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Abstract

Recent years have witnessed a rapid growth of deep gen-
erative models, with text-to-image models gaining signif-
icant attention from the public. However, existing mod-
els often generate images that do not align well with hu-
man preferences, such as awkward combinations of limbs
and facial expressions. To address this issue, we collect a
dataset of human choices on generated images from the Sta-
ble Foundation Discord channel. Our experiments demon-
strate that current evaluation metrics for generative models
do not correlate well with human choices. Thus, we train
a human preference classifier with the collected dataset
and derive a Human Preference Score (HPS) based on the
classifier. Using HPS, we propose a simple yet effective
method to adapt Stable Diffusion to better align with hu-
man preferences. Our experiments show that HPS outper-
forms CLIP in predicting human choices and has good gen-
eralization capability toward images generated from other
models. By tuning Stable Diffusion with the guidance of
HPS, the adapted model is able to generate images that are
more preferred by human users. The project page is avail-
able here: https://tgxs002.github.io/align_sd_web/.

1. Introduction

The recent progress in diffusion models [26, 30, 35, 32]
has enabled impressive advancements in text-to-image gen-
eration, with many models now being deployed in real-
world applications such as DALL-E [30] and Stable Dif-
fusion [32]. However, public attention has also highlighted
new issues, such as the awkward combinations of limbs and
facial expressions of generated persons as shown in Fig. 1.
The users usually need to cherry-pick results to avoid these
artifacts. In other words, the generated images are mis-
aligned with human preferences.

To further improve the quality of generated images, it

beautiful blonde woman in the image of a
fairy - tale princess in the garden with a
wreath in her hands ...

portrait of an old man with greying hair and

a wrinkled face, taking a grandfather clock
apart, dreary cityscape background ...
Figure 1. Generated images often do not align well with human
preferences and intentions. Input prompts are shown below im-
ages.

a blonde woman with a ragdoll cat sitting next to each other on a bench,
cyberpunk art by monet, trending on cgsociety, retrofuturism, reimagined
by industrial light and magic, darksynth, sci - fi

Figure 2. We show that Stable Diffusion v1.4 can be adapted to
better align with human preferences and intentions when guided
by the proposed human preference classifier. The input prompt is
shown below images.

is essential to track the ability of a model to generate hu-
man preferable images. However, it is uncertain whether
the existing evaluation metrics, such as Inception Score
(IS) [36] and Fréchet inception distance (FID) [13], are
correlated with human choices. These metrics perceive an
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image through a classification-based CNN trained on Im-
ageNet [34], which has been shown to be biased towards
image texture rather than general image contents [10], and
thus may not align well with human perception. Also, both
IS and FID are single-modal evaluation metrics, which do
not take user intention into account. Some recent stud-
ies [26, 30, 3] use the CLIP [29] model as a proxy for hu-
man judgment to evaluate the alignment between generated
images and text prompts. The CLIP [29] model is trained
on a rich dataset and is believed to capture subtle aspects
of human intention better. However, it is uncertain whether
CLIP [29] can measure the quality of generated synthetic
images, which may not adhere to the same constraints as
real images, such as the example shown in Fig. 1.

In this study, we investigate the problem of human pref-
erence using a novel, large-scale dataset of human choices
on images generated by Stable Diffusion [32] using the
same prompt. The dataset comprises 98,807 diverse images
generated from user-provided prompts, along with 25,205
human choices. By evaluating on this dataset, we find that
the Inception Score (IS) [36], the Fréchet Inception distance
(FID) [13] and the CLIP score does not fully match the hu-
man choice, which means that the human preference is a
missing dimension of image quality that is not well tracked
by existing mainstream metrics.

We further train a human preference classifier on this
dataset by fine-tuning the CLIP [29] model and define hu-
man preference score (HPS) based on it. We validate HPS’s
alignment with human choices and its generalization capa-
bility towards other generative models through user studies.
HPS can be utilized to guide generative models toward pro-
ducing human-preferred images. To this end, we devise a
simple yet effective method to adapt Stable Diffusion [32]
by LoRA [17] with awareness of human preference. We
conduct user studies to validate the effectiveness of our ap-
proach. The results show that the adapted model can bet-
ter capture human intentions, and generate more preferable
images, which significantly mitigates the kind of artifact
shown in Fig. 1.

Our contributions are as follows: (1) We create a large-
scale dataset for studying human preferences. To our best
knowledge, this dataset is the first of its kind that contains
massive human choices on images generated with the same
prompt. (2) We find that human choices cannot be accu-
rately predicted by the existing mainstream evaluation met-
rics, while it can be better predicted via fine-tuning CLIP
on the proposed dataset. (3) We propose a simple yet ef-
fective method to guide the Stable Diffusion model toward
generating images with better aesthetic quality and better
alignment with human intention.

2. Related Works

Text-to-image generative models. Text-to-image genera-
tive models have long been an active research area. Mansi-
mov et al. [23] show that Deep Recurrent Attention Writer
(DRAW) [11] can be conditioned on captions to gener-
ate novel scene compositions. Generative Adversarial Net-
works (GANs) improve image fidelity by training a dis-
criminator to provide supervision for the generative model.
DALL-E [31] firstly achieves open-domain text-to-image
synthesis with the help of massive image-text pairs.

Diffusion models formulate the generative process as the
inverse of the diffusion process [41], which was improved
by Song and Ermon [42] and Ho et al. [15]. Dhariwal
et al. firstly show the superiority of diffusion models over
GANSs on image generation. Several following works, in-
cluding DALL-E 2 [30], GLIDE [26], Imagen [35], ERNIE-
VILG [9, 47], Stable Diffusion [32], bring the magic of text-
to-image generation to the public attention. Among these
models, Stable Diffusion is an open-source model with an
active user community.

Several recent works improve Stable Diffusion on differ-
ent aspects. DreamBooth [33] and ELITE [46] explore cus-
tomizing Stable Diffusion to a certain object. Feng et al. [8]
propose a training-free method to guide diffusion models
for better compositional capabilities. It has been discovered
that prompt engineering plays an important role in gener-
ating high-quality images. Hao et al. [12] devise an auto-
matic prompt engineering scheme via reinforcement learn-
ing. Our method focuses on the misalignment between the
generated image and human preference, which is orthogo-
nal to the above-mentioned topics.

Datasets of generated images. Datasets of generated im-
ages play a vital role in computer vision tasks that has diffi-
culty in ground-truth acquisition, such as optical flow esti-
mation [24, 7, 4, 44,18, 39, 40]. Thanks to active user com-
munities of text-to-image models, several databases of im-
ages generated by diffusion models have been introduced.
Lexica (lexica.art) is a large database of images generated
by Stable Diffusion and Lexica Aperture. It also provides
related information about the image, such as the prompt and
guidance scale. However, the database is closed-source and
only allows online browsing. DiffusionDB [45] is a large-
scale open-source database collected from the Stable Foun-
dation Discord channel, containing the text prompt and pa-
rameters for each image. SAC [28] is a dataset of images
generated from Stable Diffusion and GLIDE [26], along
with user ratings from an aesthetic survey. However, SAC
only contains limited user choices compared to our dataset.
Learning from human feedback. Human feedback has
long been used in a wide range of deep learning tasks.
Christiano et al. [6] and Arakawa et al. [1] incorporate hu-
man feedback into RL training, which is proven to accel-
erate the model convergence. Krishna et al. [20] propose
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The personification of the halloween holiday in the form of a cute girl with short hair ...

Figure 3. Examples of the collected data. The images are generated by Stable Diffusion, with corresponding prompts shown below each
row of images. The preferred images are highlighted with red borders. More examples can be found in the appendix.

“socially situated AI”, which significantly improves image
recognition performance via interacting with human users
on Instagram. InstructGPT [27] fine-tunes GPT via a re-
ward function trained on human feedback, establishing the
foundation for the success of ChatGPT. [12] and [21]
use similar methodology to improve text-to-image mod-
els, which are highly related to our work. In [I12], this is
achieved by augmenting the text prompt. [21]is a concur-
rent work that focuses more on the exact alignment between
text and image, while our work shows that the potential of
human feedback is far beyond the exact alignment when the
feedback takes into account the aesthetic preference of hu-
mans.

3. Human Preference Dataset

In order to get a better understanding of the human pref-
erences on the images generated from prompts, and to im-
prove text-to-image generation quality, we start by collect-
ing a dataset of human choices.

Data collection. We utilize the “dreambot” channel on the
Stable Foundation Discord server to gather human choice
data. The chat history of these channels is obtained using
the DiscordChatExporter [16] tool, which downloads the
full chat history of a Discord channel and stores it in JSON
format. Among the chat messages, a discernible pattern of
interaction is observed, as depicted in Fig. 4, which reveals
human preferences. In this pattern, a user initiates a session
by sending a text prompt to the bot, which generates several
images in response. Then, the user selects a preferred im-
age and sends it back to the bot, along with the original text
prompt. The bot will return several refined images. This

Discord Channel

cinematic lightin;
ghimne Bot

prompt: super car,

cinematic lighting

Figure 4. Interactions in the Discord channel. The human choice
is highlighted in orange.

interaction follows a pre-defined grammar, which allows us
to extract human choice and related images using simple
pattern-matching techniques.

Data format and statistics. Finally, we obtain a total
of 98,807 images generated from 25,205 prompts. Each
prompt corresponds to several images, among which one
image is chosen by the user as the preferred one, while oth-
ers are non-preferred negatives. Each prompt corresponds
with a varying number of images. 23,722 prompts have four
images, 953 prompts have three images and 530 prompts
have two images. The number of images for each prompt
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| IS FID

16.27£0.56 38.2
16.23 £0.53  37.7

Preferred
Non-preferred

Table 1. The IS and FID of both preferred images and non-
preferred images in our collected dataset. The FID is computed by
comparing against a subset of images from the LAION-5B dataset
that corresponds to the text inputs.

depends on the user’s specifications in the generation re-
quest. Notably, the dataset exhibits a high level of diversity,
with images generated across a broad range of themes. The
dataset consists of choices made by 2,659 different users,
and each user contributes at most 267 choices. Examples
of the collected dataset can be found in Fig. 3. For further
details on the dataset, we refer the readers to Fig. 9 in the
appendix.

Privacy and NSFW contents. We observe that a small por-
tion of images is generated with image condition (the con-
dition image may be either generated or uploaded by the
user). Since user-uploaded images may contain sensitive in-
formation or privacy, we do not include them in our dataset.
For the images with potential NSFW content, we use the
channel bot’s NSFW detector to filter them out.

In this work, we utilize this dataset to study the existing
metrics’ correlation with human preferences, which will be
introduced in Sec. 4. The dataset also serves as the train-
ing data for our human preference classifier, which is to be
introduced in Sec. 5.

4. Existing Metrics

In this section, we show that the current mainstream eval-
uation metrics are not well correlated with human prefer-
ences on our dataset.

4.1. Metrics by Inception Net

Inception Score (IS) [36] and Fréchet inception distance
(FID) [13] are two popular metrics used to evaluate the
quality of generated images. Both of them perceive an im-
age through an Inception Net [43] trained on ImageNet [34].
In this section, we investigate their correlation with human
choices.

Inception Score (IS) measures the quality of generated im-
ages by computing the expected KL-divergence between the
marginal class distribution over all generated images and
the conditional distribution for a particular generated im-
age, using the class probability predicted by the Inception
Net. This metric is expected to capture both the fidelity and
diversity of generated images. To determine the correlation
between IS and human preferences, we compute IS for both
the set of preferred and non-preferred images in our dataset.
For each setting, we divide 20,000 images into 10 splits and

reported the mean and standard deviation of IS computed
on them. Our results, as shown in Tab. 1, indicate no sig-
nificant difference between the preferred and non-preferred
images.

Fréchet Inception Distance (FID) measures the similar-
ity between the embedding feature of generated and real
images. This is achieved by fitting the embedding fea-
tures into a multivariate Gaussian distribution and comput-
ing their Fréchet distance. To define the target distribution,
FID requires a set of real images. However, in the case of
images generated from user-provided prompts, such as in
our dataset, the target distribution is defined by users’ in-
tention, which can only be inferred from text prompts. To
address this, we randomly sample 10,000 text prompts from
our dataset, and for each prompt, we query the LAION [38]
dataset via the official api to find the closest image, which
is taken as a “pseudo ground truth” for that prompt. This
provides a set of real images aligned with the users’ inten-
tions. We randomly sample 10,000 images from both the
preferred and non-preferred split of the collected dataset to
compute FID with the real images. Our results, as shown
in Tab. 1, reveal no significant difference between the pre-
ferred and non-preferred images in terms of FID. This sug-
gests that FID may not be a reliable metric for evaluating
human preference.

Discussion. IS and FID may suffer from the following
three issues when evaluating human preference. Firstly,
generated images often contain shape artifacts, as shown in
Fig. 1. However, classification-based CNNs tend to be bi-
ased towards image texture rather than shape [10], making
them be likely to ignore shape artifacts in generated images.
Additionally, the domain gap can pose a problem. While
the evaluation model is trained on real images from Ima-
geNet [34], the generated images in our dataset exhibit a
wide range of styles and themes, from oil painting portraits
to digital art of cyborgs. As a result, the ImageNet-trained
model may not have meaningful representations for these
diverse images [2]. Furthermore, these metrics are limited
by their single-modal nature, which means that they cannot
infer user intentions by accessing prompts, unless the target
images are known or provided as we do.

4.2, Metrics by CLIP

Thanks to the large and diverse set of training data, CLIP
is better at encoding images from various domains com-
pared to ImageNet-trained models. Moreover, it can cap-
ture users’ intentions by encoding text prompts, making it
a plausible choice for evaluating the alignment between a
prompt and a generated image [26, 30, 3, 32]. Aesthetic
Score Predictor [37] is another CLIP-based tool for im-
age quality evaluation, which has been utilized to filter the
training data for Stable Diffusion [32]. In this section, we
evaluate the capability of these tools in predicting human
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Figure 5. Left: training human preference classifier to derive HPS. Right: adapting Stable Diffusion to generate preferable images. During
training, the Stable Diffusion is tuned to associate the concept of non-prefer with the prompt prefix [Identifier]. During inference, [Identi-
fier] is used as the negative prompt in classifier-free guidance.

Model | Text | Preference Acc. (%)
Random guess X 26.1
Human v 42.0
CLIP ViT-L/14 v 32.9
CLIP RN50x64 v 33.1
Aesthetic Classifier X 314
HP classifier (ours) | v | 435

Table 2. Preference Acc. refers to the human choice prediction
accuracy on 5,000 user choices. The Aesthetic Classifier makes
prediction without seeing the text prompt.

choices, which is done by counting the accuracy of the hu-
man choice prediction task conducted on a split of 5,000
samples from our dataset.

CLIP score is derived as the cosine similarity between
the prompt embedding and the image embedding computed
by CLIP. We evaluated the performance of ViT-L/14 and
RN50x64 models, which are the largest open-source CLIP
models for transformer and CNN architecture. Our results,
presented in Tab. 2, demonstrate that both CLIP models ex-
hibit superior performance over random guessing. How-
ever, we will show in Sec. 7.1 that the CLIP score does not
correlate well with human choices. Nevertheless, we will
also show that it can be further fine-tuned on our dataset to
better align with human preferences.

Aesthetic score is based on a pre-trained ViT-L/14 CLIP
image encoder, which is adapted to the task of aesthetic
score prediction by adding a MLP layer on top of the CLIP
image encoder. The MLP is trained on several aesthetic
datasets, including both real images and generated images
(e.g., AVA [25], SAC [28]) to predict aesthetic scores rang-
ing from 1 to 10. Unlike CLIP, the aesthetic classifier does
not condition on the prompt, so the image with the high-

est predicted score is taken as the model choice. As shown
in Tab. 2, the aesthetic classifier also exhibits better-than-
chance accuracy in predicting user choice, indicating the
importance of the aesthetic aspect of an image in human
decision-making.

5. Human Preference Score

We first train a human preference classifier to predict the
human choice based on the prompt, and then derive HPS
based on the trained classifier.

Human preference classifier We fine-tune the ViT-L/14
version of CLIP on our dataset to better align with human
preferences. Each sample in the training set contains one
prompt along with n € {2, 3,4} images, among which only
one image is preferred by the user. The model is trained to
maximize the similarity between the embedding of the text
prompt computed by the CLIP text encoder and the embed-
ding of the preferred image computed by the CLIP visual
encoder, while minimizing the similarity for non-preferred
images. By fine-tuning on human choices of generated im-
ages, the model is encouraged to better align with human
preferences.

Human preference score (HPS) is derived from the human
preference classifier. We define HPS as:

HPS(img, txt) = 100 cos(enc, (img), enc,(txt)),

where enc, and enc; are the visual encoder and the text
encoder of the human preference classifier. We multiply the
cosine similarity by a factor of 100 for better visualization.

6. Better Aligning Stable Diffusion with Hu-
man Preferences

HPS can be used to guide diffusion-based generative
models to better align with human users. We argue that the
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misalignment between generated images and human pref-
erences is a problem of missing “awareness” rather than
model capacity. To address this issue, we propose to adapt
the generative model by explicitly distinguishing preferred
images from non-preferred ones. Our solution is straight-
forward and intuitive. We construct another dataset con-
sisting of prompts and their newly generated images, which
we categorize as either preferred or non-preferred using our
previously trained human preference classifier. For the non-
preferred images, we modify their corresponding prompts
by prepending a special prefix. By adapting Stable Diffu-
sion on this dataset via LoRA [17], we enhance the model’s
ability to learn the concept of non-preferred images, which
can subsequently be avoided during inference.
Constructing training data. We construct the training data
from the “large_first_1m” split of DiffusionDB [45],
and a subset of the pre-train dataset of Stable Diffusion
(LAION-5B) for regularization. DiffusionDB [45] is a
large-scale dataset of generated images along with their text
prompts. For images from DiffusionDB, we first compute
HPS for each image-prompt pair. After that, we group the
images by their prompts, and for each prompt 7', we add
the image I* with the highest HPS into the training data if
it passes the following criteria:

v
p>—,
n

where n is the number of images with the same prompt,
and « is a hyper-parameter that controls the selectivity. p is
given by:

_ exp(HPS(I*,T))
- ZIeB exp(HPS(I,T))’

where B is the set of images with the same prompt. Sim-
ilarly, we construct the non-preferred subset by the same
criteria, but using negative HPS. Finally, we get a mixed
dataset of generated images and real images, where the non-
preferred generated images are identified by their prompt
prefix.

Adapting Stable Diffusion. We adopt LoRA [17] to adapt
Stable Diffusion to the training data, in which the param-
eters of the original model are kept frozen, and the {key,
query, value, out} projection matrices are augmented with
a low-rank residual. LoRA does not add new parameters
to the model, since the learned projection matrices can be
merged into the base model once trained. During training,
we use the prompt as the caption for generated images. For
non-preferred images, we prepend a special identifier before
each of their captions (we choose “Weird image.” as the
special identifier in our case). During inference, the special
identifier is used as the negative prompt for classifier-free
guidance [14] to avoid generating non-preferred images.
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a couple of women that
have a dog on a leash.

The skier is upside
down in the air.

Figure 6. Correlation between HPS and CLIP score. While the
CLIP score emphasizes more on the direct matching between the
image content and the text prompt, HPS emphasizes more on the
aesthetic quality of images.

7. Experiments

In this section, we firstly validate the reliability of HPS in
Sec. 7.1, and then in Sec. 7.2, we introduce our experiments
of adapting Stable Diffusion.

7.1. HPS

Implementation details of human preference classifier.
We use 20,205 samples from our dataset during training,
which contains 20,205 prompts and 79,167 images. We use
the ViT-L/14 version of CLIP in our experiments. We fine-
tune the last 10 layers of the CLIP image encoder and the
last 6 layers of the text encoder. The model is trained by the
AdamW optimizer [19] with a learning rate of 1.7 x 107°
for 1 epoch. The batch size is 5. The learning rate decays
with a cosine learning rate schedule. Weight decay is set as
3.1 x 1073, Instead of using the original data augmentation
of random resized crop, we directly resize the longest edge
of the image to 224, and then pad zeros to make the shorter
edge increase to 224. We empirically find that fixing the as-
pect ratio of the image is beneficial. The hyper-parameters
are tuned via Bayesian optimization.

Alignment with human. As shown in Tab. 2, the trained
model significantly outperforms CLIP in the human choice
prediction task. Due to the strong diversity of human pref-
erences, the accuracy is even higher than our human partic-
ipants.

Generalization. We evaluate HPS’ generalization capa-
bility towards other generative models by user studies. In
this experiment, we let the human preference classifier and
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Prompt

Amethyst potion. Fantasy concept art.

portrait of caitlyn, from league of legends,
holding a rifle, hyper detailed, clear face, digital
painting, trending in artstation, studio quality,
smooth render, fluorescent skin, unreal engine 5
rendered, octane rendered, art style by jules
bastien - lepage and gaston bussiere and sleepy
sheep and wlop and james christensen

oil portrait of archie andrews holding a
picture of among us, intricate, elegant,
highly detailed, lighting, painting,
artstation, smooth, illustration, art by
greg rutowski and alphonse mucha

photo of olaf from frozen with a human
body, standing up, with a sweater and
yoga pants.

Original Model

Regularization Only

Adapted Model

Figure 7. Comparison of images generated by the original model, the regularization-only model, and our adapted model. “Regularization
Only” refers to a head-to-head setting against the “Adapted Model”, where Stable Diffusion is adapted without HPS-labeled images. Images
in the same row are generated with the same prompt and random seed. The prompts are sampled from DiffusionDB. The adapted model
can better capture the user intention from the prompt, and generate more preferable images with fewer artifacts.

| Agreement (%)
Human vs. Human 63.5 £ 4.3
CLIP vs. Human 56.8 £ 1.7
HPS vs. Human | 61.5+1.1

Table 3. Agreement on comparing images generated by Stable Dif-
fusion and DALL-E.

several human participants evaluate 398 pairs of images.
In each pair, the images are generated by DALL-E [30]
and Stable Diffusion [32] with the same text prompt. The
prompts are randomly sampled from DiffusionDB [45],
which is a large database of images and prompts sourced
from the Stable Foundation Discord channel. We filter
out the NSFW prompts by the indicator provided in Dif-
fusionDB [45].

In Tab. 3, we evaluate the agreement between the predic-
tions from humans, CLIP, and HPS. The agreement is com-
puted by averaging the similarity of the prediction of each
participant. HPS is better aligned with human preference
compared to CLIP score, and its agreement with humans is
close to the agreement between humans. It shows that HPS
can generalize toward images generated by other models.
We refer the readers to the supplementary material for a full
list of images and choices made in this user study.

Correlation with CLIP score. In Fig. 6, we visualize the
correlation between HPS and CLIP score. The text prompts
are randomly sampled from the COCO Captions [5] dataset,
and the images are generated by Stable Diffusion [32]. We
can see that HPS has a positive correlation with CLIP score,
but emphasizes more on the aesthetic quality of an image.
However, HPS put less importance on the direct matching
between image contents and text prompts, which can be in-
terpreted as a visual analogy of “alignment tax” introduced
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Figure 8. Human evaluation results on images generated from 100
randomly sampled prompts. The color represents the number of
positive votes received from 20 participants.

in [27].

7.2. Better Aligning Stable Diffusion with Human
Preferences

Implementation details. We use the Stable Diffusion [32]
v1.4 for all our experiments. « is set to 2.0 for both pre-
ferred images and non-preferred images when construct-
ing the training set. The constructed training set con-
tains 37,572 preferred generated images and 21,108 non-
preferred generated images. The regularization images are
from a 625k subset of LAION-5B filtered by the aesthetic
score predictor with a threshold of 6.5. 200,231 regulariza-
tion images participate in training. We only fine-tune the
UNet of Stable Diffusion, while keeping the VAE and the
text encoder frozen during training. The rank is set to 32
in LoRA [17]. The LoRA weights are trained for 10k iter-
ations with the AdamW [19] optimizer with a learning rate
of 1 x 1075 and a weight decay of 1 x 1072, which is kept
constant during training. We use a batch size of 40 in our
experiments. For inference, we run the diffusion process by
50 steps for each image with PNDM [22] noise scheduler.
We use the default guidance scale of 7.5 for classifier-free
guidance [14].

Human evaluation. We compare our trained model with
the original Stable Diffusion by conducting user studies. In
this study, we randomly sample 100 user-provided prompts
from DiffusionDB [45]. For each prompt, we generate an
image from both models with the same random seed for fair
comparison, resulting in 100 pairs of generated images for
the user study. We ask 20 participants to read the prompt,
and then choose between the image generated by our trained
model and the original Stable Diffusion based on their pref-
erence. In Fig. 3, we visualize our result by showing the per-
centages of images with different numbers of positive votes.
The adapted model significantly outperforms the original
model. 74% of the images generated by the adapted model

‘ FID |  Aesthetic Score [37] T CLIP Score [29] T  HPS 1

SD 1.4 19.72 5.90 0.2816 0.1898
Adapted model | 19.35 6.06 0.2831 0.1916

Table 4. Comparison between the original SD v1.4 and the adapted
model.

has more than 10 votes, while the number is 22% for the
original model. A screenshot of the user-study interface is
presented in Fig. 12 in the appendix.

Qualitative Evaluation. In Fig 7, we show some typical
cases of improvement. We compare the original model,
the regularization-only model, and the adapted model. The
adapted model is trained with both real regularization im-
ages and generated images with HPS preference labels.
The regularization-only model is a head-to-head compari-
son with the adapted model, which is trained by removing
the generated images from the training set and is trained ex-
clusively on regularization images for the same number of
steps. The results show that the adapted model can better
capture the user intention from the prompt, as shown in the
first row. The last three rows show that training with gener-
ated images mitigates the problem of unnatural limbs. We
refer the readers to Fig. 7 and Fig. 10 in the appendix for
more examples.

Quantitative Evaluation. In Tab. 4, we compare the
adapted model with the baseline on FID, Aesthetic Score,
CLIP Score and HPS. The FID [13] is computed on 10k
images from the LAION [38] dataset. CLIP Score [29] and
HPS are computed on prompts from DiffusionDB [45].

8. Limitations

There are several limitations about the dataset. The col-
lected dataset contains generated prompts and images of
public figures. We choose to mark them out instead of re-
moving them to keep the diversity of the dataset. Despite
the diversity of the dataset, we are also aware that it only
represents the preference of a small portion of people in the
world, and it may be biased towards a certain group of peo-
ple that are active in the Stable Foundation Discord channel.
Another potential bias about this dataset is that a large por-
tion of text prompts are written by experienced Stable Dif-
fusion users. These prompts are very likely to be tweaked to
activate the potential of Stable Diffusion and deviate from
normal language habits.

9. Conclusion

In this work, we study human preferences on a large-
scale dataset of generated images. We find that the previ-
ous evaluation metrics for generative models are not well
aligned with human preferences, but the CLIP model can
be fine-tuned into a human preference classifier to better

2103



align with human choices. Then, we show a simple yet ef-
fective method to adapt the generative model to generate
more preferable images with the guidance of human prefer-
ence score. We hope our work can inspire the community
to explore new possibilities of human-aligned Al research.
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