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Abstract

Owing to the large distribution gap between the hetero-
geneous data in Visible-Infrared Person Re-identification
(VI Re-ID), we point out that existing paradigms often
suffer from the inter-modal semantic misalignment issue
and thus fail to align and compare local details properly.
In this paper, we present Concordant Attention Learning
(CAL), a novel framework that learns semantic-aligned
representations for VI Re-ID. Specifically, we design the
Target-aware Concordant Alignment paradigm, which al-
lows target-aware attention adaptation when aligning het-
erogeneous samples (i.e., adaptive attention adjustment ac-
cording to the target image being aligned). This is achieved
by exploiting the discriminative clues from the modality
counterpart and designing effective modality-agnostic cor-
respondence searching strategies. To ensure semantic con-
cordance during the cross-modal retrieval stage, we further
propose MatchDistill, which matches the attention patterns
across modalities and learns their underlying semantic cor-
relations by bipartite-graph-based similarity modeling and
cross-modal knowledge exchange. Extensive experiments
on VI Re-ID benchmark datasets demonstrate the effective-
ness and superiority of the proposed CAL.

1. Introduction

Person Re-identification (Re-ID) aims to associate per-
son identities across non-overlapping cameras. It has gained
increasing attention in recent years due to its practical ap-
plications in real-world surveillance systems. Conventional
person Re-ID methods mainly focus on retrieving the same
identity across visible (RGB) cameras [48, 29, 16, 23, 10].
Despite their remarkable success, they have limited appli-
cability since visible cameras cannot capture discriminative
information under poor-lighting conditions (e.g., at night).
To improve the illumination robustness, infrared (IR) cam-
eras are widely applied to cooperate with visible ones in
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Figure 1. A high-level overview of typical local feature learning
paradigms. (a) Splitting-based: The semantics of the hand-craft
stripes are not always properly aligned. (b) Auxiliary-model-
based: Pretrained auxiliary models are often error-prone due to
the domain shifts (especially for infrared image). (c) Attention-
based: Due to the inter-modal distribution gap, existing style-
sensitive attention module with less descriptive learnable pro-
totypes often fails to attend semantically consistent regions.
(d) CAL (Ours): Our method can learn concordant attention by
discriminative region mining, target-aware style-agnostic atten-
tion, and part-aligned knowledge exchange.

real-world surveillance systems. This increases the need
to explore the Visible-Infrared Person Re-identification (VI
Re-ID) problem, which aims to associate the person images
taken by different spectrum cameras to achieve long-term
person tracking in 24-hour surveillance systems.

Compared to traditional RGB-based re-identification, VI
Re-ID is much more challenging due to the differences
in spectral properties between visible and infrared images.
This data heterogeneity can lead to severe misalignment in
the feature space and large intra-class discrepancy, result-
ing in significant degradation in performance. In addition,
similarly to RGB-based Re-ID tasks, VI Re-ID can also be
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impacted by the changes in pose or background, resulting
in increased difficulties.

Recent years have witnessed a surge of creative work on
mitigating the modality gap for VI Re-ID [38, 43, 18, 44,
4, 20]. However, as most existing methods only consider
learning global representations from the whole image, they
fail to compare local details. In addition, owing to the short-
cut learning characteristics [6], global-feature-based meth-
ods would tend to learn modality-specific shortcut patterns,
making the learned features susceptible to concentrating on
divergent regions in each modality and resulting in sub-
optimal performance. A seemingly straightforward solu-
tion is to learn semantic-aligned local features with either
splitting-based [29, 8, 20], auxiliary-model-based meth-
ods [26, 19, 28, 1], or attention-base paradigms [18, 16, 33,
27] instead of the global ones. However, these methods also
fail to achieve inter-modal semantic alignment, as demon-
strated in Figure 1, and forcibly aligning these semantic-
misaligned embeddings would inevitably injure the training
process and compromise the performance.

Different from these deep learning methods, human vi-
sual systems can naturally avoid the misalignment issue
thanks to their target-aware comparison strategy. Consid-
ering the scenario of comparing two images of persons (re-
ferred to as “base image” and “target image”, respectively),
human vision systems would first identify multiple distinc-
tive key regions (such as facial and clothing details) in the
target image and then direct their attention to correspond-
ing regions in the base image. In this manner, humans
can always make perfect part-to-part comparisons1 since
they are able to adaptively and accurately adjust their at-
tention by referencing the key regions of the target image.
This suggests that exploiting clues from the target image of
the modality counterpart and exploring an effective cross-
modal corresponding region-searching strategy can benefit
in mitigating the inter-modal semantic misalignment issue.

In this paper, we present Concordant Attention Learn-
ing (CAL), a novel framework that mimics the target-aware
comparison behavior of human vision systems to learn
semantic-aligned representations for VI Re-ID. Firstly,
we devise the Target-aware Concordant Alignment (TCA)
paradigm, which aims to exploit discriminative local clues
from the target modality (i.e., the modality counterpart)
when aligning heterogeneous embeddings. The proposed
TCA consists of three components: (1) Discriminative Re-
gion Mining: identifying diverse and discriminative key
regions from the feature maps of each training sample;
(2) Target-aware Style-agnostic Attention Adapter: tak-
ing the selected key regions from the target modality as
part queries, and applying target-aware refinement to adapt
the feature attention and generate part-aligned embeddings;

1Note that we use the term “region” and “part” interchangeably to de-
note the same thing.

(3) Part-aligned Metric Learning: clustering or separat-
ing the part-aligned embeddings across modalities accord-
ing to their identity labels. Even though this target-aware
refinement scheme can mitigate the modality discrepancy
by leveraging the clues from the target modality, it brings
higher computational costs during inference. Because it
needs to be carried out for all query-gallery pairs, and the
gallery set is generally large. To this end, we further pro-
pose MatchDistill. First, we need to associate the generated
part queries of different modalities to guarantee that the sub-
sequent distillation is conducted on semantic-aligned fea-
tures. This is achieved by modeling the correlations of their
corresponding attention maps with bipartite graphs and con-
ducting Cross-modal Query Matching (CQM) to find the
optimal matches. After that, a dual-level knowledge dis-
tillation loss is designed to allow cross-modality knowl-
edge exchange between the best-matched queries. This
can facilitate the learning of underlying relationships be-
tween the visible and infrared modalities. After training
with MatchDistill, each modality can learn knowledge from
its modality counterpart, and no cross-modal interaction is
needed during inference.

Overall, our contributions are summarized as follows:
• We propose Concordant Attention Learning (CAL), a

target-aware training paradigm that mimics human behav-
ior and learns concordant attention to alleviate the inter-
modal attention bias issue for VI Re-ID.

• To enable part-aligned metric learning, we present Target-
aware Concordant Alignment (TCA), which leverages
cross-modal clues and allows adaptive attention adjust-
ment when aligning heterogeneous embeddings.

• We propose MatchDistill, which matches the attention
patterns across modalities and learns their underlying
semantic correlations by bipartite-graph-based similarity
modeling and cross-modal knowledge exchange.

• Extensive experiments demonstrate that the proposed
CAL archives state-of-the-art performance on both the
SYSU-MM01 [38] and RegDB [25] datasets.

2. Related Work

Visible-Infrared Person Re-ID. Visible-Infrared Person
Re-ID (VI Re-ID) has drawn increasing attention in re-
cent years [43, 17, 39, 12, 20]. Mainstream VI Re-ID
paradigms focus on bridging the modality gap via design-
ing metric learning constraints [45, 42, 40], normalizing
feature statistics [14, 39, 13], synthesizing auxiliary train-
ing samples [34, 3, 49, 24], or developing modality-specific
and modality-shared feature learning paradigms [5, 22, 30].
However, these methods only consider learning global rep-
resentations from entire images without considering the lo-
cal information of images, leading to limited expressiveness
of learned features. A few works also attempt to learn local
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features for VI Re-ID [8, 20, 41, 47] by splitting the feature
maps into several hand-craft stripes. However, due to inac-
curate detection boxes, pose variations, and occlusion, the
hand-craft stripes are not always well-aligned, resulting in
unsatisfactory performance.
Local Feature Learning in Person Re-ID. Local fea-
ture learning is an important research direction for per-
son re-identification since learning part aggregated fea-
tures makes the model robust against misalignment [44].
It can be roughly divided into splitting-based methods,
auxiliary-model-based methods, and attention-based meth-
ods. Splitting-based methods [29, 8, 20] focus on learn-
ing local features from horizontal-divided regions, which
now serve as a strong part feature learning baseline. How-
ever, due to inaccurate detection boxes, pose variations, and
occlusion, the semantics of the hand-craft stripes are not
well aligned. The auxiliary-model-based methods [26, 19,
28, 1] often adopt off-the-shelf auxiliary human parsing or
pose estimation networks to obtain semantically meaning-
ful body parts. However, they require additional compu-
tational costs and are prone to noisy estimation, especially
when the data distribution varies. The attention-based meth-
ods focus on exploiting attention mechanisms to localize
discriminative human parts and have achieved great suc-
cess [18, 16, 33, 27]. However, these methods cannot be
directly applied to the cross-modality scenario of VI Re-ID
due to the inter-modal semantic misalignment issue as dis-
cussed in Sec. 1.

3. Methodology
3.1. Intuition of Target-aware Alignment

Let xk denote the training images of modality k, where
k ∈ {V, I} (V for visible modality and I for infrared
modality). The visible and infrared samples in the dataset
are denoted by V = {xV

j , y
V
j }Nv

j=0 and I = {xI
j , y

I
j }

Ni
j=0,

respectively, where Nv and Ni are the numbers of samples
of each modality in the dataset, and ykj is the correspond-
ing identity label of the j-th sample from modality k. The
goal of Visible-Infrared Person Re-identification is to match
the person identities across modalities according to feature
similarities. Therefore, it is essential to reduce the large
intra-class variation between heterogeneous samples. Ex-
isting paradigms often attempt to reduce the cross-modal
intra-class variation by directly optimizing

Ei,j

[
1(yVi = yIj ) · d

(
f(xV

i ), f(x
I
j )
)]
, (1)

where f denotes the feature extractor, and d(·, ·) represents
the distance between features. However, as discussed in
Sec. 1, the attention misalignment issue could injure the
training process and compromise performance. We thus en-
dow the model with the ability to adaptively adjust the at-
tention according to the target being compared to achieve

attention consensus. First, the Discriminative Region Min-
ing (DRM) module, formulated as γ(·), is introduced to
disentangle the global features into diverse key body parts.
We then devise the Target-aware Style-agnostic Attention
Adapter (TSAA) to allow adaptive style-agnostic attention
adjustment according to any given part queries regardless
of the image styles. The feature extractor is then reformu-
lated as f(x,p) to represent the above dynamic attention
adjustment process, where p denotes the given body parts.
The objective function to reduce the cross-modal intra-class
variation can then be defined as

Ei,j,k

[
1(yVi =yIj ) · d

(
f(xV

i , γ(x
I
j )k), f(x

I
j , γ(x

I
j )k)

)
+

1(yIi =yVj ) · d
(
f(xI

i , γ(x
V
j )k), f(x

V
j , γ(x

V
j )k)

)]
.

(2)

In this manner, the embeddings being optimized can achieve
semantic concordance since the same queries are used to
guide feature attention (for instance, f(xV

i , γ(x
I
j )k) and

f(xI
j , γ(x

I
j )k) correspond to the same semantic region

since they are refined using the same part query γ(xI
j )k).

This also allows cross-modal interaction to facilitate the
learning of underline relationships between modalities. The
overall pipeline is depicted in Figure 2, and more details
will be introduced in the following subsections.

3.2. Target-aware Concordant Alignment

3.2.1 Discriminative Region Mining

The Discriminative Region Mining module aims to discover
several diverse discriminative key regions from the feature
maps X ∈ RC×H×W derived from the backbone network,
where C, H , and W denote the number of channels, the
height, and the width of the feature maps. Our DRM con-
tains two stages: Part Scoring and Token Selection and Ag-
gregation. The former aims to classify the tokens (i.e., the
spatial vectors of X) into Np different parts, while the lat-
ter selects the top-k tokens for each part based on the scores
and aggregates them to derive the part features P .
Part Scoring. To disentangle the feature maps into sev-
eral diverse discriminative regions, we first develop a simple
scorer network γθ to predict the scores of Np discrimina-
tive parts for each token in the feature maps. Here, Np is
a hyperparameter representing the number of parts. Specif-
ically, as illustrated in Figure 2, the feature maps X are
first passed through multiple max-pooling layers with dif-
ferent scales (i.e., 1 × 1 for identity mapping, 3 × 3, and
5×5 in this paper) to obtain features with different receptive
fields. These features are then upsampled and concatenated
along the channel dimension. Finally, the concatenated fea-
ture maps are fed into a point-wise convolutional layer with
softmax activation along the spatial function to predict the
scores of each part.
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Figure 2. (a) The overall pipeline of the proposed Concordant Attention Learning (CAL), which consists of a deep CNN backbone, the
Discriminative Region Mining (DRM), the Target-aware Style-agnostic Attention Adapter (TSAA), and the MatchDistill paradigm. Note
that only half of the pipeline is depicted for clarity since the model is symmetric. (b) The pipeline of DRM. (c) The architecture of the
proposed TSAA. (d) The pipeline of MatchDistill. Notations are introduced in Sec. 3.

Token Selection and Aggregation. Given the scores pre-
dicted by γθ, we then select the tokens with top-k scores
for each part and aggregate them by weighted averaging
to derive the aggregated part features. Specifically, let
S ∈ R(H·W )×Np denote the predicted score after the soft-
max layer produced by γθ, and let T ∈ R(H·W )×C denote
the flattened feature maps of X . The token selection and
aggregation process can be formulated as

P =
Ŝ

T
T∑

j Ŝj

, where Ŝ=T (S, Nk), Nk=⌈α · H ·W
Np

⌉, (3)

where T denotes the top-k operation; Ŝ ∈ R(H·W )×Np rep-
resents the selected regions, Nk is the number of selected
tokens, α is a hyperparameter controlling the selection ra-
tio, and P ∈ RNp×C represents the aggregated part fea-
tures. There are two main advantages of selecting the top-k
tokens instead of preserving all of them: (1) it helps filter
out noisy tokens that could bring noisy clues to subsequent
modules; (2) it can enhance the locality of the selected re-
gion and facilitate the learning of local representations.
Discriminability Constraint. To ensure the part features
P contains discriminative information, we design the dis-
criminative constraint loss, which is formulated as

Ldis = −
∑Np

i=1
log(Φi(P i)y), (4)

where Φk denotes part-specific classifiers implemented
with a simple fully connected layer with softmax activation,
and y is the label of the current sample.

Diversity Constraint. By training DRM with only Eq. (4),
the model would tend to select several identical regions, re-
sulting in suboptimal performance. This can be attributed
to the shortcut learning characteristics [6] of deep learning
systems that models attempt to find the simplest (but may
be suboptimal) solution to solve a given task. To enhance
the diversity of the selected regions, we further design the
diversity constraint loss, which is defined as

Ldiv =
∑

i,j
triu(Ŝ

T
Ŝ, 1)i,j , (5)

where triu(·, 1) denotes the upper triangular part (excluding
the diagonal) of the given matrix. This diversity constraint
loss can be regarded as imposing an explicit penalty on the
model when the selected key regions become too similar.

As shown in Figure 2, the DRM module is not shared
across modalities. This can help to learn better modality-
specific part prototypes and select more discriminative re-
gions, leading to better performance. This design will be
empirically validated in Sec. 4.

3.2.2 Target-aware Style-agnostic Attention Adapter

To achieve target-aware attention, it is important to properly
localize relevant regions in the feature maps by taking the
aggregated part features P as the reference. A straightfor-
ward solution is to directly apply Scaled Dot-Product Atten-
tion [32] by taking P as the part queries and the flattened
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feature maps T as the keys and the values, formulated as

Attn(T ;P ) = softmax
(
PT T /

√
d
)
T , (6)

where d is the feature dimension. However, this naive so-
lution simply adopts dot product as the similarity metric,
which could result in inaccurate attention scores. Because
the features of different modalities suffer from large dis-
tributions shift, making them hard to be properly compared
using a simple dot product operation. To this end, we design
the Target-aware Style-agnostic Attention Adapter (TSAA),
which includes a more reasonable similarity calculator. As
shown in Figure 2 (b), we first apply Instance Normaliza-
tion (IN) [31] to the part queries P and each token of the
feature maps X , formulated as

IN(P ) =
P − µ(TP )

σ(TP )
, IN(T ) =

T − µ(T )

σ(T )
, (7)

where µ(·) and σ(·) denote calculating the instance-level
mean and standard deviation; TP is the flattened feature
maps that P derives from (see Eq. (3)). The motivation
of this design is that the modality gap between IR and RGB
images can be interpreted as the large discrepancies in style,
and IN has been proven to be effective in reducing the style
variance [14, 39, 13]. After that, the normalized features are
fed into multi-layer perceptrons (MLPs) to learn nonlinear
projection and capture complex patterns of the features. We
then calculate the inner product of the projected features
after the MLPs and apply softmax function on the spatial
dimension to derive the final similarity. We can then ap-
ply spatial attention by weighted averaging all tokens using
the computed similarities. In addition, we also apply query-
guided channel attention to emphasize important channels
in the feature map and suppress less important ones, where
scores of channel attention are generated by an MLP layer
taking part queries as input. Formally, the TSAA module,
denoted by A(·; ·), can be formulated as

A(T ;P ) = S (T ,P )T ⊗M(P ; θ3), (8)

S (T ,P ) = softmax
(
P̂ T̂

T
/
√
d
)
, (9)

T̂ = M(IN(T ); θ1), P̂ = M(IN(P ); θ2), (10)

where S denotes the spatial similarity calculator, ⊗ de-
notes channel-wise multiplication, and M(·; θ) denotes
MLP with parameter θ. The TSAA has two merits: (1)
it allows style-agnostic attention adjustment based on any
given part queries P regardless of the image styles, making
it easier to achieve attention consensus; (2) it can naturally
bridge the gap between cross-modal samples by attending
to relevant regions and emphasizing relevant channels.

3.2.3 Part-aligned Metric Learning

Our part-aligned metric learning aims to reduce the cross-
modal intra-class discrepancies between the part-aligned

features. As shown in Figure 2 (a), we first employ TSAA
to perform cross-modal refinement since it can effectively
bridge the gap between cross-modal samples as discussed
in Sec. 3.2.2. The cross-modal refinement is defined as

fV,I
i = A(T V

j ;P
I
i ), f I,V

i = A(T I
j ;P

V
i ), (11)

where T j is randomly selected from the mini-batch and
yIi = yVj ; fV,I and f I,V are called cross-refined features.
Similarly, we also apply self-refinement using

fV,V
i = A(T V

i ;P
V
i ), f I,I

i = A(T I
i ;P

I
i ), (12)

to obtain the self-refined features. Since fV,I
i and f I,I

i

are refined using the same query (i.e., P I
i ), they would at-

tend to the same regions and can thus be regarded as part-
aligned features. We then design the Part-aligned Center
Loss (PCL) to enhance the discriminability of these seman-
tically aligned embeddings. Let ckj denotes the batch feature
centroid of class ykj in modality k (k ∈ {V, I}) given by

cVj =
1

|S(j)|
∑

i∈S(j)

fV,V
i , cIj =

1

|S(j)|
∑

i∈S(j)

f I,I
i , (13)

where S(j) = {i | yi = yj}. Our PCL is then defined as

Lpcl=
∑

i,j

[
g(fV I

i , cIj ) + g(f IV
i , cVj ) +

s(cIi , c
V
j ) + s(cIi , c

I
j ) + s(cVi , c

V
j )

]
.

(14)

Here, g and s aim to gather up intra-class features and sep-
arate inter-class features, respectively, formulated as

g(f , c) =
[
1(y(f) = y(c)) · ∥f − c∥2

]
,

s(ci, cj) =
[
1(y(ci) ̸= y(cj)) ·

[
σ − ∥ci − cj∥2

]
+

]
,

(15)

where σ is a marginal parameter adopted to avoid optimiz-
ing “already correct” centroid pairs; [z]+ = max(z, 0); y(·)
denotes the label of the corresponding embedding/centroid.

3.3. Cross-modal Knowledge Exchange

Even though the cross-refined embeddings yield smaller
distribution gaps with respect to the target modality, it is in-
feasible to employ cross-refined embeddings for retrieval
during the inference stage. Because the cross-modal re-
finement requires taking the part features P (derived from
DRM using the images of modality counterpart) as queries
and applying query-guided attention using Eq. (10). This
process need to be carried out for all query-gallery pairs,
which brings high computational costs since gallery sets are
generally large. To this end, we propose a novel solution
called MatchDistill, which allows DRM to directly gener-
ate target-modality-like part features. This is achieved by
associating the heterogeneous queries P V and P I with our
Cross-modal Query Matching algorithm and propagating
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the modality-specific knowledge to the best-matched query
of modality counterparts. For clarity, here we only take
matching and propagating the knowledge from P I to P V

as an example since MatchDistill has a symmetric pipeline.
As shown in Figure 2, in MatchDistill, we first construct
a complete bipartite graph G(U ,V ,E), where the vertices
U and V represent P I and P V , respectively. Each edge in
E connects a vertex in U to one in V . The weights of the
edges are the semantic similarities between queries, which
are measured by the dot product of the attention mask cal-
culated by Eq. (10), formulated as

w(EV
k1,k2

) = ⟨S (XV ,P I
k1
),S (XV ,P V

k2
))⟩, (16)

where w(·) denotes the weight of the edge. The idea behind
this is straightforward: if P k1 and P k2 represent the same
semantic region, their attention masks should have a high
level of similarity. This could help effectively model the se-
mantic correlations of the heterogeneous part queries. The
part query matching problem can then be formulated as

arg max
M⊆E

∑
e∈M

w(e), s.t. |M | = Np and

∀(u1, v1), (u2, v2) ∈ M , u1 ̸= u2 and v1 ̸= v2,
(17)

where M represents the edges of the optimal match (mean-
ing that ∀(u, v) ∈ M , P V

u and P I
v represent the same se-

mantic region). We solve this part query matching prob-
lem (Eq. (17)) with the Kuhn-Munkres assignment algo-
rithm [15]. After that, the mutual knowledge propagation
process can be performed between all (u, v) ∈ M pairs
since they are semantically aligned. Specifically, the pro-
posed knowledge distillation is conducted in two levels, i.e.,
the feature level and the logit level. For the feature level,
we propose to align the similarity maps of the best-matched
query pairs. This is equivalent to maximizing the weight of
the optimal bipartite graph, formulated as

Lkd1 = −
∑

e∈M
w(e). (18)

For the logit level, we constrain the consistency of their soft-
max classification distribution by

Lkd2 =
∑

(u,v)∈M
Dkl(p

V,I
u ∥ pV,V

v ), (19)

where p denotes the post-softmax classification probabil-
ity, and Dkl denotes Kullback–Leibler divergence. With
the above cross-modal knowledgable propagation, the self-
refined features can also capture important information that
can benefit cross-modal retrieval like the cross-refined ones.
Therefore, there is no needs to perform cross-refinement
during inference. In addition, by optimizing Lkd1 and Lkd2,
we observe that the optimal matches M gradually get stabi-
lized as the training progresses. This suggests that the opti-
mal matches with the highest occurrence in the last training
epoch, denoted as M̂ , can be used for test-time matching.

3.4. Training and Inference

Training. The overall training objective is defined as

L=Lid+Lpcl+λ1Lkd1+λ2Lkd2+λ3Ldis+λ4Ldiv, (20)

where Lid is the routinely used identity classification loss;
λ1, λ2,λ3, and λ4 are adopted to balance different losses.

Inference. During inference, we first reorder the learned
prototypes of the DRM (i.e., the parameters of the point-
wise convolutional layer in DRM) according to M̂ to en-
sure that the self-refined embeddings can be semantically
aligned. After that, the summation of the cosine similar-
ity of each part is then adopted as the comparison metric.
Formally, the similarity between the ith visible and the jth

infrared sample is given by
∑

p cos(f
V,V
i,p ,f I,I

j,p ), where cos
denotes cosine similarity computation, and the subscript p
denotes indexing in the part dimension.

4. Experiments
4.1. Experimental Settings

Datasets. The proposed method is evaluated under the
same protocols of existing work [20] on two widely-used VI
Re-ID datasets, i.e., SYSU-MM01 [38] and RegDB [25].
Implementation Details. We adopt ResNet-50 [9] as the
backbone network following existing work. At each train-
ing iteration, 8 identities are randomly sampled. For each
identity, 4 visible and 4 infrared images are selected to form
a mini-batch. The model is trained for 100 epochs in total
on RTX 3090 GPUs with SGD optimizer. The learning rate
linearly increased from 0.01 to 0.1 in the first 10 epochs.
The cosine annealing strategy [21] is adopted in the remain-
ing 90 epochs to decay the learning rate to 10−3. The hy-
perparameters are decided by cross-validation. Specifically,
we set λ1=1, λ2=1, λ3=0.1, λ4=0.1, Np=4, α=0.6,
and σ=0.6. All models are tested without using re-ranking
algorithms or gallery set information for fair comparison.

4.2. Comparison with State-of-the-Art Methods

The comparison results on SYSU-MM01 and RegDB
with state-of-the-art (SOTA) methods are shown in Table 1
and Table 2, respectively. It can be seen that the pro-
posed CAL outperforms existing approaches by large mar-
gins on both datasets. Specifically, on the SYSU-MM01
dataset, our proposed method surpasses the state-of-the-art
approaches [12, 20] on most of the evaluation metrics. As
for the RegDB dataset, our method also achieves new state-
of-the-art results. These experimental results verify the ef-
fectiveness and superiority of the proposed method.

4.3. Analysis and Discussion

Effectiveness of TCA and MatchDistill. To verify the
effectiveness of the two key components of CAL (i.e., TCA
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Table 1. Comparison with SOTA methods on the SYSU-MM01 dataset. †: Following previous work [43], for cm-SSFT [22] and CIFT
[17], we report the performance when no extra auxiliary information of the gallery set is introduced for fair comparison.

Method Venue
All-search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot
R1 ↑ R10 ↑ mAP ↑ R1 ↑ R10 ↑ mAP ↑ R1 ↑ R10 ↑ mAP ↑ R1 ↑ R10 ↑ mAP ↑

Zero-Pad [38] ICCV 2017 14.80 54.12 15.95 19.13 61.40 10.89 20.58 68.38 26.92 24.43 75.86 18.64
AGW [44] TPAMI 2022 47.50 84.39 47.65 - - - 54.17 91.14 62.97 - - -
cm-SSFT† [22] CVPR 2020 47.70 - 54.10 57.40 - 59.10 - - - - - -
NFS [2] CVPR 2021 56.91 91.34 55.45 63.51 94.42 48.56 62.79 96.53 69.79 70.03 97.70 61.45
SMCL [36] ICCV 2021 67.39 92.87 61.78 72.15 90.66 54.93 68.84 96.55 75.56 79.57 95.33 66.57
MCLNet [7] ICCV 2021 65.40 93.33 61.98 - - - 72.56 96.98 76.58 - - -
MPMN [35] TMM 2021 48.98 90.33 62.41 60.88 88.70 51.90 64.89 96.85 76.47 74.42 92.93 66.98
FMCNet [46] CVPR 2022 66.34 - 62.51 - - - 68.15 - 74.09 - - -
CAJ [43] ICCV 2021 69.88 95.71 66.89 - - - 76.26 97.88 80.37 - - -
CIFT†[17] ECCV 2022 71.77 - 67.64 78.00 - 62.46 78.65 - 82.11 86.97 - 77.03
MPANet [39] CVPR 2021 70.58 96.21 68.24 75.58 97.91 62.91 76.74 98.21 80.95 84.22 99.66 75.11
CMT [12] ECCV 2022 71.88 96.45 68.57 80.23 97.91 63.13 76.90 97.68 79.91 84.87 99.41 74.11
MAUM [20] CVPR 2022 71.68 - 68.79 - - - 76.97 - 81.94 - - -

CAL (Ours) - 74.66 96.47 71.73 77.05 98.01 64.86 79.69 98.93 83.68 86.97 99.83 78.51

Table 2. Comparison with SOTA methods under “visible to in-
frared” and “infrared to visible” modes on RegDB. †: see Table 1.

Method Visible to Infrared Infrared to Visible
R1 ↑ R10 ↑ mAP ↑ R1 ↑ R10 ↑ mAP ↑

Zero-Pad [38] 17.75 34.21 18.90 16.63 34.68 17.82
cm-SSFT†[22] 65.40 - 65.60 63.80 - 64.20
AGW [44] 70.05 86.21 66.37 75.93 90.93 69.49
NFS [2] 80.54 91.96 72.10 77.95 90.45 69.79
MCLNet [7] 80.31 92.70 73.07 75.93 90.93 69.49
CAJ [43] 85.03 95.49 79.14 84.75 95.33 77.82
SMCL [36] 83.93 - 79.83 83.05 - 78.57
MPANet [39] 83.70 - 80.90 82.80 - 80.70
MPMN [35] 86.56 96.86 82.91 84.62 95.51 79.49
FMCNet [46] 89.12 - 84.43 88.38 - 83.86
MAUM [20] 87.87 - 85.09 86.95 - 84.34
CIFT†[17] 92.17 - 86.96 90.12 - 84.81
CMT [12] 95.17 98.82 87.30 91.97 97.92 84.46
CAL (Ours) 94.51 99.70 88.67 93.64 99.46 87.61

and MatchDistill) and analyze their contribution to the over-
all performance, we conduct experiments on the more chal-
lenging SYSU-MM01 dataset. The experimental results are
given in Table 3, where we adopt ResNet-50 as the base-
line method. We can see that both TCA and MatchDistill
are shown to be essential to the final performance and can
significantly boost the performance of the baseline method.
These findings demonstrate the effectiveness and impor-
tance of our proposed approach.

Analysis on the DRM Module. To demonstrate the su-
periority of the design of DRM, we conduct experiments
by removing the key components of DRM or replacing
them with other alternatives. The experimental results are
shown in Table 4 (top). We can see that all modifica-
tions can lead to performance degradation. Specifically, we
can see that when training DRM without the diversity con-
straint (Ldiv) or discriminability constraint (Ldis), the per-
formance drops significantly, indicating that it is essential to

guarantee both the discriminability and diversity of the se-
lected regions. When replacing the modality-specific DRM
with the modality-shared one, a performance drop can also
be observed. This is because the modality-shared DRM
cannot learn modality-specific patterns, making it hard to
discover discriminative modality-specific clues. It can also
be observed that using learnable vectors instead of DRM
produces poor performance since they are less descriptive
than the part features generated by DRM. Horizontal Split-
ting (HS), which divides the feature maps into horizontal
chunks, achieves slightly better results than learnable vec-
tors since the chunks are more informative than learnable
vectors. However, HS is still inferior to our DRM as hand-
crafted stripes cannot properly disentangle the feature maps
into fine-grained discriminative body parts. We also study
the impact of the number of regions generated and the pa-
rameter Nk and α in DRM. The experimental results are
shown in Figure 3. The best performance is achieved when
Np = 4 and α = 0.6.
Analysis on the TSAA Module. To demonstrate the su-
periority of the TSAA design, we conduct experiments by
replacing the spatial similarity calculation process (Eq. (9))
with the simple scaled dot-product operation and removing
the query-guided channel attention mechanism. As shown
in Table 4 (middle), the experimental results reveal signif-
icant drops in performance when adopting the scaled dot
product as the similarity metric. This can be attributed to
the style discrepancies between modalities, which make it
difficult to effectively find the correlation between hetero-
geneous data with dot product. Our TSAA module, on the
other hand, is adept at reducing style discrepancies between
heterogeneous data when computing similarity scores. In
addition, the experimental results also validate the effective-
ness of our query-guided channel attention mechanism.
Analysis on PCL. The PCL aligns the cross-modal em-
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Table 3. Effectiveness of the proposed components on the SYSU-
MM01 dataset under the all-search single-shot mode.

Baseline TCA MatchDistill
SYSU-MM01

R1 ↑ R10 ↑ mAP ↑
✓ 57.82 89.91 56.40
✓ ✓ 70.15 93.12 67.40
✓ ✓ ✓ 74.66 96.47 71.73

Table 4. Ablation study of DRM and TSAA on SYSU-MM01 un-
der the all-search single-shot mode. Shared DRM: the weights of
DRM are shared for both modalities. LV: replacing the selected re-
gions with Np learnable vectors. HS: Horizontal Split (n chunks).
TSAA (SD): adopting scaled dot-product for similarity computa-
tion in TSAA. CA: the channel-wise attention in TSAA.

Method
SYSU-MM01

R1 ↑ R10 ↑ mAP ↑
DRM w/o Ldiv 72.76 95.71 69.85
DRM w/o Ldis 72.23 95.37 69.38
DRM → Shared DRM 72.57 94.95 69.51
DRM → LV 71.07 94.01 68.60
DRM → HS (n = 2) 72.70 95.50 70.02
DRM → HS (n = 4) 73.15 95.76 70.24
DRM → HS (n = 6) 72.57 94.95 69.51
TSAA (SD) 72.57 94.95 69.51
TSAA (SD) w/o CA 70.57 95.47 67.77
w/o PCL 66.94 93.42 64.32
PCL → Triplet loss [11] 68.09 93.24 65.41
PCL → Center loss [37] 71.48 94.60 69.13
PCL → ICA&CCA [7] 69.55 95.21 70.01
CAL (Ours) 74.66 96.47 71.73

beddings that have consistent semantics. We conduct ex-
periments by removing or replacing PCL with other alter-
natives, including the prevailing metric learning losses [11,
37] and the one [7] designed specifically for VI Re-ID. The
experimental results reported in Table 4 (bottom) show that
our PCL contributes largely to the final performance and
surpasses other competitors. This is mainly owing to the
superior design of PCL that consider reducing intra-class
variation using the part-aligned embeddings.

Analysis on MatchDistill. We conduct ablation experi-
ments to evaluate the contribution of the proposed Cross-
modal Query Matching algorithm and the two knowledge
distillation losses (Lkd1 and Lkd2) in MatchDistill. As
shown in Table 5, the experimental results demonstrate the
significant role they play in enhancing retrieval accuracy.
When aligning the attention maps with Lkd1 and constrain-
ing the consistency of classification probability with Lkd2,
the performance boosts significantly, verifying the effec-
tiveness of our knowledge exchange strategies. When incor-
porating our CQM, the accuracy can be further improved.
This suggests that it is beneficial to ensure semantic consis-
tency when conducting knowledge exchange by finding the
best-matched part queries with our CQM algorithm.
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Analysis of 
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Figure 3. Parameter analysis of Np and α.

Table 5. Effectiveness of each component of MatchDistill on the
SYSU-MM01 dataset under the all-search single-shot mode.

Lkd1 Lkd2 CQM
SYSU-MM01

R1 ↑ R10 ↑ mAP ↑
70.15 93.12 67.40

✓ 72.75 95.71 69.86
✓ 72.26 95.16 68.50

✓ ✓ 73.63 95.79 70.61
✓ ✓ ✓ 74.66 96.47 71.73

DRM DRM

TSAA TSAA

Figure 4. Qualitative analysis of the proposed DRM and TSAA.

Qualitative Results. We visualize the regions selected by
the DRM module in Figure 4. It can be seen that the DRM
can select diverse and discriminative regions, which could
serve as strong guidance for the subsequent TSAA mod-
ule. We also visualize the attention scores generated by the
TSAA in Figure 4. We can see that the proposed TSAA
has a strong capability in searching the corresponding re-
gions given the key regions selected by DRM.

5. Conclusion
In this paper, we present the Concordant Attention

Learning (CAL) framework, which learns concordant atten-
tion across the visible and infrared modalities and can effec-
tively bridge the modality gap for VI Re-ID. We show that
it is beneficial to design target-aware attention mechanisms
to ensure attention concordance when aligning cross-modal
samples. We also verify that exploiting cross-modal clues
from the target modality and enabling cross-modal knowl-
edge exchange in a match-and-distill manner can facilitate
the learning of inter-modal correlations. Extensive experi-
ments demonstrate the effectiveness and superiority of CAL
over state-of-the-art methods, suggesting the potential of
our approach for improving VI Re-ID research.
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