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Abstract

Recent work on Neural Radiance Fields (NeRF) has
demonstrated significant advances in high-quality view syn-
thesis. A major limitation of NeRF is its low rendering effi-
ciency due to the need for multiple network forwardings to
render a single pixel. Existing methods to improve NeRF ei-
ther reduce the number of required samples or optimize the
implementation to accelerate the network forwarding. De-
spite these efforts, the problem of multiple sampling persists
due to the intrinsic representation of radiance fields. In con-
trast, Neural Light Fields (NeLF) reduce the computation
cost of NeRF by querying only one single network forward-
ing per pixel. To achieve a close visual quality to NeRF,
existing NeLF methods require significantly larger network
capacities which limits their rendering efficiency in prac-
tice. In this work, we propose a new representation called
Neural Radiance Distribution Field (NeRDF) that targets
efficient view synthesis in real-time. Specifically, we use a
small network similar to NeRF while preserving the ren-
dering speed with a single network forwarding per pixel as
in NeLF. The key is to model the radiance distribution along
each ray with frequency basis and predict frequency weights
using the network. Pixel values are then computed via vol-
ume rendering on radiance distributions. Experiments show
that our proposed method offers a better trade-off among
speed, quality, and network size than existing methods: we
achieve a ∼254× speed-up over NeRF with similar network
size, with only a marginal performance decline. Our project
page is at yushuang-wu.github.io/NeRDF.

1. Introduction

The problem of digitally representing a 3D scene for
novel view synthesis from arbitrary directions is an im-
portant research topic with many applications, ranging
from immersive conferencing to augmented reality. The

∗ This work was done when Yushuang Wu was an intern at MSRA.
† Corresponding author.

breakthroughs made by the pioneering work of NeRF [23]
demonstrate considerable advancements in the view synthe-
sis field, as it represents 3D scenes using implicit radiance
fields modeled via neural networks. Despite these advances,
a significant drawback of NeRF is its computationally in-
tensive nature, requiring hundreds of network evaluations
per pixel, resulting in slow rendering speed (e.g. ∼0.2 FPS
on a high-end GPU). Subsequent research has aimed to en-
hance the rendering speed by improving importance sam-
pling strategies, reducing the number of samples, or opti-
mizing the code implementation. However, these do not
address the fundamental problem of multiple sampling in-
herent in radiance fields, which limits the extent to which
rendering speed can be improved (usually 5-30 FPS con-
tingent on implementation) at the cost of increased mem-
ory requirements and additional implementation efforts. To
achieve efficient view synthesis, the research community
is exploring alternative representations such as neural light
fields (NeLF) [38, 22, 41, 35, 1]. A NeLF maps rays di-
rectly into the RGB space, predicting pixel color based on
the ray parameters (e.g. the origin and direction), thereby
reducing the intrinsic computational complexity to one sin-
gle network forwarding per pixel. Recent advances have in-
dicated that the synthesis quality of NeLF can be compara-
ble to that of NeRF. However, this usually comes at the cost
of much larger networks - for instance, R2L [41] utilizes an
88-layer MLP network that is 11× larger than NeRF. The
increased size of networks used in NeLF methods results
in significantly higher computational and memory costs, as
well as limited rendering efficiency in practice.

In this paper, we examine the challenge of achieving ef-
ficient view synthesis in practical settings, which requires
a careful balance among multiple considerations including
perceptual quality (measured by PSNR), computational ef-
ficiency (measured by FPS), and memory requirements (e.g.
model size). To achieve this goal, we start from a key obser-
vation: previous NeLF methods have no explicit perception
to the 3D geometry information. As known, NeRF attends
to the radiance information at spatial locations along each
camera ray as illustrated in Fig. 1, which enables NeRF

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18506



A camera ray: defined by the 
origin and direction, (o, d). 

…

…

…

pixel

MLP MLP

Deep
MLP

pixel

(o, d)

NeLF

(RGB) pixel

(rgb, 𝜎)

NeRF

(xyz, d)

(RGB)

volume
rendering

(o, d)

(wrgb, w𝜎)

NeRDF

(RGB)

volume
rendering

MLP

(a) Neural Radiance Field (b) Neural Light Field (c) Neural Radiance Distribution Field

Figure 1. The overview of our Neural Radiance Distribution Field (NeRDF) and the comparison of (a) NeRF, (b) NeLF, and (c) NeRDF. NeRF requires
hundreds of network forwarding per ray to predict the volume density and color, and output the pixel RGB via volume rendering. NeLF takes only one
single forwarding per ray to predict the pixel RGB but strongly depends on a much larger network. Our NeRDF absorbs both advantages that takes only one
single forwarding per ray as NeLF with only a small network as NeRF. The key idea is to directly predict the radiance distribution from the ray input.

to have a perception of the 3D geometry information of a
scene. However, NeLF learns the direct mapping from the
huge ray space to the pixel RGB space without any 3D prior.
This paradigm hinders NeLF from learning the actual in-
trinsic 3D layout/structure of a scene, which results in an
over-dependence on a large network capacity, as previous
NeLF methods [1, 41] suffer from.

Based on this observation, we propose a novel implicit
representation, termed as Neural Radiance Distribution
Field (NeRDF). NeRDF is based on a simple yet effective
key idea: from the input ray space as in NeLF, NeRDF yet
learns the radiance distribution of a given ray, so that the
spatial 3D geometry information can be perceived. Specifi-
cally, we train the network to produce the radiance distribu-
tion along a ray, parameterized using a set of trigonometric
functions. The final pixel color is re-synthesized via volume
rendering from the output radiance distribution as in NeRF.
Thus, the proposed NeRDF combines the strengths of both
NeRF-based and NeLF-based methods. NeRDF models the
parametric ray radiance distribution in order for a signifi-
cantly more compact target space than direct modeling the
ray-to-pixel mapping. This enables NeRDF to represent
scenes with much smaller neural networks that are compa-
rable to those in NeRF. Additionally, the prediction of the
radiance distribution of a ray only takes one single network
forwarding, so only one evaluation is required to render a
pixel as in NeLF.

The learning of NeRDF is based on a knowledge distil-
lation framework inspired by [41], where a teacher NeRF
synthesizes dense and diverse views that then serve as the
pseudo-training data. We further contribute three novel de-
signs to enhance the framework: (i) an input ray encod-
ing method that captures rich ray information, (ii) an on-
line view sampling strategy that expands the diversity of the
pseudo-training data, and (iii) a volume density constraint
loss that promotes the learning of a strong 3D prior.

We have evaluated the efficiency of the NeRDF method
on the Real Forward-Facing (LLFF) dataset [23]. On aver-
age, without any specific optimization in network inference,
our proposed NeRDF method achieves a comparable visual

quality to existing methods while rendering at a speed of
∼21 FPS and using only an 8-layer MLP network. This is
∼5× faster than the R2L method [41] and ∼100× faster
than the original NeRF. Additionally, our method can ben-
efit from any off-the-shelf inference optimization methods.
By employing tiny-cuda-nn [25] as our inference backend,
our NeRDF achieves a rendering speed of ∼369 FPS, which
is a ∼1400× speed-up over an unoptimized NeRF and a
10-15× speed-up compared with previous methods using
the same backend. We also demonstrate that the NeRDF
method provides a superior trade-off between speed, mem-
ory, and visual quality compared with previous NeRF-based
and NeLF-based methods. Our contributions are as follows:

• A new neural representation for 3D scenes, Neural Ra-
diance Distribution Field (NeRDF), that outputs radi-
ance distribution along rays.

• A method for NeRDF learning with a compact neural
network that has high rendering speed, low memory
cost, and plausible quality.

• An efficient view synthesis solution that has a good
trade-off among visual quality, speed, and memory.

2. Related Work

Neural 3D representations. Recently, the neural field
representation of 3D scenes has attracted significant at-
tention from the literature [23, 36, 21, 43]. These tech-
niques utilize multi-layer perceptrons to generate implicit
fields such as sign distance functions or volume radiance
fields. Of particular note is the Neural Radiance Fields
(NeRF) [23, 3, 4]. NeRF has demonstrated its effective-
ness on the task of view synthesis from a limited number of
input views, leading to an explosion number of follow-up
works that extend its capabilities to other tasks. These in-
clude the handling of dynamic scenes [10, 46, 27, 33, 28],
human digitization [39, 14, 37, 31, 20], shape and appear-
ance modeling [9, 17, 51, 5], 3D-aware synthesis [6, 8], and
many others. A comprehensive overview of NeRF and its
related applications can be found in [47]. Our method aims
to train a succinct neural representation, which will allow
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Table 1. Comparison between different neural representations. As show, previous methods struggle at fulfilling low memory, high speed, and high quality
at the same time. Our method breaks this impossible trinity.

NeRF-based [49, 11, 26, 16, 25, 24] NeLF-based [41, 1, 44]
Methods Hybrid NeRF Accelerated Backend Small Network Large Network NeRDF (Ours)

Visual Quality High High Low High High
Rendering Speed Medium Medium Fast Slow Very Fast

Memory Cost Large Low Low High Low

for more efficient view synthesis and thereby benefit many
of NeRF’s applications.

Efficient view synthesis. To improve the rendering ef-
ficiency of NeRF, numerous existing works have reduced
the number of queried samples along rays through the use
of auxiliary data structures, such as octrees [19, 49], hash-
tables [24], the application of additional networks for im-
portance sampling [18, 26, 11, 16], or pre-baking the radi-
ance field [12]. These methods accelerate NeRF to some
degree, but come with additional computational and mem-
ory costs. Concurrently, tiny-cuda-nn [25] attempts to in-
crease the inference speed of shallow MLPs through ded-
icated optimization at the CUDA level. However, they do
not address the fundamental issue of multiple sampling. An
alternative to these approaches is the use of other neural rep-
resentations, with the neural light field (NeLF) becoming a
popular choice as it requires only a single evaluation per
pixel [41, 1, 44]. While NeLF-based methods can produce
high-quality view synthesis results comparable to NeRF,
they also entail significant memory costs due to their deeper
networks used [41] or additional networks to map rays into
latent spaces [1]. Despite these high memory costs, their
rendering efficiency still remains limited with larger net-
works. Our method focuses on efficient view synthesis with
a straightforward design, carefully balancing visual quality,
speed, and memory costs.

Knowledge distillation. Knowledge distillation (KD),
as commonly used in the field of network compression,
involves training a small model (known as the student)
to mimic the outputs and intermediate feature represen-
tations of a larger pre-trained model (referred to as the
teacher) [13, 7, 29, 50, 40]. In the context of view synthesis,
the R2L method [41] exploits KD by transferring knowl-
edge from a pre-trained teacher NeRF network to a student
NeLF network, by matching the rendered pixel value be-
tween the two models [41]. Our proposed approach extends
the knowledge distillation process outlined in [41] by incor-
porating an additional matching between the volume den-
sity distribution of the target NeRDF and the teacher NeRF.

3. Method

In this section, we first provide the preliminary of view
synthesis based on neural implicit representations includ-

ing NeRF and NeLF in Sec. 3.1. Next, we introduce our
proposed representation of NeRDF in Sec. 3.2. Lastly, we
detail the learning process of a compact NeRDF via distil-
lation from a teacher NeRF in Sec. 3.3.

3.1. Preliminary

View synthesis with neural fields. Given sparse multi-
view images as observations of a 3D scene, the objective is
to train a neural network that implicitly captures the scene’s
structure, which allows for the synthesis when given an ar-
bitrary, unseen view of the scene.
Neural Radiance Fields (NeRF). We begin by reviewing
the fundamentals of Neural Radiance Fields (NeRF) as de-
scribed in [23]. NeRF is a Multi-layer Perceptron (MLP)
network that maps 3D coordinates of a point to its radiance
and volume density values. Mathematically, this can be rep-
resented as the following function:

FNeRF : (x, y, z, θ, ϕ) → (c, σ), (1)

where (x, y, z) are the spatial coordinates, (θ, ϕ) represent
the 2D viewing direction, c = (r, g, b) is the emitted color,
and σ is the volume density. Given a camera ray defined
by r(t) = o + td ∈ R3, where o and d are the origin and
direction of the ray respectively, the rendered color C(r)
can be calculated with volume rendering:

C(r) =

∫ ∞

0

T (t) σ(r(t)) c(r(t),d)dt, (2)

where

T (t) = exp

(
−
∫ t

0

σ(r(t))ds

)
(3)

In practice, the integration of Eq. (2) is approximated dis-
cretely through Monte Carlo sampling of points along the
camera ray. The network FNeRF is queried at each of these
points, providing predictions of σ(r(t)) and c(r(t),d) us-
ing Eq. (1). It is typical that a NeRF requires approximately
100-200 network queries to compute the RGB pixel color
value C(r) for a given camera ray r.
Neural Light Fields (NeLF). To reduce computational
complexity, a scene can be also represented as a Neural
Light Field (NeLF). Different from NeRF, a NeLF directly
maps a 4D-oriented camera ray to the RGB color space, as
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described in [2]:

FNeLF : r ∈ R4 → c ∈ R3. (4)

Thus, NeLF simplifies the rendering process by eliminating
the need for analyzing 3D radiance information and con-
ducting volume rendering, requiring only a single network
evaluation to compute the pixel color of a given ray. How-
ever, the learning of a NeLF that produces high-quality syn-
thesis greatly challenges the network capacity. For example,
the state-of-the-art NeLF-based method R2L, described in
[41], uses an 88-layer MLP network (11× deeper than in
NeRF), resulting in a rendering speed of only ∼5 FPS. Re-
ducing the depth of the neural network for R2L leads to se-
vere quality degradation, as evidenced in the results of [41]
and our observations as shown in Fig. 3.

3.2. Neural Radiance Distribution Field

Tab. 1 summarizes the challenge in achieving a balance
among the quality, rendering efficiency, and memory cost
for existing neural field methods. Our goal is to overcome
this challenge and enable high-quality, real-time view syn-
thesis with low memory overhead (network size).
3D prior. In the comparison between NeRF and NeLF,
a key factor contributing to NeRF’s ability to achieve high-
quality view synthesis with a smaller network than NeLF
is its reliance on a 3D prior. The multi-view consistency
and 3D geometric information of a scene are naturally taken
into account during perceiving the radiance information at
each spatial location, resulting in a compact representation
with small networks. However, this advantage comes at the
cost of requiring numerous evaluations to compute the color
of each pixel via volume rendering in Eq. (2). In contrast,
NeLF directly maps from ray space to RGB space, without
considering any spatial radiance information. This leads to
a strongly view-dependent representation, with each pixel
from different views being addressed independently without
any 3D prior information. Therefore, larger networks are
typically required to memorize all views for synthesis, as
seen in [41].
Neural Radiance Distribution Field (NeRDF). Differ-
ent from NeRF and NeLF, our proposed representation,
the Neural Radiance Distribution Field (NeRDF), takes the
camera ray of each pixel as input and maps it into the radi-
ance distribution along that ray:

FNeRDF : r → (wC ,wσ), (5)

where wC and wσ are a set of parameters that define the
radiance opacity and color distributions for the given ray r.
The pixel color is then computed via volume rendering (as
in Eq. (2)) by a dense sampling from the parametric radi-
ance distributions.

Fig. 1 shows the overall pipeline of NeRF, NeLF, and
our proposed NeRDF. Our proposed NeRDF had the fol-
lowing advantages: (i) As in NeRF, NeRDF is built upon
the volume rendering which obtains the pixel color through
the ray marching of radiance values. This gives the neu-
ral representation the ability to model the 3D prior, which
significantly narrows down the vast target space of NeLF,
allowing for a smaller network capacity required during the
learning process. (ii) As in NeLF, the input of NeRDF is
defined in the ray space. As a result, only a single network
evaluation is required to output the full radiance distribution
of a ray, reducing the computation cost of multiple queries.
Parameterize radiance distribution. The radiance opac-
ity/color distribution along a ray is generally arbitrary. To
parameterize it, we conduct discrete Fourier analysis by in-
tegrating pre-defined trigonometric functions with discrete
frequencies. The opacity and color function of a ray, σ(t)
and C(t), respectively, can be represented as follows:

σ(t) =

2K−1∑
i=0

wσ
i · Ti(t), (6)

C(t) =

2K−1∑
i=0

wC
i · Ti(t), (7)

where t represents the distance stamp along the ray, wσ(C)
i

refers to the coefficients predicted by NeRDF as outlined
in Eq. (5), K is the number of frequencies. The frequency
basis Ti(t) is defined as:

Ti(t) =


cos(

iπ

T
t) for even i,

sin(
(i+ 1)π

T
t) for odd i.

(8)

We use an MLP network to predict wσ and wC for the vol-
ume density distribution and the radiance color distribution,
respectively. In total, this leads to an output with 8K chan-
nels. As demonstrated in Fig. 2, we show an example of
the volume density distribution of a ray produced by NeRF
(left) and NeRDF (right). The results show that NeRDF re-
produces a similar radiance distribution to NeRF’s.

t along the ray t along the ray

ො𝜎 ො𝜎

Figure 2. The radiance distribution (normalized opacity) predicted by
NeRDF (blue) compared with NeRF (red). Overall, the output of NeRDF
faithfully reproduces the distribution shape from NeRF.
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3.3. NeRDF Learning

Given a set of multi-view posed images as training data,
the proposed NeRDF is trained by minimizing an L2 norm
loss function between the synthesized RGB values, Ĉ(r),
and the ground-truth RGB values, C(r). The loss function
is defined as follows:

Lrender =
∑
r

||Ĉ(r)− C(r)||22 (9)

The predicted RGB value, Ĉ(r), is calculated by perform-
ing two steps: (i) sampling multiple points along the ray and
obtaining their opacity and color from the parametric radi-
ance distribution using Eq. (6) and Eq. (7), and (ii) comput-
ing the volume integration with Eq. (2).

To learn a high-quality NeRDF representation with com-
pact neural networks, there are still several technical chal-
lenges: (i) small changes in the input ray space can result in
significant variations in the output RGB values, particularly
at the edges of foreground objects. (ii) the training views
are not sufficient to learn a NeRDF with an input defined in
the ray space. (iii) there is a need to constrain the predicted
radiance distributions of correlated rays to guarantee a valid
3D prior is learned. We address these challenges with the
following novel designs.
Input ray encoding. To tackle the first challenge, we
adopt a strategy of compound encoding to project the in-
put into a higher-dimensional space, thereby incorporating
more complex information about the rays. Given a ray
r(t) = o + td, we take into account the different impacts
of the origin and direction on the viewed pixels, and en-
code o and d differently. Specifically, we utilize the typi-
cal frequency-based positional encoding method as in NeRF
[23] for encoding the origin, and a spherical-harmonic (SH)
based encoding inspired by [25, 42] for the direction, where
the coefficients of the SH functions are used as the embed-
ding vector of the direction. To include the path informa-
tion of the input ray, we additionally sample N points along
the ray r. This is achieved by conducting a stratified sam-
pling technique as described in [41]. Finally, we embed this
3N -dimensional vector using the same frequency-based po-
sitional encoding technique as applied in [23] and concate-
nate it with the encoded origin and direction vector, forming
the final input.
Online view sampling. To tackle the second challenge of
only sparse views available for NeDRF learning, we utilize
a teacher NeRF to synthesize pseudo data in the form of nu-
merous views. In the recent work of R2L [41], a teacher
NeRF is employed to pre-produce around 10,000 pseudo
images with sufficient view coverage for offline training.
However, we adopt a more efficient approach called online
view sampling (OVS), which involves randomly sampling
camera poses for pseudo-data generation during training.

Besides the improved training efficiency, OVS also provides
two additional benefits: (1) a wider range of sampled views
can be obtained, and (2) not only the final pixel RGB but
also the opacity and color information along the ray can be
leveraged to improve the learning of 3D prior.
Volume density constraint. To alleviate the issue of in-
consistent geometry across different views when individu-
ally fitting the radiance distribution along each ray, a vol-
ume density constraint (VDC) loss is introduced. The VDC
loss minimizes the L2 norm distance of the volume density
at each point between two models, the student NeRDF and
teacher NeRF:

Lvdc = λ
∑
r

∑
t

||σ̂1(t)− σ̂2(r(t))||22, (10)

where λ is the weight for balancing the VDC loss, σ̂1(t)
and σ̂2(r(t)) denote the normalized volume density at the
same point predicted by NeRDF (Eq. (6)) and NeRF, re-
spectively. The proposed VDC not only ensures multi-view
consistency in NeRDF, but also extends the knowledge dis-
tillation from using the final pixel RGB only to additionally
involving the “intermediate” features, the volume density.
This is in line with common practices in other knowledge
distillation tasks for improving performance, as noted in [7].
Implementation details. The proposed method is im-
plemented using the PyTorch framework [30]. An 8-layer
MLP with a width of 384, unless specified otherwise, is
used to build a NeRDF. The MLP network structure is sim-
ilar to that of R2L [41], with skip connections added be-
tween neighboring layers. The parameter K in the Fourier
trigonometric function approximation is set to 12. The vol-
ume rendering in Eq. (2) is approximated using 64 uniform
samples from the radiance distribution, and the sampling
process was implemented with Taichi [15]. The input ray
encoding uses N = 16 and 8 degrees in the SH embedding
to encode the ray direction d into a 64-dimensional vector.
The positional encoding uses 10 frequencies, as in NeRF.
The OVS training uses random sampling of 1 view origin
and 2,048 directions to form a batch of training rays. The
weight λ in the VDC loss of Eq. (10) is set to 0.1. The entire
NeDRF training was conducted on a single RTX3090 GPU
with a learning rate of 5 × 10−4 for 400k-600k iterations.
Other implementation details are provided in supplemen-
tary materials.

4. Experiments
To demonstrate the advantages of our proposed NeRDF,

we perform comparisons against multiple NeRF-based and
NeLF-based efficient view synthesis methods in Sec. 4.2.
We show that the proposed NeRDF leads to a better trade-
off among speed, memory cost, and quality. We also per-
form a set of ablation studies in Sec. 4.3 to validate our pro-
posed NeRDF as well as our training design.
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4.1. Experiment Setup

Datasets. We conduct experiments on the Real Forward-
Facing (LLFF) dataset [23]. The LLFF dataset consists of
8 scenes captured with a handheld cellphone. The number
of images for each data ranges from 20 to 62. Following
[41] and [18], we downsample all images into the resolu-
tion of 504×378 pixels in both training and test. Results on
a higher resolution (1008×756) are provided in the supple-
mentary materials.
Metrics. To better analyze the trade-off between differ-
ent factors, we measure (1) the PSNR (dB) for evaluating
the synthesis quality; (2) the network size (and the memory
cost of additional data structure, if any) for evaluating the
memory cost; (3) the running time in FPS for evaluating the
rendering speed.
Baselines. We compare our method with the follow-
ing efficient view synthesis methods based on NeRF: Ter-
miNeRF [32], DONeRF [26], AdaNeRF [16], NeX [45],
and Instant-NGP [24]. We also compare our method with
NeLF-based methods including RSEN [1] and R2L [41].
We do not compare our method with baking-based methods
such as [48, 12, 34], as they target speed-up NeRF by incur-
ring a high memory cost. Our method, on the other hand,
aims to keep the memory cost as low as possible.

4.2. Main Results

Comparison with NeLF-based methods. The quanti-
tative results of our method and NeLF-based methods are
listed in Tab. 2. These results are averaged over 8 scenes
of the LLFF dataset and include synthesis quality, speed,
and memory cost, evaluated on an RTX3090 GPU. Our
method outperforms RSEN [1] in terms of rendering speed,
achieving a speed-up of roughly 6-10 times while maintain-
ing similar or superior visual quality. In terms of synthesis
quality, both our method and R2L [41] produce high-quality
results when using large networks (R2L-88 v.s. NeRDF-
48). However, R2L struggles to produce results of ade-
quate quality with smaller networks (R2L-16), whereas our
method can still generate plausible results even with an 8-
layer network (NeRDF-8). This makes our method possible
to perform real-time, high-quality view synthesis with low
memory cost. The advantage of our method in rendering
speed with a small network is further demonstrated in the
PSNR-FPS trade-off curve in Fig. 4, where our method out-
performs NeLF-based methods in the high-FPS region.
Comparison with NeRF-based methods. The quanti-
tative results of our method and NeRF-based methods on
the LLFF dataset are presented in Tab. 3. Our NeRDF-
8 has already exhibited significant speed advantages and
outperformed almost all NeRF-based methods, except for
NeX [45]. However, NeX has a higher memory cost due to
its storage of multi-plane feature maps and a higher compu-

Table 2. Quantitative comparisons with NeLF-based methods on the LLFF
dataset. For methods with multiple configurations available, we report two
of them which correspond to “high-quality” and “high-speed” respectively.

Method
PSNR
(dB)

FPS
(RTX3090)

Memory Cost
(MB)

NeLF-based

R2L-16 24.42 20.12 4.6

R2L-88 27.79 4.44 23.0

RSEN-4 25.58 3.75 5.4
RSEN-32 27.45 0.45

Ours NeRDF-8 26.53 21.18 5.1

NeRDF-48 27.19 4.39 28.0

Table 3. Quantitative comparisons with NeRF-based methods on the LLFF
dataset. For methods with multiple configurations available, we report two
of them which correspond to “high-quality” and “high-speed” respectively.
“RTX3090*” represents the optimized version test on an RTX3090.

Method
PSNR
(dB)

FPS
(RTX3090*)

Memory Cost
(MB)

NeRF-based

NeRF (Teacher) 27.75 1.45 3.8

TermiNeRF-2 21.68 65.49 4.1
TermiNeRF-16 23.55 11.34

AdaNeRF-2 21.82 101.01 4.1
AdaNeRF-11 26.24 27.70

DONeRF-2 20.89 65.49 4.1
DONeRF-16 22.91 11.34

InstantNGP-14 24.77 39.17 2.0

InstantNGP-19 25.58 24.73 64.0

NeX 27.99 ∼350 89.0

Ours NeRDF-8 26.53 369.00 5.1

tational cost (in MFLOPs) of 42.71 compared with our 2.60.
The PSNR-FPS trade-off curves of NeRF-based methods
and our NeRDF are illustrated in Fig. 5, where our method
demonstrates a significantly better trade-off than previous
NeRF-based methods.
Qualitative results. Finally, we conduct a qualitative
comparison of our view synthesis results with other meth-
ods in Fig. 3. The results indicate that our method (NeRDF-
8, Fig. 3e) produces plausible visual quality, although it has
a slightly lower PSNR compared with other NeRF-based
methods. The comparison also shows that previous NeLF-
based methods, such as R2L in Fig. 3d, fail to synthesize
acceptable visual quality under similar speed requirements
and memory cost constraints.

4.3. Discussions

In this section, we perform a set of ablation studies on
the FERN data, unless specified otherwise, from the LLFF
dataset [23] to validate the key components of NeRDF and
our training strategy.
Inference time breakdown. Although NeRDF only re-
quires a single network forward pass per pixel, it includes
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(a) Teacher NeRF (27.75 dB) (b) NeX (27.26 dB) (c) RSEN (27.94 dB) (d) R2L-16 (24.42 dB) (e) NeRDF-8 (26.53 dB)

Figure 3. Qualitative comparisons. Compared with a 16-layer R2L (R2L-16) that produces much blur, ours has a high quality. Best viewed on a monitor.

Figure 4. Trade-off curves between PSNR and FPS of NeLF-based meth-
ods and ours. Our method (the blue curve) has significant advantages in
the high-FPS (>10) region over other NeLF-based methods.

the ray-marching process for pixel color rendering. Tab. 4
displays the breakdown of inference time for NeRDF-8.
The results indicate that the majority of the inference time
is still devoted to network inference. The additional time

Figure 5. Trade-off curves between PSNR and FPS of NeRF-based meth-
ods and ours (both with inference optimization). Our method (the blue
curve) has a significantly better trade-off than other NeRF-based methods.

required for volumetric rendering only accounts for 5.3%
of the total runtime for an 8-layer MLP. This highlights
our advantage over NeRF-based methods, as we eliminate
the most time-consuming part of multiple network forward
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Table 4. The run time breakdown (render a 504×378 image on an
RTX3090 GPU) for each component of a NeRDF-8 with K = 12.

Component Input encoding Network Rendering Total

Time(ms) 8.7 36.0 2.5 47.2

Table 5. The synthesis quality (PSNR, dB) comparison between R2L and
different variants of NeRDF on FERN and FLOWER.

Idx Distribution OVS VDC FERN FLOWER

(a) 22.61 22.01
(b) ✓ 24.04 24.05
(c) ✓ ✓ 24.99 26.81
(d) ✓ ✓ ✓ 25.06 26.91

passes while preserving the volumetric rendering compo-
nent for synthesis quality. Besides, the training time and
the optimization details are provided in supplementary ma-
terials.

NeRDF components. The proposed NeRDF method out-
performs the NeLF-based method in representing scenes
with small network capacities by incorporating three de-
signs: outputting radiance distribution, incorporating online
view sampling, and enforcing a view density constraint. To
validate these designs, we conducted ablation experiments
on two data, FERN and FLOWER, from the LLFF dataset.
We start from an 8-layer MLP in R2L [41] (netwidth is
256) and gradually add our components to observe the im-
pact of each component. The results, shown in Tab. 5,
demonstrate that using radiance distribution as the output
(Tab. 5b) leads to 1.4-2.0 dB improvement compared with
directly predicting pixel RGB values (Tab. 5a). The online
view sampling (OVS) further enhances the performance of
NeRDF (Tab. 5c) with 0.9-2.8 dB improvement. Finally, in-
troducing the view density constraint (VDC) increases the
performance by approximately 0.1 dB (Tab. 5d). As seen in
Fig. 6, the disparity maps generated by NeRDF with VDC
are more reasonable compared with those generated without
VDC, further validating the benefits of the proposed VDC
for view-consistency. These results indicate that NeRDF
effectively learns the 3D prior and provides a better scene
representation than NeLF with a compact neural network.

w/ VDC w/o VDC

Figure 6. Visualization of synthesized disparity maps by NeRDF with and
without the volume density constraint (VDC). VDC helps predict reason-
able disparity.

Table 6. The synthesis quality of using different numbers of frequencies.

K 4 8 12 16 24

PSNR(dB) 25.63 25.64 25.69 25.66 25.67

Table 7. The synthesis quality of different variants in embedding the ray
origin, direction, and on-the-path points in the input ray encoding.

Idx Points Direction Origin PSNR(dB)

(a) ✓ ✓ 24.57
(b) ✓ 25.56
(c) ✓ ✓ 25.68
(d) ✓ ✓ 25.57
(e) ✓ ✓ ✓ 25.69

The number of Fourier frequencies. The radiance
distributions in NeRDF are approximated using a group
of trigonometric functions (TrigF) through discrete Fourier
transformations. We analyze the impact of the number of
frequencies in TrigF (denoted as K), with results listed
in Tab. 6. We find the best K is 12, and the performance
of NeRDF is robust to the choice of K ranging from 4 to
24. We also provide the results of using a Gaussian Mixture
Model as the alternative in supplementary materials.
Input ray encoding. We analyze various options for en-
coding input rays in Tab. 7. As shown, it results in a de-
crease of 1.1dB without encoding points sampled along the
ray’s path (as used in [41]), as shown in Tab. 7a. Besides,
encoding both the direction and on-the-path points (Tab. 7c)
results in a 0.1dB improvement compared with encoding
points only (Tab. 7b). Omitting the direction encoding, as
depicted in Tab. 7d, results in a drop of ∼0.1dB compared
with using all three components, as shown in Tab. 7e.
Limitations and Future works. Our method is not with-
out limitations. NeRDF requires further expansion in order
to effectively handle 360-degree scenes with high fidelity.
As future avenues of research, we propose to further im-
prove the view-synthesis quality as well as extend NeRDF
to handle dynamic scenes.

5. Conclusion
We have proposed a novel 3D scene representation, Neu-

ral Radiance Distribution Field (NeRDF), for real-time effi-
cient view synthesis. NeRDF models the radiance distribu-
tion along rays parameterized using a set of trigonometric
functions, and synthesizes images with volumetric render-
ing. Our NeRDF requires only one single network forward
pass per pixel for view synthesis. NeRDF is learned by dis-
tilling both color and volume density information from a
teacher NeRF. Our method offers a better trade-off among
speed, cost, and quality compared with existing efficient
view synthesis methods, with a significantly high rendering
speed of ∼350 FPS and producing visually plausible results
with a small network.
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