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Abstract

The sample selection approach is popular in learning
with noisy labels. The state-of-the-art methods train two
deep networks simultaneously for sample selection, which
aims to employ their different learning abilities. To prevent
two networks from converging to a consensus, their diver-
gence should be maintained. Prior work presents that the
divergence can be kept by locating the disagreement data on
which the prediction labels of the two networks are differ-
ent. However, this procedure is sample-inefficient for gener-
alization, which means that only a few clean examples can
be utilized in training. In this paper, to address the issue,
we propose a simple yet effective method called CoDis. In
particular, we select possibly clean data that simultaneously
have high-discrepancy prediction probabilities between two
networks. As selected data have high discrepancies in prob-
abilities, the divergence of two networks can be maintained
by training on such data. In addition, the condition of
high discrepancies is milder than disagreement, which al-
lows more data to be considered for training, and makes
our method more sample-efficient. Moreover, we show that
the proposed method enables to mine hard clean examples
to help generalization. Empirical results show that CoDis
is superior to multiple baselines in the robustness of trained
models.

1. Introduction
Learning with noisy labels can be dated back to more

than three decades ago [1], and still is one of the hottest
problems in weakly supervised learning. The reason is that,
in our daily life, noisy labels are unavoidable such as crowd
sourcing [67, 32] and web queries [39, 58]. However, the
combination of noisy labels and deep networks is rather
pessimistic, since deep networks have strong learning ca-
pacities and can fully memorize given noisy labels, leading
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to poor generalization [88, 60, 9, 24, 35, 89, 11, 65, 78, 71,
33]. General-purpose regularization such as dropout and
weight decay cannot address this issue well [80].

Fortunately, even though deep networks can fit anything
given for training eventually, they learn patterns first [2]:
this suggests that deep networks can gradually memorize
the data, moving from clean data to mislabeled data. The
sample selection approach therefore was proposed to handle
noisy labels [21, 16, 47, 76], which is also our focus in this
paper. The works on sample selection try to select possibly
clean data out of noisy ones, and then use them to update the
deep networks. Intuitively, if the training data can become
less noisy, better generalization can be achieved.

As the idea of self-teaching sample selection is argued
to have the inferiority of accumulated errors caused by the
sample-selection bias [16], some advanced algorithms were
proposed, which maintain two deep networks, working in a
cooperative manner [76, 40, 31, 63]. The key component
making the cooperative sample selection works better than
the self-teaching one, is that two different networks have
different learning abilities and can filter different types of
errors introduced by noisy labels. That is to say, when each
network selects clean data for its peer network for updates,
the error flows coming from the biased selection, can be
reduced by peer networks mutually [16].

To keep the different learning abilities of two networks,
prior work [79] utilizes a simple strategy called “Update
by Disagreement”. In more detail, two networks feed for-
ward and predict all data first, and only keep prediction
disagreement data, i.e., the data with different prediction
labels from two networks. Then, each network selects its
clean data from such disagreement data to the peer net-
work. At first glance, this method can use less noisy data
and meanwhile maintain the different learning abilities of
two networks. However, its sample selection procedure is
sample-inefficient for network weight updates. It is because
the condition of disagreement is somewhat strong in sample
selection, which makes that the sample size of prediction
disagreement data is often small, especially when the label
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noise rate is large [63]. When we tend to select clean data
out of them, the sample size of available data for network
weight updates will be further reduced. The issue causes
that a few clean examples can be utilized in training, which
impairs generalization severely [63].

In this paper, to handle the above problem, a robust learn-
ing paradigm called CoDis is proposed. Specifically, we
inherit the property that deep networks learn patterns first
for sample selection, as did in [21, 16, 40, 69]. Mean-
while, the training examples with high discrepancies be-
tween two networks are encouraged to be involved in train-
ing. The network divergence can be maintained by training
on such examples. In this work, for a training example,
we measure the discrepancy by using the distance of pre-
diction probabilities between two networks, which is con-
tinuously valued. As the measurement of whether an ex-
ample can be clean (e.g., the cross-entropy loss), is also
continuous, it is convenient to make a great trade-off that
considers the examples which are likely to be clean (with
small cross-entropy losses) and simultaneously can main-
tain the two networks diverged (with high discrepancies).
Additionally, the condition of high discrepancies in sam-
ple selection is milder than the condition of disagreement.
In other words, the prediction disagreement data must have
high-discrepancy prediction probabilities, but the data with
high discrepancies can have different prediction probabil-
ities but the same prediction labels from two networks.
The milder condition allows us to consider more data for
training. Therefore, compared with the prior mentioned
procedure of sample selection [79], our procedure is more
sample-efficient, which improves generalization.

Furthermore, the examples with high discrepancies in
training are probable to be hard examples [12], which play
an important role in shaping the decision boundary. Shared
with a similar philosophy, the proposed method emphasizes
high-discrepancy examples and enables to mine hard clean
examples that are critical for generalization. Benefiting
from maintaining two networks simultaneously, the discrep-
ancy measurement in our work can be conducted on-the-fly,
and without the need to carefully determine that useful in-
formation on how many training iterations is introduced.

The main contributions of this paper are summarized as
three aspects: (1). We provide a simple but effective method
to tackle noisy labels, which is more sample-efficient to
help generalization. (2). The proposed method can main-
tain the network divergence meanwhile enable to mine hard
clean examples that are significant for generalization. We
also provide theoretical insights into the divergence applied
in sample selection. (3). We conduct a series of exper-
iments on both simulated noisy datasets including class-
balanced and imbalanced noisy datasets, and real-world
noisy datasets. Extensive results demonstrate that the ro-
bustness of deep models trained by CoDis can well com-

bat noisy labels. Particularly, on class-imbalanced noisy
datasets, our method can outperform comparison methods
by more than 5% of test accuracy.

2. Background

Notations. In the sequel, we use ∥·∥p as the ℓp norm of vec-
tors or matrices and KL(·∥·) as the Kullback-Leibler (KL)
divergence [44] between two probability distributions. We
use |·| to denote the number of elements in a set. For a func-
tion g, we use ∇g to denote its gradient. For a vector z, zj

denotes the j-th component of z. We use ei to denote the
one-hot encoding, with ei = (0, . . . , 0, 1, . . . , 0) (the i-th
coordinate being 1). Let [n] = {1, 2, . . . , n}.
Problem statement. We consider a c-class (c ≥ 2) classifi-
cation problem. Let X and Y be the instance/feature space
and label space respectively, with X ⊂ Rd and Y ⊂ Rc,
where d is the dimensionality of the feature space. Let
D = {(xi,yi)}ni=1 be an i.i.d. training sample lying in
the joint distribution X × Y , where n denotes the sample
size. In supervised learning, the aim is to learn a precise
classifier that can assign labels for given instances with the
sample D. However, before being observed, true labels of
examples in D are independently flipped and what we can
obtain is a noisy training sample D̃ = {(xi, ỹi)}ni=1, where
ỹ denotes the one-hot noisy label. The aim is changed to
learn a robust classifier that can assign clean labels to test
data by only exploiting a noisy training sample D̃.

2.1. Handling Noisy Labels with Sample Selection

We formally introduce the sample selection approach ap-
plied in learning with noisy labels. Specifically, with the as-
sumption that clean labels are the majority in a noisy class
[41], we can select possibly clean examples from noisy ex-
amples based on some criteria. For example, the small-
loss examples can be approximately seen as clean exam-
ples [16, 79, 19, 40, 63]. In addition, the examples that
have large classification margins [52], minimize the deter-
minant value of the corresponding sample covariance ma-
trix [29], or minimize the average gradient dissimilarity to
all the other examples [43], can be seen as clean examples
and then be used for network parameter updates.

In this paper, we target the procedure of using the small-
loss criterion for sample selection, which is most commonly
used. It is straightforward for using a single network to
select clean examples for robust training [21]. However,
this paradigm inherited the inferiority of accumulated er-
rors caused by the sample-selection bias. More specifically,
at the stage when the network begins to fit training exam-
ples, the losses are not very informative. Therefore, we may
select mislabeled examples mistakenly for updates. This is-
sue causes the network to memorize incorrect information
which greatly affects the selection of examples in subse-
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quent iterations. Although Co-teaching [16] trains two net-
works and makes them select clean examples for its peer
network, it still cannot address the issue of accumulated er-
rors well, because two networks will converge to a consen-
sus with the increase of training epochs.

To address the issue of accumulated errors, some works
follow the idea of “Update by Disagreement”. The core
components of this idea are to employ two networks and
keep divergence among them. For example, Decoupling
[42] conducts updates only on selected data with predic-
tion disagreement between two networks. Co-teaching+
[79] concerns that the disagreement area of two networks
is noisy and further selects small-loss examples within the
area for updates. However, in the manner of Co-teaching+,
a few clean examples can be used to help generalization,
due to the strict disagreement measurement.

Recently, JoCor [63] starts with a new perspective named
“Update by Agreement”, which is motivated by Co-training
[4] for multi-view learning and semi-supervised learning.
Still using two networks, JoCor uses a joint cross-entropy
loss for sample selection but exploits the KL divergence to
constrain the outputs of two networks, which makes predic-
tions of each network closer to ground true labels and peer
network’s. JoCor can achieve promising performance on
balanced noisy datasets. Unfortunately, for more practical
tasks, e.g., training on imbalanced noisy datasets, the mech-
anism of JoCor will accelerate the degradation of deep
learning capabilities of two networks, which severely hin-
ders the use of hard clean examples. Nevertheless, this type
of examples is always the key to generalization [6]. Results
in Section 4.3 will highlight the vulnerability of JoCor.

2.2. Other Methods for Learning with Noisy Labels

In addition to sample selection, we briefly review other
kinds of methods for handling noisy labels. There is a large
body of works proposed various methods for coping with
noisy labels, which include but are not limited to, learn-
ing with a label noise transition matrix [17, 77, 90, 22, 70],
reweighting examples [38, 54, 10, 55], recalibrating la-
bels [59, 86, 84], using graph models [73, 34, 62], designing
robust loss functions [85, 74, 41, 66], exploiting (implicit)
regularization [82, 23, 18, 68, 7, 64, 61], and combining
semi-supervised learning [46, 31, 37, 87, 20], etc. Readers
can refer [57, 15] for more details of learning with noisy
labels.

3. CoDis Meets Noisy Labels
3.1. Method Description

Given a training example (xi, ỹi), we formulate the
proposed method with two deep neural networks de-
noted by f(xi;w1) and f(xi;w2), where w1 and w2

are weights of two deep neural networks. While,

p1(xi) = [p11(xi), p
2
1(xi), . . . , p

c
1(xi)] and p2(xi) =

[p12(xi), p
2
2(xi), . . . , p

c
2(xi)] denote their prediction proba-

bilities for the instance xi respectively, which are the out-
puts of the softmax layer in two networks. That is to say,
denoted the softmax activation function [13] by S(·), we
have p1(xi) = S(f(xi;w1)) and p2(xi) = S(f(xi;w2)).
In the following, we introduce two losses in CoDis, i.e., the
classification loss and discrepancy loss.

Classification loss. For the classification task, we exploit
the cross-entropy loss ℓCE to minimize the distance between
predictions and given labels. Specifically, for the training
example (xi, ỹi), the classification loss on it with each net-
work (e.g., the network with weights w1) is defined as

LC = ℓCE (p1(xi), ỹi) = −
c∑

j=1

ỹj
i logp

j
1(xi). (1)

As deep networks learn patterns first [2], they would first
memorize training data of clean labels with the assumption
that clean labels are of the majority in a noisy class. Small-
loss training examples can thus be regarded as clean exam-
ples with high probability. Based on this, we can employ
the loss (1) for sample selection as did in [16, 79, 69].

Discrepancy loss. Given a training example (xi, ỹi), to
measure the difference of the two networks’ predictions
p1(xi) and p2(xi), we adopt the Jensen-Shannon (JS) di-
vergence [44], which is continuous like the cross entropy
loss. We formulate the discrepancy loss as follows:

LD = JS(p1(xi)||p2(xi))

=
1

2
KL

(
p1(xi)||

p1(xi) + p2(xi)

2

)
+

1

2
KL

(
p2(xi)||

p1(xi) + p2(xi)

2

)
.

(2)

Intuitively, the discrepancy loss (2) can quantify the output
difference of two networks. For a training example, a large
discrepancy loss means that the two networks have a high
discrepancy on it.

Sample selection criterion. As discussed, we tend to se-
lect possibly clean examples based on the small-loss crite-
rion and involve high-discrepancy examples in training at
the same time. Therefore, the losses (1) and (2) should have
a confrontation state. We define the joint loss for sample
selection during training as follows:

LJ = LC − α ∗ LD, (3)

where α > 0 is a hyper-parameter to balance the above two
terms. We select the examples with smaller joint losses.
More specifically, the example with a smaller classification
loss can be seen as clean as mentioned [2, 80, 16, 21]. A
larger discrepancy loss means that we select the possibly
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Algorithm 1: CoDis Algorithm.
1: Input: two networks with initialized weights w1

and w2, learning rate η, fixed τ , epoch Tk and
Tmax, iteration tmax;

for T = 1, 2, . . . , Tmax do
2: Shuffle training dataset D̃;
for t = 1, . . . , tmax do

3: Fetch mini-batch D̄ from D̃;
4: Obtain
D̄1 = argminD′:|D′|≥R(T )|D̄| LJ(w1,D′);

5: Obtain
D̄2 = argminD′:|D′|≥R(T )|D̄| LJ(w2,D′);

6: Update w1 ← w1 − η∇LC(w1, D̄2);
7: Update w2 ← w2 − η∇LC(w2, D̄1);

8: Update R(T ) = 1−min
{

T
Tk

τ, τ
}

;

9: Output: two trained networks with w1 and w2.

clean examples but with a high divergence between two net-
works, which could be hard clean examples for generaliza-
tion. Then selected examples are used for robust training.

To determine the value of α, if we have a small trusted
and unbiased dataset, we can choose a suitable α with meta
learning [55, 56]. However, it may be somewhat strong to
have such a small dataset in practice. Therefore, we choose
α with a noisy validation set as did in [49, 8, 46]. In fact,
the proposed sample selection criterion is stable with the
change of α. We present detailed analyses and discussions
for algorithm stability. More details are presented in Section
4. Besides, prior methods [25] design a low bound for the
loss function to keep its value from going negative, which
relieves the overfitting issue. As a contrast, our method can
achieve great robustness, but does not rely on this operation.

Network weight updates. We maintain two networks si-
multaneously. The cross-update strategy is used. Specif-
ically, each network selects training examples for its peer
network based on the loss (3). Then each network employs
the selected examples from the peer network for updates.
Note that the joint loss consists of two terms, which con-
trols the memorization of clean examples and enforces the
divergence of two networks, respectively. To avoid the ex-
plicit enforcement hurting clean example memorization and
impairing generalization [42], we only use the classification
loss for weight updates. The divergence of the two networks
can be maintained implicitly because of the proposed sam-
ple selection criterion. The overall procedure of CoDis is
shown in Algorithm 1.

3.2. Theoretical Analysis

Our method inherits the paradigm of cross updates [4,
16], where two deep networks are exploited. The philos-

ophy is, even though two networks have the same struc-
tures, with different initialization, they have different out-
puts during training, i.e., LD > 0. Note that the outputs
of two networks cannot be totally different. A network can
provide a part of information that the other network itself
does not have. For example, for the network with weights
w1 (denoted by f1), on some instances, the network with
weights w2 (denoted by f2) has large discrepancy losses
with f1. While, for the other instances, f2 has small dis-
crepancy losses with f1. Therefore, for any network, if the
selected examples S have a size nt, we can set a threshold
for discrepancy losses to divide S into two sets σs and σl.
The set σs includes the examples with smaller discrepancy
losses with |σs| = ns. While, the set σl includes the ex-
amples with larger discrepancy losses with |σl| = nl. We
provide the following theorem to show how the divergence
between two networks in selected examples influences the
classification on them.

Theorem 1 The hypothesis spaces of f1 and f2 are de-
noted by F1 and F2. Suppose that by only minimiz-
ing the empirical risk on σs, we can train two net-
works f0

1 and f0
2 , with L0

C1 and L0
C2. Assume that

ns ≥ max{ 2
(L0

C1)
2 log

2
|F1| ,

2
(L0

C2)
2 log

2
|F2|}. Let Ψ =

LD(f1, f2) − LC2, Φ = LD(f2, f1) − LC1, ζ1 =
L0

C1

√
n2
s+nsnl

ns
− nlΨ

ns
, and ζ2 =

L0
C2

√
n2
s+nsnl

ns
− nlΦ

ns
. If

Ψ >
L0

C1
2 and Φ >

L0
C2
2 , then ζ1 < L0

C1, ζ2 < L0
C2, and the

following bounds on the classification losses of f1 and f2
hold for any δ > 0:

p(LC1 < ζ1) ≥ 1− δ and p(LC2 < ζ2) ≥ 1− δ. (4)

The proof is provided in Appendix A. In Theorem 1, we
claim that for any δ, the bounds in Eq. (4) hold with prob-
ability of at least 1 − δ. This probabilistic expression is
widely used to analyze the generalization of an algorithm
(c.f., [44]). The above theorem provides theoretical insights
to understand what factors influence the classification of a
network on selected examples. Note that selected examples
have high label precision [16, 63]. Our analysis can provide
insights to the use of discrepancy losses in sample selection.

4. Experiments
4.1. Comparison Methods

We compare the proposed method with the state-of-art
methods on sample selection: (1). MentorNet [21]. We
use self-teaching MentorNet in this paper. (2). SIGUA
[14], which exploits stochastic integrated gradient under-
weighted ascent to handle noisy labels. We use self-
teaching SIGUA in this paper. (3). Co-teaching [16]. (4).
Decoupling [42]. (5). Co-teaching+ [79]. (6). JoCor [63].
Although we focus on the sample selection approach for
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combating noisy labels, to make this work more convincing,
we also compare our method with other types of advanced
methods. We employ the methods belonging to designing
robust loss functions and exploiting (implicit) regulariza-
tion, i.e., APL [41] and CDR [68]. APL combines two mu-
tually reinforcing robust loss functions. While, CDR em-
ploys unstructured network pruning to enhance the robust-
ness of deep networks.

Note that we do not directly compare the proposed
method with some state-of-the-art methods, e.g., DivideMix
[31]. It is because DivideMix is an aggregation of multi-
ple techniques, e.g., Mixup [81], soft labels [53], and semi-
supervised learning [3]. We mainly focus on sample selec-
tion in learning with noisy labels. The direct comparison is
not fair. Therefore, in this paper, to compare with it fairly,
we follow the paradigm of DivideMix to boost our method.
The enhanced method is named DivideMix+, where we re-
place the sample selection procedure [51] in DivideMix by
CoDis. In this way, we show that our method can be ex-
ploited to improve the cutting-edge performance of state-
of-the-art methods effectively.

4.2. Experiments on Balanced Noisy Datasets

Datasets. We verify the effectiveness of our method on
the manually corrupted version of the following datasets:
MNIST [28], F-MNIST [72], SVHN [45], CIFAR-10 [26],
CIFAR-100 [26], and NEWS [27]. The six datasets are popu-
larly used in prior works. Note that for NEWS, we borrowed
the pre-trained word embeddings from GloVe [50]. Impor-
tant statistics of used datasets are provided in Appendix B.1.

Generating noisy labels. We consider broad types of
noisy labels: Symmetric noise (abbreviated as Sym.), Pair-
flip noise (abbreviated as Pair.), Tridiagonal noise (abbrevi-
ated as Trid.), and Instance-dependent noise (abbreviated as
Ins.). The noise rates are set to 20% and 40% consistently,
which aim to ensure that clean labels in noisy classes are
diagonally dominant [41]. More details about generating
noisy labels are provided in Appendix B.2 . We leave 10%
of noisy training examples as a validation set. Note that the
clean labels are dominating in noisy classes and that noisy
labels are random, the accuracy on the noisy validation set
and the accuracy on the clean test data set are positively cor-
related. The noisy validation set can thus be used.

Implementation. For a fair comparison, we implement all
methods with default parameters by PyTorch, and conduct
all the experiments on NVIDIA TITAN XP GPUs. For
MNIST, F-MNIST, SVHN, and CIFAR-10, we employ a 9-
layer CNN structure from [16], which is a standard testbed
for weakly supervised learning. For CIFAR-100, we use a 7-
layer CNN structure from [79]. For NEWS, we use a 3-layer
MLP with the Softsign active function. Adam optimizer is
with an initial learning rate of 0.001, and the batch size is set

to 128 and we run 200 epochs. The learning rate is linearly
decayed to zero from 80 to 200 epochs. Note that deep net-
works are highly non-convex, even with the same network
and optimization method, different initializations can lead
to different local optimal [42]. Thus, following [16, 79], we
also take two networks with the same architecture but dif-
ferent initializations as two classifiers. Here, we assume the
noise level τ is known and set R(T ) = 1 − min{ T

Tk
τ, τ}

with Tk=10. If τ is not known in advance, it can be inferred
using validation sets [38].

Measurement. To measure performance, we use test ac-
curacy, i.e., test accuracy = (# of correct predictions) / (#
of testing). Intuitively, a higher test accuracy means that a
method is more robust to noisy labels. Besides, we use the
selected ratio, i.e., selected ratio = (# of selected training
examples) / (# of all training examples). The higher selected
ratio means that a method is more sample-efficient. Note
that due to the limited page, in Appendix C.4, we compare
the label precision of sample selection, i.e., label precision
= (# of clean labels) / (# of all selected labels).

Experimental results. For test accuracy, the results of ex-
periments on balanced noisy datasets are provided in Ta-
ble 1. In general, the proposed method achieves superior
robustness compared with multiple baselines. More specifi-
cally, for each dataset, our method can achieve the best per-
formance in most cases. In some cases, although it cannot
surpass all baselines, it often obtains the second-best per-
formance. Therefore, the performance is still competitive.
In addition, for selected ratios, we compare CoDis with Co-
teaching+. The results are shown in Table 2. We can see that
CoDis is more sample-efficient than Co-teaching+. We may
notice that, no matter on which dataset, the selected ratio of
CoDis is 60.90%. It is because R(T ) = 1−min{T/Tkτ, τ}
controls the numbers of selected examples. If the parame-
ters Tk and τ are fixed to 10 and 40% respectively, the av-
erage selected ratio must be 60.90% over 200 epochs.

Experiments with higher noise levels. Before this, for the
symmetric noise, we set the noise rate to 20% and 40% re-
spectively to verify the effectiveness of our method. Here,
for symmetric noise, we increase the noise levels to 50%,
60%, and 70% to further support our claims. Experiments
are conducted on MNIST and F-MNIST. Due to the limited
page, experimental results and discussions are provided in
Appendix C.1.

Comparison with DivideMix. We compare DivideMix1

with DivideMix+ on CIFAR-10 and CIFAR-100. Experi-
mental settings, e.g., the network structure and optimizer,
follow those of settings in DivideMix. The results in Ta-
ble 3 show that DivideMix+ can outperform DivideMix in
all cases, which mean that our method can be used to im-
prove the cutting-edge performance of state-of-the-arts.

1Official code: https://github.com/LiJunnan1992/DivideMix
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Table 1. Mean and standard deviations of test accuracy (%) on two balanced noisy datasets with different noise levels. The test accuracy
is calculated over the last ten epochs. The results are reported over five trials. The best result and second best result in each case are
highlighted in red and blue respectively. Results achieved on the other four balanced noisy datasets are provided in Appendix C.1.

Noise type Sym. Pair. Trid. Ins.
Setting 20% 40% 20% 40% 20% 40% 20% 40%

C
IF

A
R

-1
0

APL 76.20±1.07 67.20±0.89 77.74±0.98 62.05±0.96 79.05±0.61 70.88±1.04 78.32±0.52 66.25±1.92
CDR 69.74±0.92 50.86±0.74 72.07±0.19 52.01±0.59 71.11±0.84 53.59±0.76 71.55±0.32 52.18±1.50
MentorNet 80.92±0.48 74.67±1.17 77.98±0.31 69.39±1.73 78.02±0.29 71.56±0.93 77.02±0.71 68.17±2.52
SIGUA 78.19±0.22 77.67±0.41 74.41±0.81 61.91±5.27 75.75±0.53 74.05±0.41 74.34±0.39 67.98±1.34
Co-teaching 82.35±0.16 77.96±0.39 80.94±0.46 72.81±0.92 81.17±0.60 74.37±0.64 79.92±0.57 73.29±1.62
Decoupling 74.05±0.38 55.62±0.61 74.62±0.48 53.34±0.71 75.00±0.50 56.93±0.65 74.16±0.25 54.71±0.95
Co-teaching+ 75.88±0.32 62.93±0.70 75.86±0.33 54.38±0.82 76.31±0.52 59.54±0.77 75.11±0.78 57.30±1.53
JoCor 80.96±0.25 76.65±0.43 80.33±0.20 71.62±1.05 79.03±0.13 74.33±1.09 78.21±0.34 71.46±1.27
CoDis 82.30±0.29 77.61±0.28 81.60±0.18 73.12±1.18 81.83±0.24 74.44±1.01 82.17±0.99 74.31±1.26

N
E

W
S

APL 49.63±2.33 46.81±0.48 46.82±0.90 35.48±1.12 48.62±0.80 37.79±0.82 48.90±0.75 39.88±1.25
CDR 45.07±0.81 32.54±0.88 46.78±0.83 35.29±0.63 46.52±0.76 35.76±0.74 45.75±0.85 34.69±0.79
MentorNet 56.69±0.37 54.29±0.29 55.60±0.42 47.42±1.07 55.00±0.47 50.57±0.52 56.50±0.46 50.86±0.36
SIGUA 54.44±0.75 53.22±0.73 48.13±0.39 43.73±0.32 49.51±0.52 49.74±1.50 53.22±0.44 50.02±0.28
Co-teaching 56.99±0.28 54.85±0.53 55.61±0.20 46.29±1.07 56.40±0.73 51.63±0.33 56.61±0.36 51.37±0.32
Decoupling 50.74±0.20 39.78±0.14 51.36±0.54 38.69±1.03 51.44±0.73 39.98±1.12 50.47±0.52 37.92±0.98
Co-teaching+ 50.84±0.40 44.81±1.01 51.12±0.62 39.34±0.99 51.68±1.09 43.08±1.65 50.71±0.86 42.77±0.93
JoCor 57.15±0.33 55.48±0.29 55.96±0.26 47.23±1.57 56.55±0.89 52.40±0.65 56.88±0.45 51.32±0.46
CoDis 57.15±0.20 54.93±0.21 55.52±0.35 47.45±1.05 56.07±0.79 52.28±0.47 56.92±0.47 52.24±0.31

Table 2. The average selected ratio (%) on MNIST and F-MNIST
with different noise settings. The noise rate is set to 40%. The
ratio is calculated over 200 epochs.

MNIST
Method / Noise Sym. Pair. Trid. Ins.

Co-teaching+ (on MNIST) 9.04 5.77 10.13 7.90
Co-teaching+ (on F-MNIST) 12.37 10.56 15.21 13.60

CoDis 60.90

Table 3. Mean and standard deviations of test accuracy (%)
on CIFAR-10 and CIFAR-100 compared DivideMix with Di-
videMix+. The best mean results in each case are in bold.

CIFAR-10
Method/Noise Sym. 20% Sym. 50% Sym. 80%

DivideMix Best 95.92±0.15 94.47±0.22 92.29±0.45
Last 95.55±0.06 94.25±0.18 92.12±0.51

DivideMix+ (ours) Best 96.21±0.13 94.77±0.21 93.05±0.63
Last 95.83±0.17 94.53±0.15 92.88±0.41

CIFAR-100

DivideMix Best 77.25±0.27 74.25±0.38 59.93±0.75
Last 76.78±0.29 73.95±0.33 59.33±1.09

DivideMix+ (ours) Best 77.45±0.20 74.67±0.40 60.36±0.84
Last 77.02±0.32 74.32±0.30 60.12±0.59

4.3. Experiments on Imbalanced Noisy Datasets

Datasets and implementation. We consider two kinds of
experimental settings for imbalanced noisy cases. As dis-
cussed, CoDis emphasizes the data with high discrepan-
cies between two networks, which are probably hard ex-
amples. Therefore, we exploit imbalanced noisy cases to
verify the effectiveness of the proposed method, and show
that it can better mine hard clean examples than baselines,
following superior robustness. In more detail, the first one
is asymmetric noise (abbreviated as Asym.), which consid-
ers the visual similarity in the flip process and is closer to
instance noise [49]. This type of noise always makes noisy

datasets imbalanced. We inject asymmetric noise on the im-
age datasets, i.e., MNIST, F-MNIST, SVHN, and CIFAR-10.
The noise rate is set to 20%, 30%, 40%, and 45% respec-
tively. More details are provided in Appendix B.2.
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Figure 1. Illustrations for two types of long-tailed datasets.

The second one is long-tailed noise (abbreviated as L-
Tailed.), where training data exhibit long-tailed distribu-
tions with class imbalance [75]. In this paper, we reduce
the proportion of training examples with different classes to
simulate long-tailed distributions. We use two simulation
ways, which are shown in Figure 1. Taking MNIST as an
example, the built datasets are called L-MNIST-1 (Figure 1,
Left) and L-MNIST-2 (Figure 1, Right). Other used datasets
are named in the same way. We employ MNIST and SVHN
in this setting. Besides, asymmetric noise is further im-
posed on long-tailed datasets, which forms noisy long-tailed
datasets. The implementation details are kept the same as
the cases in experiments on balanced noisy datasets, includ-
ing optimization and network structures.

Experimental results. The results of experiments only
with asymmetric noise are presented in Table 4. Exten-
sive results show that our method can achieve clear leads
over all baselines. For the most challenging cases, i.e., our
method achieves more than 5% improvements on MNIST,
F-MNIST, and SVHN. For CIFAR-10, our method also
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Table 4. Mean and standard deviations of test accuracy (%) on
class-imbalanced noisy datasets with different noise levels. The
test accuracy is calculated over the last ten epochs. The results are
reported over five trials. The best result and second best result in
each case are highlighted in red and blue respectively.

Noise type Asym. 20% Asym. 30% Asym. 40% Asym. 45%

M
N

IS
T

APL 98.63±0.05 98.03±0.38 88.65±1.72 90.82±2.04
CDR 96.73±0.19 94.33±1.07 91.05±0.76 76.79±3.07
MentorNet 96.32±0.17 93.75±3.91 90.96±0.97 67.91±5.44
SIGUA 93.96±0.82 89.15±1.15 62.59±0.15 50.22±2.74
Co-teaching 98.25±0.08 98.26±0.11 95.08±0.43 76.17±5.38
Decoupling 98.71±0.06 95.02±0.23 86.72±0.41 83.29±0.55
Co-teaching+ 98.79±0.11 96.70±0.24 94.99±0.41 93.47±0.49
JoCor 98.05±0.37 94.95±3.84 94.55±1.08 80.50±2.11
CoDis 99.55±0.03 99.42±0.02 99.18±0.07 99.01±0.14

F
-M

N
IS

T

APL 90.13±0.17 86.26±0.47 80.34±0.63 60.15±2.72
CDR 89.78±0.41 85.17±1.04 79.05±1.39 52.75±2.44
MentorNet 89.69±0.19 84.20±3.36 67.21±2.94 61.18±2.98
SIGUA 76.97±2.59 63.64±7.36 45.96±3.40 43.52±2.37
Co-teaching 91.03±0.14 88.67±0.60 68.07±4.58 64.87±4.88
Decoupling 90.74±0.35 85.34±0.30 79.45±0.42 60.39±2.87
Co-teaching+ 91.66±0.34 89.38±0.39 82.33±0.64 68.29±3.14
JoCor 90.95±0.21 85.59±3.91 79.79±2.39 62.53±2.33
CoDis 93.12±0.15 92.11±0.28 84.10±2.93 74.30±3.92

SV
H

N

APL 92.57±0.44 89.22±0.46 84.00±1.07 79.52±1.18
CDR 90.17±0.37 86.16±0.30 81.79±0.82 79.45±0.62
MentorNet 92.63±0.32 89.31±0.41 83.02±2.06 71.68±3.27
SIGUA 71.78±2.55 66.84±3.53 43.34±5.93 42.06±8.72
Co-teaching 94.87±0.36 93.48±0.42 91.55±0.33 88.79±4.22
Decoupling 92.77±0.61 86.33±1.23 82.60±0.85 80.38±0.84
Co-teaching+ 93.32±0.29 89.88±0.36 86.60±1.09 85.01±1.02
JoCor 93.40±0.28 90.79±0.23 72.94±6.38 67.13±4.15
CoDis 95.38±0.21 95.10±0.29 94.62±0.28 94.00±0.30

C
IF

A
R

-1
0

APL 79.98±0.31 76.32±1.16 70.72±0.98 67.01±0.53
CDR 78.86±0.41 74.49±0.94 70.52±0.47 67.35±0.30
MentorNet 77.98±0.31 78.81±0.56 69.39±1.73 53.11±1.15
SIGUA 74.41±0.81 70.55±0.92 61.91±5.27 33.59±4.73
Co-teaching 80.94±0.96 80.87±0.24 72.81±0.92 57.20±1.91
Decoupling 79.18±0.42 74.56±0.54 69.56±0.52 63.11±3.56
Co-teaching+ 79.67±0.30 75.74±0.22 70.70±0.41 64.11±3.64
JoCor 80.33±0.20 80.25±0.40 71.62±1.05 53.47±1.41
CoDis 84.78±0.22 82.70±0.42 75.24±1.44 68.80±2.14

achieves superior robustness. The results on four noisy
long-tailed datasets are shown in Figure 2. From all training
curves, we can see that CoDis can achieve superior robust-
ness on long-tailed noisy datasets.

It should be noted that, during training, Co-teaching se-
lects the same number of examples as CoDis. As be seen in
results, in many cases, CoDis outperforms Co-teaching with
a large margin. The results demonstrate that, when learning
with class-imbalanced noisy datasets, CoDis can success-
fully mine clean hard examples for training, which enhances
generalization. Besides, the baseline JoCor is weak on im-
balanced noisy datasets. Compared with its performance
achieved on balanced noisy datasets, we can see that it can-
not handle these realistic cases well. Moreover, JoCor is
unstable during training, with large error bars. This issue
is pessimistic, and could limit the method’s practical appli-
cations largely.

Ablation study. We conduct detailed ablation studies. Due
to the limited page of the main paper, experiments are re-
ported in Appendix. Specifically, we show that our method
is robust to the choice of network architectures and the use
of data augmentation technologies, which are presented in

Table 5. Test accuracy on Food-101 and Clothing1M. The best re-
sult and second best result in each case are highlighted in red and
blue respectively.

Dataset Food-101 Clothing1M
Method Accuracy (%) Accuracy (%)
APL 82.17 54.46
CDR 86.36 66.59
MentorNet 81.25 67.25
SIGUA 79.68 65.37
Co-teaching 83.73 67.94
Decoupling 78.88 67.65
Co-teaching+ 76.89 63.83
JoCor 84.04 69.06
CoDis 86.13 71.60

DivideMix 86.73 74.76
ELR+ 85.77 74.81
DivideMix+ (ours) 86.88 74.92

Appendix C.2. The results demonstrate the effectiveness of
our method consistently. Moreover, we conduct sensitivity
analyses of the hyperparameter α in Appendix C.3, which
show that in the certain value range, our method is robust
to the choice of α. We also provide detailed analysis on Tk

and Tmax there. The results mean that our method can be
easy to apply, without sophisticated hyperparameter tuning.

4.4. Experiments on Real-world Noisy Datasets
Datasets. Three real-world noisy datasets are used in this
paper, i.e., Food-101 [30], Clothing1M [73], and Webvi-
sion [34]. Food-101 consists of 101 food categories, with
101,000 images. For each class, 250 manually reviewed
clean test images are provided as well as 750 training im-
ages with real-world label noise. WebVision contains 2.4
million images crawled from the websites using the 1,000
concepts in ImageNet ILSVRC12. Following the “mini”
setting in [41, 8], we take the first 50 classes of the Google
resized image subset, and evaluate the trained networks on
the same 50 classes of the WebVision and ILSVRC12 val-
idation sets, which are exploited as test sets. Clothing1M
consists of 1M noisy training examples collected from on-
line shopping websites.

Implementation. For Food-101 and Clothing1M, we use
ResNet-50 with ImageNet pretrained weights. For pre-
processing, we resize the image to 256×256, crop the mid-
dle 224×224 as input, and perform normalization. We use
the Adam optimizer and set the batch size to 32/64 for
Food-101 and Clothing1M respectively. During training,
we run 20 epochs in total and set the learning rate 8×10−4,
5× 10−4, and 5× 10−5 for 5 epochs each. For Webvision,
we use Inception-ResNet V2. Note that, for DivideMix+, it
follows the implementation details of [31], but with a dif-
ferent sample selection procedure.

Experimental results. The classification performance
achieved on Food-101 and Clothing1M is provided in Ta-
ble 5. Specifically, compared with CoDis with the base-
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Figure 2. Test accuracy vs. the number of epochs on four long-tailed noisy datasets. The error bar for standard deviation in each figure has
been shaded.

Table 6. Comparison with state-of-the-art methods trained on
(mini) WebVision dataset [8, 31]. Numbers denote top-1 (top-5)
accuracy (%) on the WebVision validation set and the ImageNet
ILSVRC12 validation set. The best result and second best result
in each case are highlighted in red and blue respectively.

Test dataset WebVision ILSVRC12
Method top1 top5 top1 top5
APL 62.30 84.02 61.27 84.82
CDR 62.84 84.11 61.85 85.80
MentorNet 63.00 81.40 57.66 80.01
SIGUA 57.38 78.92 52.88 74.67
Co-teaching 63.58 85.20 61.22 84.78
Decoupling 62.54 84.74 57.26 80.50
Co-teaching+ 61.18 83.30 58.74 82.72
JoCor 63.33 85.06 58.76 82.85
CoDis 63.80 85.54 62.29 85.39

DivideMix 77.32 91.64 75.20 90.84
ELR+ 77.78 91.68 70.29 89.76
DivideMix+ (ours) 77.51 91.95 75.51 91.58

lines without the combination of multiple techniques, our
method achieves the second best performance. CoDis is
slightly lower than CDR, i.e., 86.13% vs. 86.36%, but
is clearly better than other baselines. When we combine
other advanced methods to boost our method as did in Di-
videMix, DivideMix+ can outperform both DivideMix and
ELR+. For results on Clothing1M, compared with CoDis

with the baselines without the combination of multiple tech-
niques, our method achieves an improvement of +2.54%
over the best baseline JoCor. When we compared Di-
videMix+ with other baselines, DivideMix+ can outperform
DivideMix and ELR+, and achieve the best performance.

The results on WebVision are provided in Table 6. In
more detail, compared with CoDis with the baselines with-
out multiple techniques, CoDis achieves the best perfor-
mance in all cases. Moreover, compared with DivideMix
and ELR+, DivideMix+ achieves the best performance in
three cases. All results mean that our method can be ex-
ploited to improve the cutting-edge performance of state-
of-the-art methods.

5. Conclusion
This paper presents a robust learning paradigm called

CoDis, which trains deep neural networks robustly with
noisy labels. CoDis maintains two networks simultane-
ously. The core idea is to make each network selects its
clean data for peer network and tries to choose the data
with high discrepancies between two networks at the same
time. The proposed sample selection procedure is sample-
efficient, and can ensure enough (hard) clean examples for
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generalization. Comprehensive experiments with superior
performance justify our claims well. In the future, we are
interested in applying our method to data cleaning for large-
scale pre-trained models [5, 36, 48, 83].
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