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Abstract

Face clustering is a method for unlabeled image an-
notation and has attracted increasing attention. Existing
methods have made significant breakthroughs by introduc-
ing Graph Convolutional Networks (GCNs) on the affinity
graph. However, such graphs will contain many vertex pairs
with inconsistent similarities and labels, thus degrading the
model’s performance. There are already relevant efforts
for this problem, but the information about features needs
to be mined further. In this paper, we define a new con-
cept called confidence edge and guide the construction of
graphs. Furthermore, a novel confidence-GCN is proposed
to cluster face images by deriving more confidence edges.
Firstly, Local Information Fusion is advanced to obtain a
more accurate similarity metric by considering the neigh-
bors of vertices. Then Unsupervised Neighbor Determina-
tion is used to discard low-quality edges based on similar-
ity differences. Moreover, we elaborate that the remaining
edges retain the most beneficial information to demonstrate
the validity. At last, the confidence-GCN takes the graph as
the input and fully uses the confidence edges to complete the
clustering. Experiments show that our method outperforms
existing methods on the face and person datasets to achieve
state-of-the-art. At the same time, comparable results are
obtained on the fashion dataset.

1. Introduction

In recent years, and thanks to existing works[24, 25],
face recognition has rapidly developed and is now widely
used in face verification, security systems, and other daily
applications. This development relies on high-quality an-
notated data, but manual annotation is extremely expensive
and time-consuming. Therefore, face clustering emerges
and becomes a primary technology to address the problem.

*This work was done when Yang Wu was an intern at JD.COM
†Corresponding author

Face clustering has gained considerable developments
recently. Existing face clustering methods can be di-
vided into two categories: unsupervised and supervised
[14, 4, 32, 7, 28, 27]. K-means [14], and DBSCAN [4]
are representative unsupervised methods but perform poorly
due to their limited capacities. Recently, a new unsuper-
vised method FaceMap[35] has achieved positive results by
adjusting the relationships between images to fit traditional
clustering methods. Although this is very effective, original
features are not clustering-oriented, so the performance will
undoubtedly be subject to certain limitations.

Supervised learning methods [7, 33, 32, 21, 27] are
mainly based on graph convolution networks (GCNs) [30].
Such methods first build face graphs by deeming images as
vertices and then linking them based on their deep features,
which are extracted from a trained Convolutional Neural
Network (CNN) [11]. In existing research [33, 32], such
graphs are often called affinity graphs. The most common
affinity graphs are built based on kNN [3] (k-nearest neigh-
bors) relations, where each vertex is connected to its top k
neighbors. With affinity graphs as input, a GCN can be uti-
lized to capture the structural information and embed it into
the features. Due to its powerful feature propagation capa-
bility, the clustering performance is significantly improved.

However, several unfavorable factors limit GCN-based
models. First, since the training and inference of CNN mod-
els treat each image as an individual without considering
their associations, images of different identities may have
high similarity. The opposite may also occur in the same
identities. Hence, affinity graphs would inevitably contain
many undesirable edges whose endpoints have incompati-
ble labels and similarities. GCN will propagate harmful in-
formation through such edges and obtain polluted features,
hindering performance. Second, real datasets often contain
inaccurate labels. Even if the graph is clean enough, un-
trusted labels will lead the GCN to learn incorrect informa-
tion, which is not conducive to clustering.

To amend these drawbacks, we combine labels with sim-
ilarities to adjust face graphs and propose a novel GCN
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Figure 1. The framework of our method. Given face images (a), We first build affinity graphs (where each vertex is connected to k nearest
neighbors (b)) based on the cosine similarity of the features. There exist numerous non-confidence edges in the graph. To get more
confidence edges, we first use LIF (c) to derive a more reliable similarity metric ϕLIF between vertices. Then, based on the new metric,
UND (d) is used to find suitable neighbors for each vertex and build a graph. As UND discards neighbors based on similarity, hard examples
will remain that need further treatment. A novel GCN model confidence-GCN (e) takes the graph as input to get enhanced features (f) and
promote confidence. In the end, the traditional clustering method Infomap[19] achieves the clustering results (g).

model to alleviate the influence of label errors, thereby
boosting the clustering performance. The underlying prin-
ciple is the more consistent the labels and similarities of
the vertices are (i.e., vertices of the same (different) labels
have a high similarity (difference) score), the better the per-
formance will be. To formalize it, we propose the con-
cept of confidence edges to denote the highly consistent
edges. Specifically, given an affinity graph G = (V,E),
its adjacent matrix A = (aij), and a threshold τ , let
H = {(vi, vj) ∈ E|vi, vj ∈ V, aij ≥ τ} be the set of
high similarity edges, and L = E \H is the set of low sim-
ilarity ones. Meanwhile, we can partition E into S and D
based on labels, where S is the set of edges whose endpoints
have the same labels and D is the others. Cross combines
similarities and labels to get the following four types: HS,
LS, HD, and LD, where HS and LD form confidence edges.
As illustrated in Figures 1, many non-confidence edges ex-
ist in affinity graphs (b) whose similarity of endpoints can
not reflect their categories. Thus, increasing the number of
confidence edges will advance clustering performance.

To obtain more confidence-edges, we first re-evaluate the
tightness between vertex pairs. The local information fu-
sion (LIF) is proposed to mine the local information of the
vertices and provide a more precise metric. For every vertex
pair, LIF exploits the quantity and similarity differences be-
tween common neighbors to improve the cosine similarity.
The new metric will contain sufficient contextual informa-
tion to compensate for the weakness of the features. Conse-
quently, the closeness of vertices in the same class increase
with similar neighborhood structures, while others reduce.

Next, we propose unsupervised neighbor determina-

tion (UND) to adjust the face graphs and increase the ratio
of confidence edges. Existing kNN method cannot meet the
need of each vertex. Many valuable edges will be discarded
when k is small . However, if k is large , there will un-
doubtedly be numerous non-confidence edges. The UND
exploits the neighborhood statistics of every vertex in the
affinity graph to filter out the most similar parts and get rid
of the rest. With UND, a graph containing many confidence
edges is derived. Better yet, the impact of incorrect labels
eliminates since UND avoids using labels.

Then, GCN takes the graphs as input to increase the
similarity (difference) between positive (negative) pairs and
outputs features beneficial for clustering. To further in-
crease the quantity of the confidence edges, we propose
confidence-GCN, which gives a higher level of attention
to the non-confidence edges and accelerates to narrow the
gap between the labels and similarities. During training, the
intra-class similarities and inter-class differences increase,
which yields more confidence edges and speeds up conver-
gence, forming a virtuous circle. Under the dual guidance of
labels and similarities, the model can effectively deal with
label errors and output better features to finish clustering.

The contributions of our paper are as follows.

• We propose confidence edges to guide the building of
face graphs. And a novel con-GCN is proposed to fully
utilize confidence edges and raise their share, thus sig-
nificantly improving the performance.

• LIF and UND are proposed to increase the ratio of con-
fidence edges to yield an improved face graph. Fur-
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thermore, UND is detailed using information theory to
prove its effectiveness.

• Our approach achieves state-of-the-art performances
on faces and person re-identification. Besides, a com-
parable result is obtained on closets.

2. Related Work
2.1. Face Clustering

In recent years, face clustering has attracted considerable
attention as an essential machine-learning task. Traditional
clustering methods like K-means[14] and DBSCAN[4] pro-
vide highly explanatory but perform poorly. Since K-means
require assumptions about the dataset, DBSCAN cannot
cope with high-dimensional situations. Until recently,
GCN-based methods have been proposed and dramatically
improved performance. L-GCN[28] extracts affinity graphs
into several Instance Pivot Subgraphs and trains a GCN to
predict links on subgraphs. GCN-D+S [33] uses GCN-D
to generate subgraphs and GCN-S to cluster face images.
GCN-V+E [32] also adopts two GCNs to predict vertices’
confidence and link relationships on affinity graphs. STAR-
FC[21] samples structure-preserved subgraphs and finishes
cluster by a GCN. FaceMap[35] views face clustering as
community detection and adjusts the affinity graph to fit the
traditional method. Pair-Cls[12] employs density to select
image pairs and train a pairwise classification model to clus-
ter face. MHC[2] develops a size-invariant density NDDe
and sparsity-aware distance TPDi to improve the perfor-
mance of a traditional method DPC[18]. Ada-NETS[27]
proposes structure space and adaptive neighbor discovery
to remove noise edges whose two endpoints belong to dif-
ferent classes, then gets more accurate clustering results.
However, Ada-NETS proposed noise edges cannot wholly
judge the quality of edges. Such as, edges with different
labels and low similarity belong to noise edges but are also
beneficial to clustering.

2.2. Graph Convolutional Network

Graphs are widely used in social networks, recom-
mender systems[34, 15], and other domains. The clas-
sical models CNN and RNN cannot handle such non-
Euclidean data. Graph convolutional network(GCN)[30]
emerges and performs very well. However, GCN in a trans-
ductive setting has poor flexibility and is difficult to ex-
pand. GraphSAGE[9] extends transductive learning to in-
ductive learning by sampling a fixed number of neighbors.
GAT[26] introduces attention mechanism, taking the cor-
relation between vertices into account. GAAN[36] makes
incremental improvements over GAT by computing an ad-
ditional attention score for each attention head. SGC[31]
uses the K-th power of the graph revolution matrix to cap-
ture k-hop neighbor information to simplify the model. The

above models yield outstanding results on plenty of essen-
tial tasks. However, due to the lack of natural graph struc-
ture, the face graphs rely on the relationship between fea-
tures of vertices. Many edges in the graphs cannot cor-
rectly reflect the relationship between vertices. Moreover,
the mentioned GCN models cannot adequately deal with
these edges and propagate the useless information between
vertices, thus affecting the effect.

3. Method
In this section, we describe the proposed face cluster-

ing method in detail. The method is outlined in Fig-
ure 1. Given large-scale face images, the deep features
V = {v1, v2, · · · , vN |vi ∈ RD} are extracted by a pre-
trained CNN model. The LIF module provides a more accu-
rate similarity metric, which is then used by the UND mod-
ule to find suitable neighbors for each vertex. A graph with
a large proportion of confidence edges will be built. The
confidence GCN takes this graph as the input increases the
intra-class similarity and inter-class differences. The out-
put features can be utilized in various traditional clustering
methods to achieve clustering results.

3.1. Confidence Edges Oriented Graph Construc-
tion

Non-confidence edges in face graphs lead the GCN to
aggregate erroneous information when propagating mes-
sages. The existence of such edges can be attributed to
the following reasons. First, limited by the representation
ability of CNN, images of different classes may have high
similarity. Hence, graphs built based on the similarities of
deep features will bring in undesirable LS and HD edges (as
outlined in Section 1). Second, neither the kNN methods
[21, 32, 33] nor the threshold methods [7] can accurately
satisfy each vertex, resulting in numerous non-confidence
edges. Third, real datasets may include label errors, which
are difficult to detect. To address these challenges, we first
derive a more accurate similarity metric by fusing the local
information and then determine suitable neighbors for each
image in an unsupervised way.

3.1.1 Local Information Fusion(LIF)

Feature similarities cannot accurately reflect the relation-
ship between images, but neighborhood information is ca-
pable of helping alleviate this problem. The idea stems from
SS[27], who uses the Jaccard index to improve Cosine sim-
ilarity. And its validity proves the benefit of the idea.

However, hard cases, as shown in Figure 2, can not be
effectively solved. Compared with v1 and v2, v1 and v3 of
different classes have higher cosine similarity and the same
Jaccard index. Further observation reveals that v1 and v2
have closer common neighbors, it helps v1 find true peers.

20992



Figure 2. Cosine similarity and the Jaccard index cannot correctly
reflect the label relationships between vertices. LIF can use simi-
larity differences to give correct results. The right side shows the
similarities with λ = 0.6 and µ = 0.8.

Based on this idea, we propose LIF and derive a more
discriminative similarity metric. Given any images vi ∈
V , Ni is the k nearest neighbor sequences by descending
order of cosine similarity. And Nij = Ni

⋂
Nj is common

neighbors of vi, vj . The similarity of vi, vj is defined as:

ϕ(vi, vj) = µcos(vi, vij ) + (1− µ)s(vi, vj) (1)

s(vi, vj) = γJac(vi, vj) + (1− γ)(1− d(vi, vj)) (2)

d(vi, vj) =
1

|Nij |
∑
l∈Nij

|cos(vi, vl)− cos(vj , vl)| (3)

where cos(vi, vj) and Jac(vi, vj) =
|Nij |

|Ni
⋃

Nj | denote the
cosine and Jaccard similarities, respectively. d(vi, vj) is the
similarity differences. µ, γ ∈ [0, 1] are the weights.

Equation (3) contains rich structural information. In
the induced subgraph G[Nij ∪ {vi, vj}], the more minor
d(vi, vj) is, the more similar the structural roles (i.e., struc-
tural equivalence [6]) of vi and vj are. As referred to in
node2vec [6], vi and vj should be more similar. With the
help of LIF, the similarity metric yields more confidence.

3.1.2 Unsupervised Neighbor Determination(UND)

However, due to the different requirements of each vertex,
a graph built based on a given k or threshold will still be
unsatisfactory. AND [27] considers the operation of link-
ing edges as a sequence task and applies Long Short-Term
Memory (LSTM) [20, 5] to abandon neighbors that lower
the Fβ-score. However, there are two limitations. First,
the sequence property is insufficient as the adjacent points
are independent. Second, maximizing the Fβ-score is not
always reasonable, especially in real datasets where error
labels may exist.

To compensate for these deficiencies, we propose UND.
The key idea is that, for any image vi, the region with

the fastest decrease in similarity is an ideal neighborhood
boundary. With LIF, all vertices after the boundary are less
similar with vi in feature and structure. Therefore, discard-
ing them will remove numerous non-confidence edges.

We will discuss UND from the perspective of informa-
tion theory. Given vi, the k nearest neighbors in descending
order of similarity N (vi) = {vi1 , · · · , vik}. Moreover, let
Si be the corresponding similarity sequence. The informa-
tion entropy increases when linking the edges one by one
from vi1 . And vij would provide −piij log2piij to entropy,

where piij =
ϕLIF (vi,vij )∑
ϕLIF (vi,vil )

is the transition probability
from vi to vij . The larger the similarity, the greater the in-
formation gain. The boundary is drawn when the amount of
information reduces sharply. So not only major information
retained but also meaningless edges are excluded.

From another perspective, looking from the back of the
sequence, the boundary is where the similarity decreases
fastest relative to the tail. For this relativity, we adopt the
Z-score of the first-order difference sequence to represent
the falling speed. Besides, there are possible abnormal
points whose similarities drop suddenly and cannot reflect
the surrounding situation. To avoid the influence of abnor-
mal points, motivated by the Harris corner detection [10],
we utilize the mean value of an interval to approximate the
Z-score of the midpoint. For vi, the first-order difference
sequence ∆Si(j) = Si(j) − Si(j + 1). The Z-score of
vij ∈ N (vi) relative to the tail is

zi(ij) =

ij+⌊I/2⌋∑
l=ij−⌊I/2⌋

∆Si(l)− µij

σij

(4)

where µij and σij are the mean and standard deviation of
∆Si in [ij + ⌊I/2⌋, k] respectively. I is the length of the
interval.

The index corresponding to the maximum Z-score is
taken as the boundary Bi (i.e., Bi = argmaxij zi(ij)), and
only linking the neighbors before the line. Graph G is con-
structed by performing the above operations on all vertices.

3.2. The Confidence-GCN Model(con-GCN)

Although LIF and UND increase the proportion of con-
fidence edges, non-confidence edges still exist and need
further treatment. Since the confidence edges are already
sufficiently suited for clustering. Existing GCN does not
fully utilize confidence ones by paying equal attention on all
edges. Hence, we propose a novel confidence-GCN (con-
GCN) model to take full advantage of the confidence edges.

Let A and F = [v1, v2, · · · , vN ]T ∈ RN×d be the adja-
cency and feature matrices of G, respectively. The proposed
con-GCN consists of two layers, any of which is defined as

Fl+1 = σ(ÃFlWl) (5)

where Ã = D̃−1(A + I), D̃ is the diagonal degree matrix
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with D̃ii =
N∑
j=1

(A + I)ij . Fl represents the embedding at

the l-th layer, and F0 is the input feature matrix F . Wl is
a learnable matrix that converts the embeddings to a new
space. σ(·) is a nonlinear activation function. The model
finishes with a fully connected layer with PReLU activation.
The output is an enhanced feature v

′

i of each vertex vi.
We pay more attention to the non-confidence edges to

eliminate their adverse effects. As the iteration proceeds,
the features are continuously enhanced. And the similarities
become more consistent with labels, leading to a gradual
increase in the ratio of confidence edges.

Besides, as LIF accurately evaluates the association be-
tween vertices and UND retains highly similar edges. Many
LD edges’ similarities reduce to zero, simplifying the graph.

In con-GCN, a new loss function guided by confidence
edges is proposed, based on variant Hinge losses [27]:

L == (LHS + LLD) + λ(LHD + LLS)

Lh =
1

|Eh|
∑

(vi,vj)∈Eh

1− s
′

ij , h ∈ {HS,HD}

Ll = max
(vi,vj)∈El

1 + sij , l ∈ {LD,LS}

(6)

Where Ei, and Li(i ∈ {HS,LS,HD,LD}) are the set of
edges and losses of the corresponding edge type, respec-
tively. s

′

ij is the cosine similarity between the enhanced
features v

′

i and v
′

j . λ balances different losses.
Given a threshold th, the variant Hinge losses [27] corre-

sponding to four edge types are calculated separately. Fur-
thermore, the weighted sum of the four losses is the final
loss. The proposed con-GCN prioritizes fitting the non-
confidence parts and suppresses the influence of label er-
rors. Eventually, every vertex learns a better feature.

During training, we strive to ensure that vertices with the
same labels have a higher cosine similarity and vice versa.

During inference, the trained GCN model obtains the
output features [v

′

1, v
′

2, · · · , v
′

N ]T ∈ RN×D
′

for all ver-
tices. The enhanced features have significant inter-class dif-
ferences and intra-class similarities. Traditional clustering
methods would be more effective. In this study, the cluster-
ing results are achieved by Infomap [19], a network cluster-
ing algorithm. To accelerate, we set θ as the threshold and
only link the vertices whose similarities are larger than θ.

3.3. Complexity Analysis

On affinity graph G = (n,m), where n,m is the number
of vertices and edges, respectively. The affinity graph is
built based on the kNN method, so it satisfies m ≤ nk.

The time complexity of graph construction consists of
two parts. LIF traverses the edges. With each iteration, LIF
first sorts the neighbor sequences of endpoints in O(klogk),
then calculates the intersection, union, and similarity differ-
ence in O(k). In a similar vein, for every vertex and cor-

responding neighbors, UND computes the mean and vari-
ance of a subsequence(whose length is at most k − I

2 )
amounted to k−I times. Therefore, the complexity of LIF
is O(mklogk) = O(nk2logk), and of UND is O(nk2). For
con-GCN, the sparsity of the graph ensures that the compu-
tation time for each layer is O(m) = O(nk)[30].

Since the k is a fixed parameter and usually with k ≪ n,
the complexities of the above operations can all be deemed
as O(n), reflecting the time advantage of our method.

4. Experiments
4.1. Datasets, Metrics and Implementation Details

We evaluate our method on three datasets. MS-Celeb-
1M [8] is a large-scale face dataset with 5.8M images of
86K identities. Following the experimental protocol in
[21, 27, 32], the dataset is divided into ten parts, each
with 8.6K identities and related images. The ReID dataset
MSMT17 [29] contains 4101 classes and 126441 images.
32621 images of 1041 individuals are used for training, and
the remaining images are for testing. DeepFashion[13], a
closets dataset, has a training set of 25752 images of 3997
classes and a test set of 26960 images of 3984 categories.

Pairwise F-score(FP ) [22] and BCubed F-score(FB) [1]
are used to evaluate the clustering performance. Besides,
we use confidence ratio (CR), the ratio of the number of
confidence to non-confidence edges in graphs, to compare
different graph construction methods. Also, we introduce
average similarity ratio (ASR) and modularity [16, 17, 37]
to compare different similarities. ASR is the ratio of pos-
itive pairs’ average similarity to negative pairs, and modu-
larity is an important measure in community detection. It
evaluates the strength of clustering results by computing
the difference of compactness within clusters and separa-
tion between clusters for all clusters.

For MS-Celeb-1M, we set k = 80 for building affinity
graph. The momentum SGD optimizer starts with a learning
rate of 0.01 and is dynamically adjusted with a weight decay
of 1e-5. Except k is 20 for DeepFashion, and k is 60 for
MSMT17. And the learning rate is 0.001 for them. The rest
settings are the same as that of MS-Celeb-1M.

4.2. Method Comparison

We compare our method with existing methods, in-
cluding the unsupervised clustering methods K-Means[14],
HAC[23], DBSCAN[4], and Facemap[35], and the su-
pervised methods L-GCN[28], GCN-(V+E)[32], STAR-
FC[21], MHC[2], and Ada-NETS[27]. The comparison
results in Tables 1 and 2 demonstrate that our method
achieves superior performance. Experiments on MS-Celeb-
1M also highlight that the more unlabeled images there are,
the more significant the performance improvement our pro-
posed method can provide. When the data size is up to
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#unlabeled 584k 1.74M 2.89M 4.05M 5.21M
Method FP FB FP FB FP FB FP FB FP FB

K-means[14] 79.21 81.23 73.04 75.2 69.83 72.34 67.9 70.57 66.47 69.42
HAC[23] 70.63 70.46 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96
DBSCAN[4] 67.93 67.17 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74
L-GCN[28] 78.68 84.37 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60
GCN-V+E[32] 87.93 86.09 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25
STAR-FC[21] 91.97 90.21 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47
Ada-NETS[27] 92.79 91.40 89.33 87.98 87.50 86.03 85.40 84.48 83.99 83.28
FaceMap[35] 94.24 92.55 91.31 89.67 89.32 88.20 87.74 87.11 86.37 86.29
MHC[2] 93.22 92.18 90.51 89.43 89.09 88.00 87.93 86.92 86.94 86.06
Ours 94.85 93.24 92.48 90.81 91.29 89.55 90.24 88.60 89.35 87.71
Improvement +0.65% +0.75% +1.28% +1.27% +2.21% +1.53% +2.63% +1.71% +2.77% +1.65%

Table 1. Performance comparison with different numbers of unlabeled images on MS-Celeb-1M. Our model achieves state-of-the-art on
all scales. Furthermore, the larger the scale, the more pronounced the improvement.

Figure 3. Random querys and corresponding results based on Ada-NETS[27], FaceMap[35], and our method. Ada-NETS has high precision
but loses valuable peers, while Facemap guarantees a high recall, it introduces much noise. Our method can give attention to both, thus
obtaining excellent results.

Datasets MSMT17 DeepFashion
Method FP FB FP FB

K-means[14] 53.82 62.41 32.86 53.77
HAC[23] 60.27 69.02 22.54 48.77
DBSCAN[4] 35.69 42.32 25.07 53.23
L-GCN[28] 49.19 62.06 28.85 58.91
GCN-V+E[32] 50.27 64.56 38.47 60.06
STAR-FC[21] 58.80 66.92 37.07 60.60
Ada-NETS[27] 64.05 72.88 39.30 61.05
FaceMap[35] 67.22 74.76 35.93 57.64
MHC[2] - - 40.91 63.61
Ours 71.29 76.24 44.43 63.28
Improvement +6.05% +1.98% +8.60% -0.52%

Table 2. Performance comparison on MSMT17 and DeepFashion.
Our model performs far superior to the other models except for the
FB of the DeepFashion.

5.21M, the growth rate of FP reaches 3.45%.

More significant improvements are also witnessed in the
MSMT17 and DeepFashion datasets. In MSMT17, our
method reaches 71.29 on the FP from 67.22, with an in-

ASR Modularity
ϕcos 1.28 0.754
ϕSS 1.89 0.820
ϕLIF 2.17 0.840

Table 3. ASR and modularity scores of different similarity metrics
on affinity graphs built based on k-NN (k is set to be 80). Where
ϕcos denotes cosine similarity of features and ϕSS is the similarity
metric after structure space[27].

crease of 6.05%. In DeepFashion dataset, our approach out-
performs the state-of-the-art by 3.52 for FP and reaches a
formidable 8.60%. The significant increase in the above
datasets illustrates that our method can effectively improve
clustering performance, especially for the Pairwise F-score.

Moreover, as shown in Figure 3, we randomly sample
three queries to compare the actual results. The samples
show that Ada-NETS loses many similar images to keep a
high precision. While Facemap guarantees a high recall, it
introduces much noise. Our approach takes both precision
and recall into account to obtain excellent results.
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Figure 4. Random examples of the top 20 images ranked by simi-
larity with query images are accompanied by the prediction values
of UND and AND([27] 3.2). In most instances, UND can find bet-
ter boundaries and then build higher-quality graphs.

4.3. Ablation Experiment

In this subsection, we select MS-Celeb-1M(584K) for
the ablation study.

4.3.1 Study on Graph Construction Method

For a fair comparison, we first build kNN affinity graphs
based on metrics ϕcos, ϕSS , ϕLIF . Where ϕcos is the cosine
similarity, ϕSS and ϕLIF are similarity metric with struc-
ture space(SS)[27] and LIF, respectively. Then, the labels
are used to ensure the graph vertices are perfectly clustered.

Building methods CR Time
affinity graph 1.63 67.64s
AND 9.24 262.15s
UND 8.05 62.70s
LIF+affinity graph 15.30 56.13s
LIF+AND 22.58 258.70s
LIF+UND 27.52 73.95s

Table 4. CR of different graph construction methods, where affin-
ity graphs are built based on LIF and UND can both increase the
ratio of confidence edges. Besides, the combination of both builds
the best graph.

As shown in Table 3, both ϕLIF and ϕSS can enlarge the
ASR by increasing the similarity of positive pairs and the
difference of negative ones. Furthermore, the affinity graph
with ϕLIF has a larger modularity score, meaning vertices
within a class are closer, showing the advantages of LIF. So
the neighborhood information improves the similarity mea-
sure, and LIF is better than SS, confirming our approach.

The actual results of UND and AND[27] are shown in
Figure 4. Due to only utilizing the differences in the sim-
ilarity between adjacent images, in some cases, UND may
be confused by similar images from different people, result-
ing in poor results. However, in most cases, UND can find
better boundaries, thereby reducing more non-confidence
edges. Additionally, Table 4 shows that the time consump-
tion of UND is much lower than AND (even excluding the
training time).

To further explore the contributions of different modules,

Figure 5. ROC curves for ten million randomly selected pairs of
different feature embeddings. All graph embeddings are better
than the original features. In addition, UND and LIF are capable
of promoting con-GCN to generate more distinguishing features.

we compare the CR and time consumption of different com-
binations. The results are shown in Table 4. LIF, AND, and
UND all contribute to eliminating non-confidence edges. Of
the three, LIF contributes the most as a single module. AND
obtains better results than UND when used alone. How-
ever, combining UND with LIF allows its capacity to be ad-
equately exploited and obtain the most high-quality graph.

Meanwhile, the effects of different modules on the clus-
tering results are shown in Table 5. With a more confident
graph, the combination of LIF and UND yields better per-
formance on all three datasets than on others.

4.3.2 Study on the confidence-GCN Model

To make a more comprehensive comparison of the proposed
con-GCN, we conduct comparisons on different graphs. Ta-
ble 5 shows that con-GCN achieves better clustering results
on all construction methods and datasets, and this improve-
ment is more remarkable on MSMT17 and DeepFashion.

Compared with commonly used GCN, con-GCN makes
a crucial contribution to the performance of our method,
as illustrated in Table 5. With con-GCN, the FP and FB

on MS-Celeb-1M increase by more than 0.5. While on
the MSMT17 and DeepFashion, the improvement is more
prominent. Especially the FP on MSMT17 increases by
4.64. Therefore, con-GCN can better increase the pro-
portion of confidence edges. Additionally, since the same
model has a lower FP and FB for MSMT17 and DeepFash-
ion, it is reasonable to believe that these two datasets may
contain more incorrect labels. The considerable improve-
ment of con-GCN reflects its unique advantages when deal-
ing with real datasets with possible label errors.

4.3.3 Study on the graph embedding

With the original features as input, con-GCN produces en-
hanced features that are more conducive to clustering. The
ROC curves (Receiver Operating Characteristic curves) of
ten million randomly selected pairs of different feature em-
beddings are shown in Figure 5. It is observed that graph
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Method MS-Celeb-1M MSMT17 DeepFashion
SS LIF UND confidence GCN FP FB FP FB FP FB

✕ ✕ ✕ ✕ 89.06 86.93 56.05 63.29 34.17 52.73
✕ ✕ ✕ ✓ 91.05 88.88 64.66 70.54 37.88 58.27
✓ ✕ ✓ ✕ 94.15 92.63 65.83 71.87 40.89 60.71
✓ ✕ ✓ ✓ 94.71 93.09 70.40 75.79 43.38 62.69
✕ ✓ ✓ ✕ 94.36 92.79 66.65 73.22 41.06 61.24
✕ ✓ ✓ ✓ 94.85 93.24 71.29 76.24 44.43 63.28

Table 5. The FP and FB value of the method of combining different modules on the MS-Celeb-1M. Compared with SS, LIF has mined
more information. At the same time, the quality of the graph is greatly improved after being deleted by UND, making the effect better.
Based on the importance of non-confident edges, con-GCN obtains better features than GCN, further improving the clustering effect.

Figure 6. Distribution visualization for three different embed-
dings after dimensionality reduction by principal component anal-
ysis(PCA). Among them, the original feature embedding (OFE)
(a) can distinguish three classes, but it is not good enough. The
distance between different classes in embedding from the original
GCN (OGE) (b) is larger than that of the original features. While
con-GCN (CGE) (c) makes not only inter-class distance more sig-
nificant but also the within-class data more intensive, reflecting the
excellent performance of con-GCN embedding.

embeddings are better than the original features by a large
margin. Besides, UND will increase the ratio of confidence
edges and enhance the graph embedding. Furthermore, with
the help of LIF, such embedding can be improved further,
thus achieving the best cluster performance.

For the purpose of better reflecting the impact of differ-
ent features on intra-class similarity and inter-class differ-
ences, we exploit principal component analysis to reduce
the dimensions of different embeddings. As illustrated in
Figure 6, compared with the original features (OFE), the
embedding output of GCN (OGE) can increase the distance
between classes, making the clustering effect more obvious,
but the intra-class compactness is still insufficient. Con-
GCN further features by putting more attention on the non-
confidence edges. So the differences between classes and
the closeness within class become more prominent.

4.4. Sensitivity Analysis

As illustrated in Figure 7, the model is robust to its pa-
rameters. In Figure 7 (a), although µ ranges from 0.3 to 0.9,
the F-score changes small, with the maximum difference of

Figure 7. Incluence of µ (Equation (1)), γ (Equation (2)),interval
length on MS-Celeb-1M. With the change of µ(a), the evaluation
results of clustering fluctuate slightly. In the same way, the change
of the F-score of γ (b) is also gentle, although it is slightly steep
compared with µ. Similarly, the curve of Interval length (c) is
smooth in most ranges. Only when the value is too small or too
large, it changes dramatically. The results show that our method is
not sensitive to parameters reflecting the robustness of the model.

FP being 0.5. A similar pattern is reflected with γ in Fig-
ure 7 (b). But compared to µ, the curve changes slightly
steeper. The interval length has the ability to avoid possible
errors in Z-value calculation. At the same time, the change
of interval length has little effect on the performance of the
model. As shown in Figure 7 (c), performance robustness
will be obtained within the appropriate value range. How-
ever, errors are introduced when the interval reaches 12, re-
sulting in poor performance. Besides, if the interval is large,
the mean of the interval can not accurately approximate the
intermediate point, which also affects the clustering.

5. Conclusion

In this paper, we propose a new concept called confi-
dence edges to select graphs for clustering. And a novel
GCN-based face clustering method is proposed under the
guidance of confidence edges. The confidence edges-
oriented graph construction method contains two closely re-
lated modules: local information fusion and unsupervised
neighbor determination. The former mines neighborhood

20997



information and reconstructs the similarity metric. And the
latter links appropriate edges for each vertex with the sta-
tistical information of neighbor sequences, thus obtaining
an informative and confident graph. Also, we explain UND
from the aspect of information theory to verify its valid-
ity. Next, with the graph as input, a novel confidence GCN
improves confidence edges further to achieve satisfactory
clustering results. Extensive experiments demonstrate the
effectiveness of our method, which achieves state-of-the-art
on face clustering, ReID, and comparable results on fashion
datasets. Moreover, because our method has considerable
time complexity and stable performance, it can be used for
large-scale data cluster cleaning.
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