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Abstract

Understanding and manipulating deformable objects
(e.g., ropes and fabrics) is an essential yet challenging
task with broad applications. Difficulties come from com-
plex states and dynamics, diverse configurations and high-
dimensional action space of deformable objects. Besides,
the manipulation tasks usually require multiple steps to ac-
complish, and greedy policies may easily lead to local opti-
mal states. Existing studies usually tackle this problem us-
ing reinforcement learning or imitating expert demonstra-
tions, with limitations in modeling complex states or requir-
ing hand-crafted expert policies. In this paper, we study
deformable object manipulation using dense visual affor-
dance, with generalization towards diverse states, and pro-
pose a novel kind of foresightful dense affordance, which
avoids local optima by estimating states’ values for long-
term manipulation. We propose a framework for learning
this representation, with novel designs such as multi-stage
stable learning and efficient self-supervised data collection
without experts. Experiments demonstrate the superiority of
our proposed foresightful dense affordance. Project page:
https://hyperplane-lab.github.io/DeformableAffordance

1. Introduction
Many kinds of deformable objects, such as ropes and

fabrics, exist everywhere in our daily life. Perceiving and
manipulating deformable objects plays a significant role
and paves the way for future home-assistant robots.

Unlike rigid or articulated objects, due to the complex
dynamics, high-dimensional and nearly infinite degrees of
freedom, large action space, and severe self-occlusion, de-
formable objects pose much more challenges to manipulate.
Moreover, unlike tasks for rigid objects (like grasping) or
articulated objects (like pushing a door) that require one
or only a few steps to accomplish, deformable object ma-
nipulation tasks usually require many steps to accomplish,
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Figure 1. Deformable Object Manipulation has many difficul-
ties. 1) It requires multiple steps to complete. 2) Most actions can
hardly facilitate tasks, for the exceptionally complex states and
dynamics. 3) Many local optimal states are temporarily closer to
the target, but making following actions harder to coordinate for
the whole task. We propose to learn Foresightful Dense Visual
Affordance aware of future actions to avoid local optima for de-
formable object manipulation, with real-world implementations.

laying much focus on relationships and influences between
actions in a sequence, as an action leading to local optimal
states may not eventually complete the task.

Specifically, as shown in Figure 1, unfolding crumpled
cloth requires a sequence of actions (pick-and-place). Be-
cause of the exceptionally complex states and dynamics,
and large action space, most actions fail to facilitate the task.
Moreover, although some cloth in local optimal states tem-
porarily have larger coverage areas than others, following
actions face difficulties in smoothly completing the task.

Proposed by Gibson [8] and aimed at providing indica-
tive information for agents to execute actions (e.g., el-
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ementary actions such as picking and pulling) and thus
facilitating downstream tasks, visual affordance is arous-
ing much attention in vision and robotics. Recent works
have demonstrated its efficiency in a large range of tasks
like grasping [25, 28, 3, 16, 15, 42], manipulating artic-
ulated objects [26, 36, 33, 5] and assisting robots in a
scene [29, 30, 9]. Among them, point-level dense affor-
dance [36, 26, 27, 33] learns whether an action on each
point of the object could facilitate the task. Compared
with Reinforcement Learning (RL) approaches, dense af-
fordance is stably supervised and has better generalization
ability towards objects with diverse shapes.

The above dense affordance is suitable for representing
deformable objects with complex states, capable of indicat-
ing whether diverse actions could help complete the task.

While most previous works only study dense affordance
for short-term manipulation on rigid [43] or articulated ob-
jects [26, 36], to tackle the local optima problem in multi-
step manipulation, we move a step towards equipping dense
affordance with foresightfulness for future states.

Inspired by Dynamic Programming with Bellman Equa-
tion [1] and Q-Learning [34], estimating a state’s ‘value’
(expected return in the long term, instead of only the cur-
rent performance) for future actions to coordinate and even-
tually complete the task will help avoid local optimal states
and boost the smoothness and quickness of multi-step ma-
nipulation. Dense affordance is suitable for such ‘value’ es-
timation, because such ‘value’ requires understanding and
aggregating a large number of diverse following actions on
complex states and their corresponding results.

With such state ‘value’s (instead of only the current per-
formance) in supervisions, dense affordance would gain
foresightfulness for the future.

We propose to learn dense visual affordance for ma-
nipulating deformable objects, and further estimate state
‘value’s by aggregating such affordance to avoid local op-
tima and smoothly accomplish multi-step tasks. As shown
in Figure 1 (Down), the task can be accomplished smoothly
using our proposed dense affordance in the real world.
To learn such representations, we propose a novel frame-
work generic to diverse tasks with many novel designs,
such as the stage-by-stage stable training and Fold to Un-
fold efficient multi-stage data collection. Thus the pro-
posed affordance could be learned stably, efficiently, and
self-supervisedly without hand-crafted policies for differ-
ent tasks. Experiments on representative benchmark tasks
demonstrate our framework’s impressive performance.

In summary, our contributions are:
• We propose to use dense visual affordance for ma-

nipulating deformable objects with complex states and
dynamics, using such representation to estimate state
‘value’s for future actions to avoid local optima and
smoothly accomplish multi-step manipulation tasks;

• We propose a self-supervised framework with novel
designs such as multi-stage training and efficient data
collection to learn the proposed affordance stably;

• Qualitative and quantitative results on representative
benchmarks and real-world experiments demonstrate
the superiority of our proposed dense visual affordance
and learning framework for deformable objects.

2. Related Work
2.1. Deformable Object Manipulation

Deformable object manipulation is a typical and signifi-
cant kind of task in robotic manipulation [4, 17, 2]. Com-
pared to rigid or articulated objects, the manipulation of
deformable objects is challenging for its high complexity,
described in the Introduction Section. Typical methods
utilize Reinforcement Learning (RL) or Imitation Learn-
ing. RL methods take object states [13] or visual infor-
mation [37, 20] as policy input. Imitation based methods
[41, 31, 19] imitate human-designed expert policy or human
demonstrations for each task. Vision-based methods [6, 14]
use visual feedback or correspondence to perform manip-
ulations. Flow-based methods [32, 35] learn forward dy-
namics for manipulation, requiring much time in planning.
Besides, a series of works [12, 21, 39, 38, 22] develop dif-
ferentiable environments for diverse tasks and tackle these
tasks by optimization. Different from above methods, our
work builds a bridge between perception and manipulation,
taking advantage of the generalization ability of affordance
and estimating state ‘value’ for efficient planning.

2.2. Visual Affordance for Robotic Manipulation

Visual affordance [8] indicates possible ways for robots
to interact with and complete tasks. Many recent works
learn affordance for grasping [25, 28, 3, 16, 15, 42], ar-
ticulated object manipulation [26, 36, 33, 5, 7], object-
object interaction [27], collaboration [43] and interaction
in a scene [29, 30, 9]. Among them, point-level dense af-
fordance [26, 36, 43, 33] learns per-point representations
of objects, which is more sensitive to local geometries and
easier to generalize to different objects. Most tasks can
be achieved in a single step (e.g., grasping, pulling draw-
ers), with the learned affordance only containing action-
able information for single-step manipulation. However,
deformable objects with complex states and dynamics re-
quire many steps to manipulate. We move a step towards
proposing dense affordance for deformable objects, which
not only indicates complex states and dynamics but also
takes the subsequent actions of a certain state into consid-
eration for long-term tasks to avoid local optima. Fling-
Bot [10] learns affordance for unfolding cloth by flinging,
while our proposed affordance uses pick-and-place which is
more generic for large action space and diverse tasks.
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3. Problem Formulation
In this section, we describe how we formulate learn-

ing policy for multi-step deformable object manipula-
tion into learning policies for picking and placing.

Following benchmarks DeformableRavens [31] and
SoftGym [23], the problem is formulated as learning a pol-
icy π to output robot action at, given the visual observation
ot (denoted as o) at time t. We use pick-and-place as the ac-
tion, i.e., at = (apick, aplace), with apick and aplace denot-
ing picking and placing poses. Explained in [31], the picker
can fulfill the tasks without rotation, so apick and aplace are
denoted as picking point ppick and placing point pplace.

The composite of ppick and pplace makes up a large com-
binatorial action space hard for a network to learn directly
and simultaneously. For the underlying nature that pplace
highly depends on ppick, we follow [37] and disentangle
learning the composite of ppick and pplace into respectively
learning ppick and pplace|ppick

(denoted as pplace).
Therefore, we formulate the problem into learning pick-

ing and placing policies. In Method Section 4, we describe
how we learn the policies using foresightful dense visual
affordance with each state’s ‘value’ to avoid local optima.

4. Method
4.1. Overview

Shown in Figure 2, our framework is composed of two
main parts: (1) we propose to use dense affordance to rep-
resent policy (4.2), estimate state ‘value’ using dense affor-
dance and incorporate ‘value’ into dense affordance to avoid
local optima for multi-step manipulation (4.3), break the
picking-placing dependency cycle and stably learn affor-
dance stage by stage (4.4); (2) to tackle the difficulty in col-
lecting multi-stage and successful interactions, we propose
a method (named Fold to Unfold) generic to many tasks to
efficiently collect data in the reversed task completion order
(e.g., collecting unfolding data by folding cloth) (4.5). Be-
sides, we propose Integrated Systematic Training to further
integrate the proposed affordance into a whole system (4.6).
Finally, we describe network architectures and losses (4.7).

4.2. Dense Visual Affordance Representing Policy
This section introduces how to use dense visual affor-

dance to represent manipulation policy. For simplicity, we
first discuss affordance for a greedy policy.

Described in Section 3, we formulate the problem into
learning picking and placing policies, i.e., the picking point
ppick and placing point pplace given the observation o (with
the size of m×n points). As the action space is all points on
the object for picking, and all points in the space for placing,
it comes naturally to use per-point score map Apick

o (size
m × n) indicating how picking each point will facilitate
the task, and dense placing affordance map Aplace

o|ppick
(size

m × n) indicating how placing the picking point ppick on
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Figure 2. Our proposed framework learns dense picking and
placing affordance for deformable object manipulation (e.g., Un-
folding Cloth). We collect multi-stage interaction data effi-
ciently (Left) and learn proposed affordance stably in a multi-stage
schema (Right) in the reversed task accomplishment order, from
states close to the target to complex states.

each point will facilitate the task. Following previous dense
affordance studies [26, 36, 43], we notify such task-specific
per-point score maps as task-specific dense affordance (de-
noted as affordance for simplicity). Demonstrated in above
studies, such dense affordance performs well in extracting
diverse geometric information and generalizes well to un-
seen visual states, which is significant in representing and
manipulating deformable objects with complicated states.

An intuitive greedy way to supervise Aplace
o|ppick

is directly
using the distance between the target T and the new ob-
ject state o′ after picking ppick and placing on pplace in o.
For example, we use 1−dist(o, T ), i.e., the cloth coverage
area, to supervise Aplace

o|ppick
for unfolding. So we can esti-

mate placing affordance score gplaceo, pplace|ppick
on pplace as

(Figure 3, Middle, temporarily dismiss ‘value’ in Figure):

gplaceo, pplace|ppick
= 1− dist(o′, T ) (1)

Given a picking point ppick, the placing policy will se-
lect pplace with the highest affordance, so the picking af-
fordance score gpicko, ppick

on ppick can be estimated using the
affordance score of the best placing point (Figure 3, Left):

gpicko, ppick
= max

i
gplaceo, pi|ppick

, i ∈ {1, ..,m× n} (2)
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We use two networks Mpick and Mplace to respectively
learn Apick

o and Aplace
o|ppick

(architectures in Section 4.7).
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Figure 3. Learning placing and picking affordance with state
‘value’s for the future. Left to Right: The bottom black arrow
indicates the manipulation (inference) order. Right to Left: Ar-
row flows show dependencies among placing affordance, picking
affordance and ‘value’s. Given observation o, we select 3 picking
points p1 p2 p3, and show how to supervise corresponding placing
affordance Aplace

o|p1 Aplace
o|p2 Aplace

o|p3 , and how to supervise Apick
o on

p1 p2 p3 using computed corresponding placing affordance.

During inference, in each step, the greedy policy first se-
lects ppick with the highest affordance score in Apick

o given
o, and then selects pplace with the highest affordance score
in Aplace

o|ppick
given o and ppick, resulting in the temporary

best state after the pick-and-place action.

4.3. Estimating State Values and Learning Fore-
sightful Affordance

As shown in Figure 4, for multi-step manipulation, only
evaluating the direct distance between the current state and
the target (greedy method described above) may result in
many local optimal states that are temporarily closer to tar-
get but harder for future actions to complete the whole task.

Dynamic Programming (DP) [1] and Q-Learning [34]
tackle this local optima problem by estimating the ‘value’
of a state that indicates whether a state is beneficial to the
task in the long term (instead of the current performance).
Inspired by them, we can add such state ‘value’ (formally
formulated in Equation 4) to the estimation of Aplace

o|ppick
:

gplaceo, pplace|ppick
= α× valueo′ + β × (1− dist(o′, T )) (3)

where α+ β = 1

With such Aplace
o|ppick

that is foresightful for long-term

tasks, Apick
o , which is the aggregation of Aplace

o|ppick
, will

therefore get such foresightfulness spontaneously.
Estimating the ‘value’ in a state requires understanding

all possible actions and their corresponding future results,
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Figure 4. Local Optima v.s. Global Optima. Many local optimal
states are temporarily closer to target (e.g., having larger coverage
area in unfolding task), but making future actions hard to coordi-
nate to accomplish the whole task. We propose to use ‘value’ to
indicate whether a state is suitable for future actions, with which
the policy can avoid those local optimal states in multi-step tasks.

and then selecting the best for the estimation. As Apick
o

estimates the action result on each point, state ‘value’ can
be estimated by selecting the ppick with the highest score in
Apick

o (Figure 3, Left):

valueo = max
i

gpicko, pi
, i ∈ {1, ..,m× n} (4)

As valueo could be estimated by Apick
o , Aplace

o|ppick
could

be reformulated using both Apick
o and the direct distance:

gplaceo, pplace|ppick
= α×max

i
gpicko′, pi

+ β × (1− dist(o′, T ))

where α+ β = 1

(5)

4.4. Break the Cycle and Cut into Stages: Learning Fore-
sightful Affordance Stably Stage by Stage

The above-formulated picking and placing affordance
forms a chicken-egg dependency cycle: picking affordance
is dependent on placing affordance, while placing affor-
dance is dependent on picking affordance.

To break the dependency cycle, states close to the tar-
get (e.g., cloth almost fully unfolded) become the key. As
the task is almost accomplished in these states, their values
and direct distances to the target are nearly the same. So for
an interaction where the ending state o′ is close to the tar-
get, we directly use their distances to the target (instead of
both distances and ‘value’s) to supervise the corresponding
placing affordance of the starting state o:

gplaceo, pplace|ppick
= 1− dist(o′, T )

when dist(o′, T ) is close to 0 i.e., the last step
(6)

According to Equations 2, 5 and 6, the proposed picking
and placing affordance could be estimated without the de-
pendency cycle. As the dependency cycle breaks in states
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close to the target, we learn dense affordance from these
simple states to more complex states (reversed order of in-
ference) shown in Figure 2 (Right). Specifically, we divide
learning procedure into multiple stages. In the first stage,
we learn affordance for states that can reach states close to
the target within one step, using the direct distances of the
following states as supervisions. In the i-th (i > 1) stage,
we learn affordance for states that can reach states in the (i-
1)-th stage in one step, using both the direct distances and
the ‘value’s of states in the (i-1)-th stage as supervisions.
In each stage, we first train Mplace using stable ‘value’s
provided from the trained Mpick in the previous stage, and
then train Mpick with stable supervisions (max of placing
affordance) provided from the trained Mplace in this stage.

In this way, during the whole training, Aplace
o|ppick

and Apick
o

both have stable supervisions from the former stage, and can
provide stable supervisions for the latter stage.

This stage-by-stage learning schema empowers our
method with superiority over RL methods. Although RL
also estimates states and actions using Bellman Equation,
it simultaneously estimates and updates values across all
states (offline RL) or trajectories of states (online RL),
which is difficult to efficiently and stably learn the values,
as RL struggles in iteratively updating state ‘value’s, es-
pecially when considering the prohibitively large state and
action space of deformable objects. In contrast, like other
dense affordance works [26, 43, 36], we stably learn affor-
dance with ‘value’ using supervised learning, with stable
supervisions provided in the previous training stage. Exper-
iments demonstrate our superiority over RL in Section 5.4.

4.5. Fold to Unfold: Efficient Multi-stage Data Col-
lection for Learning Foresightful Affordance

The above-described training schema requires multi-
stage data for training. Specifically, in the first stage, the
starting states are one-step to states close to the target. In
the i-th (i > 1) stage, the starting states are one-step to
states in the (i-1)-th stage. Each starting state’s actions and
corresponding ending states should be diverse, as we need
to learn the affordance representing dense distributions.

However, due to the complexity of states and dynamics,
data collection methods used by previous dense affordance
works (random policies [26, 27] or state-based RL [36, 43])
could hardly collect such data. On the other hand, design-
ing expert policies [31] or hand-crafting demonstrations are
difficult and time-consuming for different tasks.

Therefore, we propose a novel self-supervised method,
named Fold to Unfold, using reversed actions of tasks to ef-
ficiently collect multi-stage data. This method is generic to
many kinds of deformable object manipulation tasks, with
no need for human-designed expert policies or annotations.

Similar to the training procedure, we collect data from
states close to the target, to more complex states.

Figure 5. Fold to Unfold collection in simulator and real world.

Specifically, as shown in Figure 5, from a state oi in stage
i, we select a picking point ppick, put it on a placing point
pplace and get oi+1. Then, from oi+1, we execute the re-
versed action, pick pplace, place on ppick and get o′i. If o′i
is similar to oi, we choose oi+1 as a starting state in stage
i+1, and sample diverse actions on oi+1 with different cor-
responding results to train dense affordance in the (i+1)-th
stage (shown in Figure 2).

Through a few stages of data collection, object states be-
come complex and diverse, empowering trained affordance
networks with generalization towards diverse novel states.

Note that, although reversed actions cannot fully re-
cover previous states, i.e., o′i are not the same as oi, chances
are that o′i and oi are similar, and thus this method still
greatly improves sample efficiency. Also, proposed affor-
dance is not dependent on this data collection method, as
it can be trained on data collected by any method.

4.6. Integrated Systematic Training
Although above designs and training procedure enable

affordance learning for multi-step tasks, Mpick and Mplace

are trained using only offline collected data in different
stages, not considering the actual execution performance of
the policies provided by the two modules. During actual
manipulation procedures, the policy is the composite policy
of Mpick and Mplace, and pick-and-place actions are exe-
cuted one by one sequentially as a whole system. Therefore,
we propose the Integrated Systematic Training (IST) proce-
dure to adapt Mpick and Mplace using online data.

In this procedure, with offline trained Mplace and
Mpick, we randomly sample object initial states, use
Mplace and Mpick as the policy to select ppick and pplace,
execute pick-and-place step by step, and use actual results
to simultaneously update Mplace and Mpick. Through this
procedure, the two modules are constantly adapted by con-
secutively online-sampled and actually-executed data, and
thus are gradually integrated into a whole system.

4.7. Network Architectures and Loss Function
For architectures of Mpick and Mplace, we use Fully

Convolutional Networks (FCNs) [24] same in Trans-
porter [41, 31] with extra skip-connections as backbone per-
point feature extractor. For Mpick, we directly use ppick
feature to predict picking affordance score on ppick. For
Mplace, we use feature concatenation of ppick and pplace
to predict placing affordance score on pplace. To train both
Mpick and Mplace, we use Mean Absolute Error (MAE)
between predictions and ground truth as the loss function.
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5. Experiments
5.1. Tasks, Settings and Metrics

Tasks. To demonstrate the superiority of our framework,
we select 2 representative tasks from DeformableRavens
benchmark: (1) cable-ring: manipulating a ring to a given
green circle, (2) cable-ring-notarget: manipulating a ring
to any circle, as well as 2 representative tasks from SoftGym:
(3) SpreadCloth: spreading crumpled cloth to be flat, (4)
RopeConfiguration: manipulating a rope from a random
pose to a target pose (we use the shape ‘S’ as the target).
Among them, the first two are relatively easier. They can be
accomplished without considering future actions and states,
and we conduct them to show our dense affordance’s supe-
riority over methods imitating expert demonstrations. The
last two are much harder and would be better accomplished
considering future actions and states to avoid local optima.
Settings. For all tasks, in both training and testing, we set
different random seeds for each episode, producing unseen
and diverse initial poses of objects. To compare the general-
ization ability between our proposed dense affordance and
imitation-based methods, for cables in DeformableRavens,
we directly test the model trained on cables with 32 beads
over novel cable configurations with 24, 28 or 36 beads.
Metrics. For cable-ring and cable-ring-notarget, we fol-
low DeformableRavens and use the manipulation successful
rate as the metric. For SpreadCloth and RopeConfiguration,
we follow SoftGym and use the normalized score as the met-
ric. For all tasks, higher scores indicate better performance.

5.2. Baselines

For two cable-ring related tasks, we compare our method
with baselines with or without expert demonstrations:

• Transporter [41, 31] is commonly used for robotic
manipulation by learning visual correlation for pick-
ing and placing points. In DeformableRavens [31] it is
trained by cloning expert demonstrations and achieves
SOTA performance over relevant tasks.

• GT-State receives ground truth (GT) pose of the target
object, and regresses ppick and pplace with MLP.

• GT-State 2-Step first regresses ppick and then pplace
using ppick and GT pose concatenation, both via MLP.

For SpreadCloth and RopeConfiguration, as object states
and dynamics are too complex and the tasks are too difficult
to hand-engineer expert policies, we compare our method
with baselines focused on multi-step planning:

• CURL-SAC [18] that uses a model-free RL approach
with contrastive unsupervised representations.

• DrQ[40] applies augmentation, regularization to RL.
• PlaNet [11] learns state space dynamics for planning.
• MVP [37] learns pick-and-place policy with model-

free RL designed for deformbale object manipulation.

5.3. Qualitative Results and Analysis

Figure 6. Example action sequences for cable-ring, cable-ring-
notarget, SpreadCloth and RopeConfiguration. White point de-
notes picking and black point denotes placing.

Figure 6 shows examples of manipulation trajectories for
diverse tasks using our proposed affordance. It is worth
mentioning that, in the second state of SpreadCloth (Row
3), though it is intuitive to place the picking point (white)
to the top-left position, the model places it to the bottom-
right position (black), as the corresponding next state has
low coverage but high ‘value’, requiring only one follow-
ing pick-and-place action to almost fully unfold the cloth.

Picking Placing PlacingPicking 
Figure 7. Picking and placing affordance. Each row contains two
(picking affordance, observation with ppick, placing affordance)
tuples for a task. ppick is selected by picking affordance. Higher
color temperature means higher affordance.

Figure 7 visualizes picking and placing affordance,
clearly showing that the learned affordance represents de-
formable objects with complex states and dynamics and fa-
cilitates selecting picking and placing points for manipula-
tion. Figure 8 visualizes ‘value’s of states.
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Figure 8. Visualization of ‘value’ shows that some states with
closer distances to the target (e.g., larger area) may not have higher
‘value’, as these states are hard for future actions to fulfill the task.

Method cable-ring cable-ring-notarget

GT-State 0.0 5.0

GT-State 2-Step 0.0 1.7

Transporter 68.3 70.0

Ours 81.7 95.0
Table 1. Quantitative results in DeformableRavens.

Method SpreadCloth RopeConfiguration

CURL-SAC 0.195 0.348

PlaNet 0.387 0.236

DrQ 0.275 0.154

MVP 0.372 0.258

Ours 0.758 0.529
Table 2. Quantitative results in SoftGym.

5.4. Quantitative Results and Analysis
Shown in Table 1, our method outperforms all baselines

in DeformableRavens. For GT State and GT State 2-Step,
GT states can only provide part of the necessary informa-
tion, and it is difficult to acquire the precise GT states of
deformable objects in the real world. For Transporter that
learns visual correlation for the matching between picking
and placing points, although it directly clones successful
demonstrations from hand-crafted expert policies, we out-
perform it for two possible reasons: 1) dense affordance
is more suitable for deformable objects as it represents the
results of diverse actions on complex states, while visual
correlation in Transporter is suitable for matching like
assembling-kits; 2) training on and cloning expert demon-
strations will limit the model’s generalization toward di-
verse situations for inference. To further evaluate the gen-
eralization ability of dense affordance, we produce differ-
ent novel object configurations, using 24, 28, and 36 as the
bead number instead of the initial 32. Our method’s slighter
performance decrease in Table 3 also demonstrates its gen-
eralization ability. Besides, expert policies need elaborate
hand-engineering for different tasks, while our method can
apply to diverse tasks without large modifications.

Table 2 shows our framework outperforms all baselines
in SoftGym. As described in 4.4, compared with those RL
methods, our framework learns representations of complex
states for multi-step manipulation in a stable way.

Task cable-ring cable-ring-notarget
configurations 24 / 28 / 36 24 / 28 / 36

Transporter 33.3 / 58.3 / 32.7 60.0 / 71.7 / 31.7

Ours 61.6 / 86.7 / 58.3 81.7 / 96.7 / 78.3
Table 3. Manipulation scores on novel configurations in De-
formableRaves showing our method’s generalization capability.

5.5. Ablation Studies and Analysis
To demonstrate necessities of our framework’s different

components, we conduct ablation experiments by compar-
ing our method with: 1) Ours RandPick: our method with
the picking policy replaced by a random policy; 2) Ours
ExpertPick: our method with the picking policy replaced
by Transporter’s expert; 3) Ours w/o IST: our method with-
out Integrated Systematic Training (IST);

For SpreadCloth and RopeConfiguration that require
strongly related sequential actions, we additionally compare
1) ablated versions using different stages of data, 2) Ours
only dist directly and greedily trained on all collected data
instead of stage-by-stage considering ‘value’s.

Method cable-ring cable-ring-notarget

Ours RandPick 11.7 58.3

Ours ExpertPick 76.7 41.7

Ours w/o IST 78.3 91.7

Ours 81.7 95.0
Table 4. Ablation studies in DeformableRavens.

Method stage1 stage2 stage3 stage4 stage5

Ours RandPick 0.241 0.211 0.304 0.185 0.190

Ours w/o IST 0.526 0.586 0.621 0.624 0.612

Ours only dist 0.701 0.701 0.701 0.701 0.701

Ours 0.589 0.695 0.752 0.754 0.758
Table 5. Ablation studies in SpreadCloth.

Table 5 and 6 show that, a series of steps of data empow-
ers affordance with generalization to diverse states.

Table 4, 5 and 6 show quantitative results of ablation ex-
periments. Ours RandPick and Ours ExpertPick show
that, with the same placing affordance, our proposed pick-
ing affordance helps the framework perform the best.

Ours only dist in Table 5 and 6 show that, directly train-
ing on all the diverse data without estimating state ‘value’
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Method stage1 stage2 stage3 stage4 stage5

Ours RandPick 0.329 0.302 0.332 0.334 0.322

Ours w/o IST 0.359 0.418 0.437 0.479 0.474

Ours only dist 0.460 0.460 0.460 0.460 0.460

Ours 0.441 0.503 0.518 0.527 0.529
Table 6. Ablation studies in RopeConfiguration.

limits the performance compared with our proposed frame-
work. Besides, as shown in Figure 9, Ours only dist will
propose actions leading to local optimal states, while our
foresightful affordance will help to avoid that.

Ours w/o IST in Table 4, 5 and 6, and adjusted affor-
dance and ‘value’s in Figure 10 demonstrate IST helps inte-
grating picking and placing modules into a whole, generat-
ing more precise perception of affordance and ‘value’s.

0.570

0.613

Pick Point

Only Dist

Future
State

0.603

0.543

Observation

Place Point

Ours
Place Point

Ours

Affordance

Only Dist

Coverage
Area

Placing

Affordance
Placing

Figure 9. Placing affordance trained using ‘value’ supervision
(red) and only using the greedy direct distance (blue).

Figure 10. Picking and placing affordance before (middle) and
after (right) IST of the observation (left). White: pick point.

5.6. Real-world Experiments

To bridge the sim2real gap and implement our method in
the real world, similar to [37, 10], we use domain random-
ization to train affordance models in simulation and fine-
tune them in real world. Specifically, we collect real-world
data using Fold to Unfold, fine-tune trained-in-simulation
Mpick and Mplace stage by stage using the collected data.

For evaluations, we randomly lift and drop the objects
for five times to get the initial state, and then run the models
for ten pick-and-place actions to perform the tasks. The ma-
nipulation score is the average normalized score (computed
the same as in SoftGym) of sixty trajectories.

Shown in Figure 11, given real-world observations with
textures and physics different from objects in simulation,
our method predicts reasonable picking and placing affor-
dance and selects actions for tasks.

We use MVP [37] for comparison, as (1) it also uses
pick-and-place as action primitive, thus could do both cloth
and rope tasks, and (2) provides real-world experiments.
Table 7 shows performance comparison, explained in 5.4.

See the supplementary for more implementation details.

Method SpreadCloth RopeConfiguration

MVP 0.307 0.227

Ours 0.683 0.461
Table 7. Manipulation scores in the real world.

Placing
Affordance

Placing
Affordance

Picking
Affordance

Picking
Affordance

Figure 11. Real-world pick-place actions guided by affordance.

6. Conclusion
We propose to use dense visual affordance for manipu-

lating deformable objects with complex states and dynam-
ics. For tasks that require a series of strongly related ac-
tions, we further empower the proposed affordance with the
awareness of a certain action’s influence on subsequent ac-
tions. We propose a self-supervised framework with novel
designs to efficiently collect multi-stage interaction data and
stably learn this representation. Experiments on representa-
tive tasks and in the real world show the superiority of our
proposed dense affordance and the learning framework.
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