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Abstract

Shape assembly aims to reassemble parts (or fragments)
into a complete object, which is a common task in our daily
life. Different from the semantic part assembly (e.g., assem-
bling a chair’s semantic parts like legs into a whole chair),
geometric part assembly (e.g., assembling bowl fragments
into a complete bowl) is an emerging task in computer vi-
sion and robotics. Instead of semantic information, this task
focuses on geometric information of parts. As the both ge-
ometric and pose space of fractured parts are exceptionally
large, shape pose disentanglement of part representations
is beneficial to geometric shape assembly. In our paper, we
propose to leverage SE(3) equivariance for such shape pose
disentanglement. Moreover, while previous works in vision
and robotics only consider SE(3) equivariance for the rep-
resentations of single objects, we move a step forward and
propose leveraging SE(3) equivariance for representations
considering multi-part correlations, which further boosts
the performance of the multi-part assembly. Experiments
demonstrate the significance of SE(3) equivariance and our
proposed method for geometric shape assembly. Project
page: https://crtie.github.io/SE-3-part-assembly/

1. Introduction

Shape assembly aims to compose the parts or fragments
of an object into a complete shape. It is a common task
in the human-built world, from furniture assembly [16, 36]
(e.g., assemble chair parts like legs and handles into a whole
chair) to fractured object reassembly [5, 24] (e.g., assemble
bowl fractures into a whole bowl) . When trying to complete
an object from parts, we will focus on their geometric and
semantic information.

There is a vast literature in both the computer vision and
robotics fields studying the shape assembly problem, espe-
cially for the application purposes like furniture assembly
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Figure 1. Geometric Shape Assembly aims to assemble different
fractured parts into a whole shape. We propose to leverage SE(3)
Equivariance for learning Geometric Shape Assembly, which dis-
entangles poses and shapes of fractured parts, and performs better
than networks without SE(3)-equivariant representations.

and object assembly [1, 16, 19, 36]. Imagine we want to
assemble a simple table with four wooden sticks and a flat
board, we can infer that the sticks are the table legs so they
should be vertically placed, while the board is the table top
and should be horizontally placed. Here, we not only use
geometric clues to infer the parts’ functions but also use se-
mantic information to predict the parts’ poses.

Recently, a two-part geometric mating dataset is pro-
posed in NSM [5], which considers shape assembly from
a pure geometric perspective, without relying on semantic
information. This work randomly cuts an object into two
pairs, and studies how to mate the fragment pairs into the
original shape. Such design is practical in some applications
such as object kitting [7, 18], form fitting [35], and pro-
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tein binding [27]. In these tasks, the semantic information
can hardly be acquired from the fragment shapes, and thus
it is nearly impossible to predict fragments’ poses relying
on semantic information (e.g. part acts as a leg should be
horizontally placed). Instead, such geometric mating tasks
should be accomplished by relying on geometric cues.

Furthermore, the pairwise assembly task can be extended
to the multi-part assembly task, and thus the pose space will
grow much larger. Recent work [24] proposes a large-scale
dataset named Breaking Bad, which models the destruction
process of how an object breaks into fragments. For each
object, there are multiple broken fragments with various
and complex geometry, making it much more challenging
for geometric shape understanding and assembly. There-
fore, how to reduce the pose space and effectively assembly
multiple fragments that are non-semantic but with diverse
geometry still remains a problem.

Compared to furniture assembly, which relies on both
part semantics and geometry, geometric assembly that as-
sembles diverse fractures mainly focuses on geometric in-
formation, while the space of part pose and geometry are
much larger in this task. Therefore, shape pose disentan-
glement plays a significant role in boosting the performance
of geometric shape assembly.

Recently, achieving SE(3) equivariance for object repre-
sentations is arousing much attention in 3D computer vision
and robotics. Many works have studied SE(3)-equivariant
architectures [3, 4, 6, 8, 13, 28, 29, 30, 38] and leveraged
SE(3) equivariance in object pose estimation [17, 21] or
robotic object manipulation [14, 23, 25, 26, 32]. SE(3)
equivariance is suitable for the disentangling of shapes and
poses of parts in geometric shape assembly. Specifically,
like previous works [5, 24], we formulate the shape as-
sembly task as a pose prediction problem, and the target
is to predict the canonical SE(3) pose for each given frag-
ment to compose a whole shape. For every single fragment,
the predicted pose transformation should be equivariant to
its original pose, while being invariant to other fragments’
poses. Accordingly, the learned representations have two
main features: consistency and stability. Consistency means
that parts with the same geometry but different poses should
have equivariant representations, while stability means the
representation of a specific part should be invariant to all
other parts’ poses and only related to their geometry char-
acteristics. Leveraging such properties, the network can re-
duce the large pose space of the complex geometric shape
assembly task and thus focus on the fragments’ geometric
information for shape assembly.

While most previous works in vision and robotics only
leverage SE(3) equivariance representations on a single
shape, there exist multiple complex fractured parts in our
geometric shape assembly task, and extracting other parts’
geometric information is essential to a successful reassem-

bly. How to leverage SE(3)-equivariant representations
for multi-parts shape assembly is not a trivial problem, as
learned part representations should not only consider the
certain part, but also consider correlations with other parts
(e.g., whether the notches of two parts match each other),
while keeping the equivariance property. We propose to uti-
lize both equivariant and invariant representations of sin-
gle parts to compose the equivariant part representations in-
cluding part correlations. To the best of our knowledge,
we are the first to leverage the SE(3) equivariance property
among multiple objects.

In summary, we make the following contributions:

• We propose to leverage SE(3) equivariance that disen-
tangles shapes and poses of fractured parts for geomet-
ric shape assembly.

• Utilizing both SE(3)-equivariant and -invariant repre-
sentations, we learn SE(3)-equivariant part representa-
tions with part correlations for multi-part assembly.

• Experiments on representative benchmarks, including
both two-part and multi-part 3D geometric shape as-
sembly, demonstrate the superiority of SE(3) equivari-
ance and our proposed method.

2. Related Works
2.1. 3D Shape Assembly

Shape assembly is a long-standing problem with a rich
literature. Many works have been investigating how to con-
struct a complete shape from given parts [5, 9, 12, 16, 19,
22, 31, 33, 36], especially in application-specific domains.
Based on PartNet, a large-scale dataset that contains di-
verse 3D objects with fine-grained part information, previ-
ous works propose a dynamic graph learning method [36] to
predict 6-DoF poses for each input part (e.g., the back, legs
and bars of a chair) and then assemble them into a single
shape as output, or study how to assemble 3D shape given
a single image depicting the complete shape [19]. Besides,
many works study the shape assembly problem for different
applications like furniture assembly [16], or unique needs
of CAD workflow [12].

However, most previous works rely deeply on the se-
mantic information of object parts, sometimes bypassing
the geometric cues. As for the geometric cues, a recent
work, NSM [5], tries to solve the two-part mating problem
by mainly focusing on shape geometries without particu-
lar semantic information. Besides, a new dataset, Break-
ing Bad [24], raises a new challenge about how to assem-
ble multiple non-semantic fragments into a complete shape.
This work demonstrates that fractured shape reassembly is
still a quite open problem. Following these two works, we
focus on studying the geometric information and tackling
the pure geometric shape assembly problem.
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2.2. SE(3)-Equivariant Representations

Recently, achieving SE(3) equivariance has attracted a
lot of attention, and many SE(3)-equivariant architectures
have emerged [3, 4, 8, 13, 28, 29, 30, 38]. Thomas et al. [28]
propose a tensor field neural network that uses filters built
from spherical, and Deng et al. [6] introduce Vector Neu-
rons that can facilitate rotation equivariant neural networks
by lifting standard neural network representations to 3D
space. We follow Vector Neuron [6] and apply the vector
neuron version of DGCNN [29] model in our pipeline.

Meanwhile, many recent works have utilized equivari-
ant models for point cloud registration [20], object de-
tection [34], pose estimation [17, 21], robotic manipula-
tion [14, 23, 25, 26, 32], and demonstrate that such equivari-
ant models can significantly improve the sample efficiency
and generalization ability. In this paper, we leverage SE(3)-
equivariant representations for geometric shape assembly to
disentangle the shape and the pose.

3. Problem Formulation

Imagine an object has been broken into N fractured parts
(e.g., a broken porcelain vase found during archaeological
work), we obtain the point cloud of each part, which forms
P = {Pi}Ni=1. Our goal is to assemble these parts together
and recover the complete object.

Formally, our framework takes all parts’ point cloud P
as the input and predicts the canonical 3D pose of each part.
We denote the predicted SE(3) pose of the i-th fractured part
as (Ri, Ti), where Ri ∈ R3×3 is the predicted rotation ma-
trix and Ti ∈ R3 is the predicted translation vector. Then,
we apply the predicted pose to transform the point cloud
of each part and get the i-th part’s predicted point cloud
P ′
i = PiRi + Ti. The union of all the transformed point

clouds P ′
whole =

⋃
i P

′
i is our predicted assembly result.

4. Method

Our method leverages SE(3)-equivariant representations
for geometric shape assembly. We start the Method Section
by describing how to leverage SE(3)-equivariant for a single
part as a basis (Sec. 4.1). Then, as geometric shape assem-
bly requires each part to consider its correlations with other
parts, we describe extending the leverage of SE(3) equiv-
ariance from single-part representations to part representa-
tions considering correlations with other parts (Sec. 4.2).
Based on the learned equivariant representations and apart
from predicting the pose of each fractured part, to further
ensure all the re-posed parts compose a whole object, we
propose translation embedding (Sec. 4.3) for geometric as-
sembly and use adversarial learning (Sec. 4.4). Finally, we
describe the loss functions (Sec. 4.5).

4.1. Leveraging SE(3) Equivariance for Single Parts

For the brevity of description, we first introduce a sim-
ple version (as a basis of our whole method): leveraging
SE(3) equivariance in single parts’ representations, without
considering the correlations between multiple parts.

Specifically, in this section, we start by revisiting Vec-
tor Neurons Networks (VNN) [6], a general framework for
SO(3)-equivariant (rotation equivariant) network. Leverag-
ing VNN, we introduce how we leverage rotation equivari-
ance and translation equivariance for single parts.

Vector Neurons Networks (VNN) is a general frame-
work for SO(3)-equivariant networks. It extends neurons
from 1D scalars to 3D vectors and provides various SO(3)-
equivariant neural operations including linear layers (such
as Conv and MLP), non-linear layers (such as Pooling and
ReLU) and normalization layers. Besides, it also designs
SO(3)-invariant layers to extract SO(3)-invariant represen-
tations. The above properties are mathematically rigorous.

Rotation Equivariance and Invariance. In geometric
part assembly, we suppose the predicted rotation of a part is
equivariant with its original orientation and invariant with
other parts’ orientation. Accordingly, the network should
learn both equivariant and invariant representations for each
part. Based on VNN, we build a DGCNN [29] encoder with
a SO(3)-equivariant head Eequiv and a SO(3)-invariant en-
coder head Einv to extract part features with corresponding
properties. Specifically, given an input point cloud P , and
a random rotation matrix R, the encoders Eequiv and Einv
respectively satisfy rotation equivariance and invariance:

Eequiv(PR) = Eequiv(P )R (1)

Einv(PR) = Einv(P ) (2)

Translation Equivariance. To achieve translation equiv-
ariance in parts’ pose prediction, we preprocess the raw
point cloud of each part by posing its gravity center on the
coordinate origin. That’s to say, with an input point cloud
P = (p1, p2, ..., pn), pi ∈ R3, where n is the number of
points, we compute its gravity center x̂ = (

∑n
i=1 pi)/n,

and get the preprocessed point cloud P̃ = P − x̂, and then
we use P̃ as the network input. In this way, our prediction is
translation equivariant. Formally, let Tpred denote the pre-
dicted translation output, if the part’s point cloud changes
from P to P +∆T , we have:

Tpred(P +∆T ) = Tpred(P ) + ∆T (3)
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Figure 2. Overview of our proposed framework. Taking as input the point cloud of each part i, our framework first outputs the equivariant
representation Fi and invariant representation Gi, computes the correlation between part i and each part j using the matrix multiplication
of Fi and Gj , and thus gets each part’s equivariant representation Hi with part correlations. The rotation decoder and the translation
decoder respectively take H and decode the rotation and translation of each part. Additional constraints such as adversarial training and
canonical point cloud reconstruction using G further improves the performance of our method.

4.2. Leveraging SE(3) Equivariance for Parts with
Part Correlations

In the geometric shape assembly task, all the frac-
tured parts should be reassembled together, with each edge
matching up well with the others. Therefore, all parts’ ge-
ometry information, especially the geometry of edges, is
significant. Besides, it is necessary to analyze all parts’
shape information together to infer the position of each in-
dividual part, otherwise, it would be nearly impossible to
predict accurate positions for those parts. Therefore, the
correlations between parts are essential in the geometric as-
sembly task, and we propose a correlation module to aggre-
gate the information of multiple parts, while keeping lever-
aging SE(3) equivariance.

Note that the translation equivariance in part pose predic-
tions can be achieved using the same approach in Sec. 4.1,
so in this section we mainly describe how to leverage rota-
tion equivariance when taking multiple parts.

Rotation Equivariance in Multi-Part Representations.
To predict the final pose of part i, we should consider its
correlations with other parts. In fact, what really matters
for this part’s pose prediction is other parts’ shape geome-

try instead of their initial poses. In other words, changed
initial poses of other parts may not affect the predicted pose
of part i. Therefore, it comes naturally that we leverage
the rotation-invariant representations of other parts (which
are invariant to their initial poses) to extract their geometric
features and further compute their correlations with part i.

Specifically, given the point cloud Pi ∈ Rn×3 of the i-th
part, we pass it through rotation-equivariant and -invariant
encoders Eequiv and Einv and get corresponding features
(shown in the Equivariant and Invariant Feature Extrac-
tion module in Figure 2):

Fi = Eequiv(Pi), Fi ∈ Rf×3

Gi = Einv(Pi), Gi ∈ Rf×f
(4)

As shown in the Part Correlation module in Figure 2, to
extract the correlation feature Ci, j between part i and part
j, (j ̸= i), we use matrix multiplication between Gj and Fi:

Ci, j = Gj · Fi, Ci,j ∈ Rf×3 (5)

where · denotes matrix multiplication.
As Gj is invariant to Pj , and Fi is equivariant to Pi, the

matrix multiplication Ci, j is thus equivariant to Pi with the
geometry correlation between Pi and Pj .
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Furthermore, to get the part representation Hi consid-
ering correlations with all other parts while maintaining
equivariance with Pi, we define Hi as:

Hi =
1

N − 1

N∑
j=1, j ̸=i

Gj · Fi, Hi ∈ Rf×3 (6)

As Gj is invariant with Pi and Fi is equivariant with
Pi, it’s easy to verify that, Hi is equivariant with Pi, and
invariant with Pj(j ̸= i). i.e., for any rotation matrix R
applied on part i or any other part j:

Hi(P1, ..., PiR, ...PN ) = Hi(P1, ..., Pi, ..., PN )R

Hi(P1, ..., PjR, ...PN ) = Hi(P1, ..., Pj , ..., PN ), (j ̸= i)

(7)

Pose Prediction. As shown in the Pose Prediction mod-
ule in Figure 2, given the equivariant representation Hi of
part i with part correlations, we use a pose regressor R to
predict its rotation Rpred, i and translation Tpred, i:

Rpred, i, Tpred, i = R(Hi),

Rpred, i ∈ R3×3, Tpred, i ∈ R3
(8)

Canonical Part Reconstruction. To ensure that the rota-
tion invariant feature Gi encodes geometric information of
Pi with any initial pose, we use a point cloud decoder D and
expect D to decode point cloud of i-th part in the canoni-
cal view when receiving Gi (shown in the Additional Con-
straint module in Figure 2):

P ∗
pred, i = D(Gi), P ∗

pred, i ∈ Rn×3 (9)

Let P ∗
gt,i denote the canonical point cloud of Pi and P ∗

pred, i

denote the prediction, we minimize the Chamfer Distance
between P ∗

pred, i and P ∗
gt, i.

4.3. Translation Embeddings for Part Representa-
tions

Since the reassembled whole object is the composition
of multiple re-posed parts, although the above described de-
signs learn the pose of each part, the framework lacks lever-
aging the property that the representations of all parts could
compose the whole object.

Inspired by Visual Translation Embedding (VTransE)
[11, 37] that maps different objects’ features into a space
where the relations between objects can be the feature trans-
lation, we propose a similar Translation Embedding where
the representations of parts can be added up to the represen-
tation of the whole shape.

Formally, denoting the point cloud of the whole object at
canonical pose as P ∗

gt, we pass it through our rotation equiv-
ariant encoder to get F ∗

gt = Eequiv(P ∗
gt), and minimize:

L2(
∑
i

Hi, F
∗
gt) (10)

where Hi is the rotation equivariant feature of i-th fracture.
Through this procedure, rotation equivariant representa-

tions of parts would be more interpretable as a whole.

4.4. Adversarial Learning

The above described designs use proposed representa-
tions to learn the pose of each part, lacking the evaluation
that all re-posed parts visually make up a whole shape. Fol-
lowing the design of [5], we employ a discriminator M and
use adversarial learning to make the re-posed parts visually
look like those of a whole object, as shown in the Addi-
tional Constraint module in Figure 2.

Our discriminator M takes as input the predicted re-
assembly shape P ′

whole (defined in Sec. 3) and the ground
truth point cloud of the whole object Pwhole, and distin-
guishes whether the input point clouds look visually plausi-
ble like a complete object. To achieve this, we define a loss
term LG for training the generator (i.e. encoders E and pose
regressor R), which is defined as:

LG = E
[
∥M(P ′

whole)− 1∥
]
, (11)

and an adversarial loss LD for training the discriminator
M, which is defined as:

LD = E
[
∥M(P ′

whole)∥
]
+ E

[
∥M(Pwhole)− 1∥

]
(12)

Through the adversarial training procedure, the reassem-
bled shapes become more plausible as a whole.

4.5. Losses

Our loss function consists of the following terms:

L = λrotLrot + λtransLtrans + λpointLpoint

+λreconLrecon + λembedLembed + λadvLadv

(13)

For an input broken object, we sample point clouds from
every fractured part and form P = {Pi}Ni=1. For the i-th
part, we denote its ground truth rotation matrix and trans-
lation as Rgt, i and Tgt, i, and the predicted rotation matrix
and translation as Rpred, i and Tpred, i.

For rotation, we use geodesic distance (GD) between Rgt

and Rpred as our rotation loss:

Lrot = arccos
tr(RgtR

T
pred)− 1

2
(14)

For translation, we use L2 loss between Tgt and Tpred as
the translation prediction loss:

Ltrans = L2(Tpred, Tgt) (15)
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Following [24], we use Chamfer Distance to further
jointly supervise the predicted translation and rotation by
supervising the predicted re-posed point cloud:

Lpoint = Chamfer(PRpred +Tpred, PRgt +Tgt) (16)

As mentioned in Sec. 4.2, we also use Chamfer Distance
as the reconstruction loss to supervise the invariant repre-
sentation Gi can be further decoded to a canonical point
cloud P ∗

pred,i, ensuring Gi encodes geometric information
with any initial pose:

Lrecon = Chamfer(P ∗
pred,i, PiRgt,i + Tgt,i) (17)

From Sec. 4.3, we design translation embedding loss to
supervise that the representations of all fractured parts can
be added up to the representation of the complete shape:

Lembed = L2(
∑
i

Hi, F
∗
gt) (18)

From Sec. 4.4, the adversarial loss is defined as:

Ladv = 1DLD + 1GLG (19)

where 1D = 1 only if we’re updating discriminator, 1G = 1
only if updating generator.

5. Experiments

5.1. Datasets, Settings and Metrics

Datasets. We use two benchmark datasets for evaluation:

• Geometric Shape Mating dataset [5] for two-part as-
sembly (mating). Objects in this dataset are cut into
two parts by the randomly generated heightfields that
can be parameterized by different functions. Specif-
ically, we employ 4 kinds of cut types (planar, sine,
parabolic and square functions) on 5 categories of ob-
jects (Bag, Bowl, Jar, Mug and Sofa) in ShapeNet [2].
We employ the official data collection code, collect
41,000 cuts for training and 3,100 cuts for testing.

• Breaking Bad dataset’s commonly used “everyday”
object subset [24] for multi-part assembly. Com-
pared with Geometric Shape Mating dataset, this
dataset is much more challenging, as the objects are
irregularly broken into multiple fragments by physical
plausible decomposition , resulting in more parts with
much more complex geometries. Our study focuses
more on this multi-part geometric assembly problem.

On both datasets, we train all methods in all categories,
and test them on unseen objects in the same categories.

Metrics. Following the evaluation metrics of the two
datasets [5, 24], we import geodesic distance (GD) to mea-
sure the difference between predicted rotation and ground
truth rotation. To further evaluate both the rotation and
translation prediction, we compute the root mean squared
error RMSE (R) between the predicted rotation R and
the corresponding ground truth values, and the root mean
squared error RMSE (T ) between the predicted translation
T and the corresponding ground truth values. Here we use
Euler angle to represent rotation.

Besides, we follow the evaluation protocol in [19, 24]
and adopt part accuracy (PA) as an evaluation metric. This
metric measures the portion of ‘correctly placed’ parts. We
first use predicted rotation and translation to transform the
input point cloud, and then compute the Chamfer Distance
between the transformed point cloud and the ground truth.
If the distance is smaller than a threshold, we count this part
as ‘correctly placed’.

Hyper-parameters. We set batch size to be 32 for Break-
ing Bad, 48 for Geometric Shape Mating, and the initial
learning rate of Adam Optimizer [15] to be 0.0001. We
train the model 80 and 120 epochs respectively for Geomet-
ric Shape Mating and Breaking Bad.

5.2. Baselines

For the Geometric Shape Mating dataset, the two-part
geometric shape assembly task, we compare our method
with NSM [5], the state-of-the-art method for two-part mat-
ing. For the Breaking Bad dataset, the multi-part geometric
shape assembly task, we modified the official code of the
NSM [5] from two-part geometric shape assembly to multi-
part geometric assembly by predicting the pose of each in-
put part. We also compare our method with DGL [36] and
LSTM [10] following the Breaking Bad benchmark [24].
All baseline implementations use the official code in two
benchmarks [5, 24]. The baselines are described as follows:

• NSM [5] extracts part features using transformer and
predicts their poses for mating, achieving state-of-the-
art performance in two-part mating.

• DGL [24, 36] uses graph neural networks to encode
and aggregate part features, and predicts the pose of
each part. Following [24], we remove the node aggre-
gation procedure as there does not exist parts with the
same geometric appearance in geometric assembly.

• LSTM [24, 36, 10] uses bi-directional LSTM to take
part features as input and sequentially predicts the pose
of each part. This method assembles the decision-
making method of humans when faced with geometric
shape assembly problems.
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DGL OursLSTM NSMInput GT

Figure 3. Qualitative results on Breaking Bad dataset for multi-part geometry shape assembly. We observe better rotation and
translation predictions (especially rotation) than baseline methods.

OursNSMInput GT

Figure 4. Qualitative results on Geometric Shape Mating
dataset for two-part geometric shape assembly. We observe bet-
ter pose predictions (especially rotation) than NSM.

5.3. Experimental Results and Analysis

Table 1 and 2 show the quantitative performance of our
method and baselines. The experimental results demon-
strate that our method performs better than all baselines
in both two-part and multi-part geometric shape assembly
tasks over all evaluation metrics.

As discussed in [24], predicting rotations of multiple
parts is pretty more difficult than translation. Table 1 and 2
show our method has a significant improvement in this as-

Method RMSE (R) ↓ GD (R) ↓ RMSE (T ) ↓ PA ↑

degree rad ×10−2 %

DGL 84.1 2.21 14.7 22.9
LSTM 87.6 2.24 16.3 13.4
NSM 85.6 2.21 15.7 16.0
Ours 75.3 2.00 14.1 26.7

Table 1. Quantitative evaluation on Breaking Bad dataset for
multi-part geometric assembly. We report quantitative results of
our method and three learning-based shape assembly baselines on
the everyday object subset.

Method RMSE (R) ↓ GD (R) ↓ RMSE (T ) ↓ PA ↑

degree rad ×10−2 %

NSM 21.3 0.52 2.9 79.1
Ours 15.9 0.39 2.7 85.7

Table 2. Quantitative evaluation on Geometric Shape Mating
dataset for two-part geometric assembly. We report quantitative
results of our method and the NSM baseline.

pect, and outperforms all baselines in the root mean squared
error RMSE (R) metric and the geodesic distance (GD)
metric. In particular, our rotation is around 10 degrees less
than the baselines. For translation prediction, our RMSE
(T ) also outperforms all baselines on both datasets. In ad-
dition, our method also outperforms all baselines in part ac-
curacy (PA), especially for the LSTM and NSM in the more
challenging Breaking Bad dataset.
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This may result from our SO(3) equivariant network that
disentangles shape and pose information, reducing the diffi-
culty of learning rotations of different posed parts with dif-
ferent geometries, thus allowing for better predictions.

Figure 4 shows qualitative examples of our method and
NSM on the Geometric Shape Mating dataset. Although
it is a comparatively simple dataset and the task is nearly
solved by previous methods, our method still performs bet-
ter, especially in rotation prediction.

Figure 3 shows qualitative comparisons between our
method and baselines on the more challenging and realistic
Breaking Bad dataset. Although this task is highly difficult
and all methods could not solve the task, our method can
better predict the pose (especially the rotation) of each part.

GTInput w/o Corr Ours

Figure 5. Qualitative results of our method with and without
part correlation on Geometric Shape Mating dataset. The parts
with representations considering part correlations match better.

5.4. Ablation Studies

To further evaluate the effectiveness of different com-
ponents in our framework, we conduct ablation studies by
comparing our method with the following ablated versions:

• w/o Corr: our method without considering part corre-
lations in each part’s equivariant representations.

• w/o TE: our method without translation embedding.

• w/o Adv: our method without adversarial learning.
As shown in Table 3 and 4, and Figure 5, the perfor-

mance decline when removing part correlations in part rep-
resentations demonstrate that, our proposed part correla-
tions help in the geometric assembly of fractured parts, as
it is significant to aggregate geometric information between
parts for geometric shape assembly.

As shown in Table 3 and 4, the translation embedding
and adversarial training help improve the performance of
our method, as described in Section 4.3 and 4.4, translation
embedding and adversarial learning and can serve as pose
fine-tuners and improve pose predictions.

Method RMSE (R) ↓ GD (R) ↓ RMSE (T ) ↓ PA ↑

degree rad ×10−2 %

w/o Corr 19.2 0.52 2.9 80.5
w/o TE 17.3 0.46 2.8 84.3
w/o Adv 16.7 0.43 2.8 82.6
Ours 15.9 0.39 2.7 85.7

Table 3. Ablations on Geometric Shape Mating. We compare
with versions removing part correlations (w/o Corr), translation
embedding (w/o TE) and adversarial learning (w/o Adv).

Method RMSE (R) ↓ GD (R) ↓ RMSE (T ) ↓ PA ↑

degree rad ×10−2 %

w/o Corr 79.8 2.17 15.7 18.4
w/o TE 77.2 2.04 15.2 22.5
w/o Adv 77.6 2.02 14.3 23.7
Ours 75.3 2.00 14.1 26.7

Table 4. Ablations on Breaking Bad. We compare with versions
removing part correlations (w/o Corr), translation embedding (w/o
TE) and adversarial learning (w/o Adv).

6. Conclusion
In this paper, to tackle 3D geometric shape assembly

tasks that rely on geometric information of fractured parts,
we propose to leverage SE(3)-equivariant representations
that disentangle shapes and poses to facilitate the task. Our
method leverages SE(3) equivariance in part representa-
tions considering part correlations, by learning both SE(3)-
equivariant and -invariant part representations and aggre-
gating them into SE(3)-equivariant representations. To the
best of our knowledge, we are the first to explore leverag-
ing SE(3) equivariance on multiple objects in related fields.
Experiments demonstrate the effectiveness of our method.
Limitations & Future Work In Breaking Bad, although
we perform better than all baselines, this does not mean that
we have solved the problem. When the number of frac-
tures increases, the problem’s complexity increases sharply,
and most existing methods cannot perform well. To com-
pletely solve the problem, more additional designs need to
be added, while leveraging SE(3) equivariance is orthogo-
nal to many designs. For the whole framework, while the
learned representations are equivariant to input part poses,
the rotation regressor is non-equivariant, as it limits the
degree-of-freedom in pose prediction and leads to worse re-
sults. Besides, it will take computing resources and time to
train equivariant networks than ordinary networks.
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