit for image retrieval and
metric learning. For all the methods, the data processing,
training recipes, and testing protocols are nearly the same,
except the loss functions. This ensures a fair comparison
of different methods. As suggested in [48], we use BN-
Inception as the backbone [22] with ImageNet pretraining.
The precision at 1 (also known as top-1 / rank-1 accuracy),
R-precision, and Mean Average Precision at R (MAP@R)
on CUB-200-2011 dataset [65] are reported in Table 7.

Speaker Verification. We adopt the standard train/val/test
split given by VoxCeleb2 [10]. The speech recordings are
randomly cropped to 3-8 seconds in each mini-batch as data

Method VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

Softmax 2.11 2.05 3.76
A-Softmax [36, 37] 2.11 2.11 3.47
AM-Softmax [67, 69] 2.17 2.16 3.49
AAM-Softmax [13] 2.22 2.21 3.55
SimPLE 1.85 1.80 3.23

Table 8: Performance of Speaker Verification on VoxCeleb1.

augmentation. The mini-batch size is set to 512. We use
ResNet-34 as the backbone architecture. To learn the net-
works from scratch, the SGD optimizer is used and the learn-
ing rate is initialized at 0.1 and divided by 10 after 30K, 50K,
and 60K iterations. The training is completed at 70K itera-
tions. We report the EER on VoxCeleb1, VoxCeleb1-easy,
VoxCeleb1-hard in Table 8.

Unsurprisingly, SimPLE achieves consistently competi-
tive results on CUB-200-2011 and VoxCeleb1 datasets (Ta-
ble 7 and 8). The pipeline of different methods is the same,
so the gains can only be attributed to the better PSL loss
function. This shows that the applications of SimPLE are
not limited to any particular object (face) or data modal (im-
age). It appears to perform well on a variety of open-set
recognition problems, e.g. generic object or speech data.

6. Related Work and Concluding Remarks
How to learn discriminative representations has been a

shared goal of multiple lines of research. We conclude our
paper by discussing some highly related work.

Contrastive learning. There has been a rapidly growing
interest [5, 6, 15, 18, 51, 64] in learning representations with
instance contrast. The core idea is to view a sample and
its augmented versions as a class and learn to group their
representations while contrasting with other samples. As a
popular loss function in this line, InfoNCE [51] uses multi-
class cross-entropy while SimPLE uses binary cross-entropy.

Class proxy design. Although proxy-based PSL typically
updates the class proxies by back-propagation from the loss
function, there exist other ways to design class proxies. sev-
eral methods [19, 32, 39, 54, 79] use fixed classifiers and still
obtain satisfactory performance. Liu et al. [34] use stochastic
proxies for a large number of categories. Class proxies can
also be designed to achieve certain properties [23, 44, 53, 79]
(e.g., uniformity [33, 35]). Proxy-free methods bypass the
difficulty of designing or learning proxies, but they instead
introduce the problem of pair construction and mining. Dif-
ferent pair mining strategies in proxy-free PSL may implic-
itly inject different inductive biases for the learned features,
and the mechanism behind is of great importance. How to
combine the advantages of proxy-based and proxy-free meth-
ods and achieve a good trade-off remains an open challenge.

Deep metric learning. Traditional metric learning [8, 17, 73,
78] aims to learn a proper distance metric that satisfies non-
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negativity and the triangle inequality. More recently, deep
metric learning [50, 58, 59] achieves promising performance
on image retrieval by using neural networks to learn a feature
representation and then put it into a proper distance function.
In contrast, PSL drops the requirement to learn a proper
distance metric. Recent DML methods [50, 55, 58, 59, 70,
72] are mostly triplet-based, while our SimPLE is pair-based.

Concluding remarks. In this work, we start by rethinking
the desideratum of pairwise similarity learning. We then
challenge a few common components in current PSL meth-
ods, such as angular similarity and margin. We argue that
they can be safely removed in pair-based proxy-free frame-
works. Following the desideratum, we design a simple yet
effective PSL method. Extensive experiments show that
SimPLE is able to achieve state-of-the-art performance in a
diverse set of open-set recognition tasks.

7. Limitations and Open Problems
SimPLE follows a simple yet intuitive design, and yet is

by no means, an optimal one. For example, the hard pair min-
ing for positive and negative pairs is still less straightforward
and could be further improved. Moreover, similar to existing
proxy-free methods, SimPLE can be quite sensitive to the
design of pair construction and mining. Despite some limita-
tions, our paper aims to demonstrate that angular similarity
is not the only way to achieve state-of-the-art performance.

While SimPLE exhibits empirical superiority in many
tasks, a few open problems remain. First, SimPLE intro-
duces three new hyperparameters: bθ, r, α, which means
there is one more hyperparameter to tune, compared to the
well-known margin-based softmax cross-entropy losses like
SphereFace, CosFace, and ArcFace. While hyperparame-
ters in SimPLE have clear physical interpretations, it is still
desirable to reduce the number of hyperparameters without
sacrificing performance. This requires a deeper understand-
ing of PSL’s desideratum. Second, SimPLE achieves less
significant performance gain with large training sets. This
is mainly due to the naive pair construction strategy, which
cannot cover all the representative pairs. We expect that ad-
vanced pair sampling methods could be an important future
direction. Third, our paper presents a desideratum for gen-
eral PSL and SimPLE is just one possible route to achieve
this desideratum. There may exist many other routes that
may potentially perform PSL more effectively.

Finally, the PSL problem is in fact very general. learning
a common embedding space for multi-modal data pairs (e.g.,
image-text pairs [56]) can also be viewed as a PSL problem.
How to apply various PSL methods (including SimPLE) to
multi-modal pretraining is a promising direction to explore.
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