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Abstract

Recent few-shot video classification (FSVC) works
achieve promising performance by capturing similarity
across support and query samples with different temporal
alignment strategies or learning discriminative features via
Transformer block within each episode. However, they ig-
nore two important issues: a) It is difficult to capture rich
intrinsic action semantics from a limited number of sup-
port instances within each task. b) Redundant or irrelevant
frames in videos easily weaken the positive influence of dis-
criminative frames. To address these two issues, this pa-
per proposes a novel Representation Fusion and Promotion
Learning (RFPL) mechanism with two sub-modules: meta-
action learning (MAL) and reinforced image representation
(RIR). Concretely, during training stage, we perform online
learning for seeking a task-shared meta-action bank to en-
rich task-specific action representation by injecting global
knowledge. Besides, we exploit reinforcement learning to
obtain the importance of each frame and refine the repre-
sentation. This operation maximizes the contribution of dis-
criminative frames to further capture the similarity of sup-
port and query samples from the same category. Our RFPL
framework is highly flexible that it can be integrated with
many existing FSVC methods. Extensive experiments show
that RFPL significantly enhances the performance of exist-
ing FSVC models when integrated with them.

1. Introduction

Due to the emergence of deep learning [43, 18, 15],
video action recognition has obtained impressive improve-
ment by learning informative semantics from raw videos
[23, 38]. These achievements heavily rely on the powerful
supervision of considerable well-labeled videos to optimize
deep neural networks [32, 41]. However, the collection and
annotation of training samples become laborious and expen-
sive, especially for video sequences. Hence, such a learning
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paradigm does not always feasible for many practical appli-
cations [7, 29]. This conflict motivates investigations on
few-shot video classification (FSVC) which aims to learn a
model of good generalization performance from a few la-
beled video samples [4, 35, 37].

The mainstream solutions to FSVC typically adopt
metric-based meta-learning [30, 12] fashion by training
model across multiple episodes where each includes one
support set with a few annotated videos and the other query
set with unlabeled instances. For inference, the well-trained
model measures the similarities across support and query
videos within each episode to determine which categories
the query samples come from [17]. However, it is difficult
to precisely assess frame-wise relationships within video
sequences, since their temporal information has significant
divergence or even mismatch. To overcome such a chal-
lenge, the intuitive strategy is to achieve temporal align-
ment among cross-video frames. For example, OTAM [4]
develops a variant of dynamic time wrapping (DTW) [27]
to find the optimal alignment path via the frame-level cu-
mulative distance function. Similarly, ITANet [45] explores
implicit temporal alignment via a traversal strategy. More-
over, TRX [28] develops multiple tuples of sub-sequence
to achieve action matching. And STRM [35] studies self-
attention mechanisms to emphasize channel representation
in a single video. HyRSM [37] presents a set matching con-
cept to explore temporal alignment without frame-level or-
dering across various videos.

Although these existing works have achieved appealing
results, they tend to encounter performance bottlenecks due
to ignorance of the following two issues. First, the lim-
ited number of labeled samples within each individual task
hardly provides sufficient support to assist model learning
the essential action semantics for the recognition task. Sec-
ond, there are redundant or irrelevant frames in videos;
treating these less informative frames in the same way as
the other informative ones likely weakens the discriminabil-
ity of the learned video representations, and thus triggers a
negative effect on solving the FSVC task.

In this paper, we propose a novel Representation Fusion
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and Promotion Learning (RFPL) framework to address the
two issues, by two novel modules, respectively. To address
the deficiency of semantic information within each individ-
ual task, we propose the meta-action learning (MAL) mod-
ule which introduces external knowledge learned globally
to enrich video representations learned locally within each
individual task. Specifically, MAL maintains a global meta-
action bank storing representations of atomic action snip-
pets that can be used to compose various action categories
of higher complexity. The global meta-action bank is shared
by all action types and all individual FSVC tasks. We ex-
plore it to enrich the video feature representations learned
locally in each individual task via a novel Single Value De-
composition (SVD) technique.

To address the redundant/irrelevant frame issue, we pro-
pose the reinforced image representation (RIR) module
which explores reinforcement learning to discover the im-
portance of each frame to the FSVC task. We train the rein-
forcement learning agent by exploiting the relationship be-
tween support and query video pairs, striving to emphasize
the influence of discriminative frames to help the model ac-
curately capture sample-wise similarity. Our MAL and RIR
can be easily plugged into the existing FSVC methods to
promote their performance. Our main contributions in this
work are summarized in three folds as:

* We propose the meta-action learning module which
learns a global meta-action bank to enrich video rep-
resentation learned locally in individual tasks, via a
novel SVD technique.

* We address the negative effect of task-irrelevant
frames on capturing cross-video relationships and de-
velop a reinforced image representation module that
promotes the contribution of discriminative frames.

* Our RFPL framework is highly flexible such that it can
be integrated with various FSVC methods and gets im-
proved performance.

2. Related Works
2.1. Few-Shot Video Classification (FSVC)

When using meta-learning manner [8, 9], FSVC sce-
nario assumes that each episode includes a few labeled sup-
port videos and query ones without annotations and aims
to learn and generalize a model to identify unseen classes
[3, 50]. The current solutions are based on metric learn-
ing. Concretely, raw video sequences are first converted
into corresponding high-level feature representations with
DNN. The prediction of the query sample is determined by
the matching support instance with the highest similarity
[48]. However, video data with temporal dimension content
is extremely complicated so it is difficult to precisely mea-
sure sample-wise relationships. To eliminate such a draw-
back, the current works generally calculate the similarity

after temporal alignment. For instance, OTAM [4] assumes
that frame orderings across various videos are consistent
and utilizes dynamic time wrapping to find the frame-level
alignment path with a cumulative distance matrix. ITANet
[45] adopts a traversal manner to match frames across dif-
ferent videos. TRX [28] first builds tuples of sub-sequence
and exploits them to match action. STRM [35] advances
TRX by considering spatial information within each video.
HyRSM [38] explores set matching [13, 46] metric to ef-
ficiently compute cross-video connection. Differently, our
proposed RFPL focuses on video representation enhance-
ment by injecting meta-action knowledge and precise simi-
larity measurement via the importance-aware refinement of
discriminative frames with reinforcement learning.

2.2. Reinforcement Learning (RL)

Reinforcement Learning (RL) arises from the neurosci-
entific and psychological study that which actions humans
can do to gain more benefits from the environment [ 16, 33].
In other words, RL is utilizing the interaction of agent and
environment to learn a policy that brings the most reward
[14]. In fact, such a sequential decision-making procedure
can be formulated as a Markov Decision Process (MDP) [6].
Recently, due to the powerful learning ability of DNN, the
advanced RL works typically deploy a trainable DNN to ap-
proximate the value function or policy function as Deep Q-
Network (DQN) [26] and Deep Deterministic Policy Gradi-
ent (DDPG) [22]. In addition, many real-world applications
also consider using RL to improve model performance such
as object tracking [42], protein analysis [20], video summa-
rization [21] and action recognition [34]. Unlike them, our
deployment of RL is solving the few-shot video action sce-
nario by producing frame-wise weight to promote the effect
of discriminative frames. Moreover, we also conduct deli-
cate designs on DQN to be suitable for FSVC.

3. Proposed Method
3.1. Problem Setup

In few-shot video classification (FSVC), the main task
is to learn a high-generalization model to identify novel ac-
tion categories of video with only a few annotated video in-
stances. To make model training and test environment con-
sistent, the mainstream learning strategy is meta-learning
fashion [28]. Concretely, we can access a label-sufficient
meta-training set Dy,.,;,, and another meta-testing set Dyegy,
and there is no category overlap across these two sets. Dur-
ing the training stage, videos of each episodic are collected
from Dy,qin and further divided into a support set and a
query set. The support set includes k-samples in each of
n classes, which is typically defined as n-way-k-shot sce-
nario. Under this condition, the relationship across support
and query samples will be explored to identify which cate-
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Figure 1. Overview of our representation fusion and promotion
learning (RFPL) framework. RFPL involves two sub-modules:
meta-action learning (MAL) fusing task-shared action semantics
to enrich video representation and reinforced image representation
(RIR) highlighting the effect of discriminative frames to precisely
learn sample-wise similarity.
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gory each query video belongs to. In terms of the test stage,
each episodic also consists of support and query set which
are derived from Dye;.

3.2. Framework Overview

The key to solving FSVC problem lies in how to effec-
tively learn the pattern of discriminative action semantics
from a few labeled support videos. Motivated by this, we
propose a flexible Representation Fusion & Promotion
Learning (RFPL) framework to enrich semantic informa-
tion of video features via two novel sub-modules, as Fig.1
shows. One meta-action learning module utilizes episodes
of meta-training set to build a task-shared action bank fur-
ther refining feature embedding via knowledge fusion. An-
other reinforced image representation module adjusts the
importance of frames to achieve the enhancement of dis-
criminative semantics with reinforcement learning.

3.2.1 Meta-Action Learning

It is acknowledged that a video can be decomposed into
multiple image frames corresponding to sub-actions, i.e.,
X; = {xi;}}jL,; where m is the number of frames in the
i-th video. For example, a long jump video records some
sub-actions: running, jumping and landing. In addition, we
also observe that several videos come from different cate-
gories but they do share similar sub-actions such as jump-
ing in long jump and playing basketball videos. When these
two categories appear in different episodes, the transfer of
similar patterns across them will facilitate the model to eas-
ily and accurately discover the similarity between support
and query samples.

To achieve such a goal, the intuitive manner is to con-
struct a task-shared action bank D to store representations
of considerable sub-actions. Hence, the similar sub-actions
in the long jump and playing basketball videos can be rep-
resented by the same atoms of this bank. Specifically, the
widely-used backbone (e.g., ResNet-50) is first utilized to
extract high-level feature of each frame, resulting in one
video being transformed into the corresponding feature set
F; = {fi;|fij = ®(x;)}]2,, where ® is the feature gen-
erator. And support videos within each episode are also
converted into a feature matrix F* € R4*™*™ where each
column denotes the feature of one frame with the dimen-
sion as d. To this end, we can gradually build and refine the
memory bank D € R?** across different training episodes:

—— 2
min |[F DA[r + [[Afle, Q)

where D is the learnable dictionary and A is sparse coef-
ficient with ¢;-norm, which controls the sparseness of co-
efficient to achieve better reconstruction by using as fewer
atoms as possible and efficiently avoids information redun-
dancy in D. Since the current fruitful solutions to FSVC
generally adopt episodic training fashion without repeatedly
accessing the previous task, we expect to gradually involve
action semantics per episode into task-shared bank D, thus,
the online gradient update manner [25, 24] is adopted to op-
timize D and A instead of closed-form solution.

After obtaining the task-shared meta-action bank, an-
other consideration is how to adaptively fuse such seman-
tics into each specific episode. Consequently, we rethink
the meaning of learned action bank. In fact, it constitutes an
action space where each atom represents a basis vector. But
not all are needed for the current episode due to the assump-
tion that the number of action categories in D is much larger
than that in this episode. Therefore, a reasonable adaptation
operation is to highlight the episode-relevant basis vectors
from D. Fortunately, the classical single value decomposi-
tion (SVD) [40, 1] helps us achieve this expectation. Specif-
ically, we adopts SVD to decompose support feature matrix
F* and action memory bank D as:

SVD(F?) = UsssveT, SVD(D) = UXV', (2
where single values ¥ or X° control the contribution of cor-
responding basis vectors. So far, it is intuitive to obtain
two observations from the decomposition. First, the in-
formation of feature space basis in U is more robust and
generic than that of U?, since action bank refers to suffi-
cient videos. Second, compared with 3, 3° can better es-
timate the intrinsic importance of basis vectors due to the
fact that it is directly captured from the current episode.
Based on these points, we consider fusing the advantage of
each component to form the episode-adaptive action bank
as D¢ = UX*V*', Note that D¢ = U(U*TU*)2sVsT =
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UU*"F#, which is exactly a rotation of F° using the fea-
ture basis correlation between U and U®. This rotation
matrix brings more robust and generic semantic knowledge
from D to F*.

The next task is fusing the robust action semantics D®
into video representations. Meanwhile, we discover that the
inner product between frame feature ffj/ ?and df € D¢ ac-
tually reflects the projection coefficient on each space basis,
which supports us to re-express video features via D¢. The
adaptive updating strategy is formalized as:

£/ = (- pf/"+pY . auds, 3)

where aj; = cos(f, ]/ ?.d¢) denotes the cosine similarity, p
balances accepting external knowledge and keeping origi-
nal representations, and dj is the /-th column basis vector
of D®. Since support and query samples both undergo re-
expression via D¢, their similar or dissimilar associations

will be further adjusted and promoted.

3.2.2 Reinforced Image Representation

Our meta-action learning module enriches their latent fea-
tures via the captured generic dictionary. However, not all
frames in a video contain discriminative action semantics.
In other words, they belong to two types: action-relevant
frames and action-irrelevant ones. Promoting the contribu-
tion of the former and minimizing influence of the latter
benefits the precise estimation of similarity between sup-
port and query videos. The keys to this expectation are au-
tomatically distinguish these two types and adjust their
ratios in the fused representation E/ . Without manual an-
notations on the importance of frames, it is difficult for the
model to learn the distinction ability. To overcome this chal-
lenge, we can break it down into a simple situation. Given
the paired support and query videos from the same action,
the action-relevant frames are likely to be similar or even
the same, while the remaining ones tend to be different.
Calculating frame-wise similarity across two videos easily
discovers the discriminative frames. Their representation
enhancement obviously narrows cross-video distance. For
the paired samples in various classes, the weight adjustment
on frames results in the reduction of cross-video similarity.
In summary, these two cases indicate that frame-wise com-
parison and weight modification trigger the corresponding
effects. This is an analogy to the basic logic of reinforce-
ment learning adopting an action and receiving its reward.

With the analogy, we develop a reinforced image repre-
sentation (RIR) module within the reinforcement learning
(RL) framework to fulfill our goal. Specifically, in FSVC,
the basic concepts of RL are redefined:

e State: the video feature at ¢ time, ie., s; =
{w;f,;}721 where w; initialized as 1 is the importance of
the corresponding j-th frame;

e Action: a; depends on the output of agent (p € [0, 1])
with the Sigmoid function applied. When p < 0.5, the ac-
tion a; = 0 with p(a;) = 2p and w; = w; — p(a;), other-
wise, a; = 1 withp(a;) = 2(p—0.5) and w; = w; +p(as).
The agent in Figure 1 is implemented as one deep neural
network.

e Reward: r; of ¢ time includes positive type and neg-
ative one. For the paired videos in the same class, r; is
positive with cross-video similarity improvement, while the
reduction results in the negative one. The operation is in-
verse for paired videos in different classes. The reward is
considered as the supervision to instruct the learning of the
agent. Note that we ignore superscript s/q in three con-
cepts, since they are suitable for all videos.

In reinforcement learning, the interaction procedure be-
tween agent and environment actually is a Markov decision
process [20]. Concretely, given the estimated action value,
the state is transferred from sf/ ? to st/ ¢ according to an
implicit probability distribution. During the state transition
stage, the main challenge is how to decide the optimal ac-

tion at the current state. In fact, the action at/ ? exists in a
hidden probability space which is effectively estimated by
Q-learning [26, 39] strategy. Under this condition, the ex-

s/q

pectation value of actions a;’ * is formally defined as )+ and

s/q

the current action modifies the importance w;"" of frame

£ g/ % and affects the finial reward. The formulatlon of @y is:
Qt(sf/qa a;/t) = m7§XE[7"t + e+ g ), (B

where 7 denotes the discount factor balancing the imme-
diate reward and the future ones, and m = argmin ./, Q:
t

is our desired probability distribution policy of action. To
estimate such a policy, the Deep-Q network (DQN) [26] as
an effective tool is generally utilized to approximate @Q);. In
a nutshell, DQN typically constructs the learnable function
taking the state as input to produce the probabilities p of
action space. The function is always instantiated as a pa-
rameterized network.

However, such a straightforward input design of DQN
fails to observe the relationship of video pairs and embed
this pivotal knowledge into action selection. For FSVC,
the appropriate input of DQN is supposed to involve three
different valuable contents. The first part is the feature
of the chosen frame f, £/9 on which the estimated action is
to be conducted. Emphasizing the current frame represen-
tation significantly upgrades its contribution to the predic-
tion. The second one is the fused feature of the remain-
ing frames, i.e., 15 > w w;/9F/9. This information
tends to affect the computation of future rewards. The third
special point lies in measuring the cosine similarities across
this frame and other frames in another video, written as
v; € R™ with its element v; = cos(fg/q fq ). v re-
flects its potentiality to promote the cross- v1deo similarity.
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In terms of the output of DQN, a; /9-() suggests that the

importance of this frame should be reduced via w?/? =

2 =
w;/q - p(af/q), where p(af/q) = 2p and p is the proba-

bility of action. For the other situation, weight update of

frame is w;/q = w;/q + plai’?) with p(ai’?) = 2(p —
0.5). After conducting actions, we have w‘;/q € (0,2)
and it is simple to attain the corresponding reward by cal-

culating the change of similarity of video representations
r = sign (d(’fs,}:q)‘StJr] — d(?s,fq)\st), where d(f*, )

means cos(}_7", w‘;?fﬁ Py w??fj), and sign(-) de-
notes a sign function. Finally, with the Bellman theorem
[2], the Deep-Q network is optimized with:
2
: s/q _s/qy _ s/q s/q
m@mE r+ ’ym?XQ(sHl,aiH) Q(s;" " a;’™)| . (5)

a3

where O includes all the trainable network parameters of
DQN. For the training stage, the snapshot of state, action,
and reward at any time is stored and divided into several
mini-batches with random sampling, and we adopt e-greedy
strategy to determine action using 7 with probability € and
use random actions with 1 — e. For the inference stage, the
well-trained DQN is frozen and infers the weight for each
frame given the paired videos. To this end, video represen-
tations are further advanced with frame-wise importance.

3.3. Module Deployment

Our developed Representation Fusion & Promotion
Learning (RFPL) framework includes two components.
Meta-action learning (MAL) stores abundant action seman-
tics via Dyq4n, and is adapted into each specific episode to
enhance video representations, while Reinforced image rep-
resentation (RIR) exploits deep Q-learning theory of RL to
increase the representation of informative frame. Actually,
it is straightforward and convenient to plug our REM into
various FSVC methods to boost the model performance. In
this paper, we choose three state-of-the-art FSVC models,
e.g., OTAM [4], TRX [28] and STRM [35].

Concretely, original OTAM first extracts frame-level fea-
tures across all support and query samples per episode,
and then calculate frame-wise similarity from support and
query video pair. It finally utilizes a dynamic time wrap-
ping algorithm (DTW) to obtain the similarity of videos
and uses a metric manner to optimize or deduce the cat-
egory of the query. When embedding RFPL into OTAM,
our MAL module is combined with the outputs of the fea-
ture extractor, and our RIR is performed before the calcu-
lation of frame-wise similarity of video pairs. Similarly,
for TRX, the average-pooling features of ResNet-50 are re-
garded as the inputs for MAL, and the refined representa-
tions further help in the selection of discriminative frames.
Different from OTAM, RIR in TRX compares the given

query instances with all support ones, determines an opti-
mal weighted query representation with the highest similar-
ity, and feeds it into the following modules. Compared with
OTAM and TRX, STRM utilizes the feature maps before the
average pooling of ResNet-50 as inputs for a Transformer
block and finally compresses them into frame-level vector

representation as F/? where our RFPL is conducted.

4. Experiments
4.1. Experimental Settings

Datasets. Three popular few-shot benchmarks are evalu-
ated including UCF101 [31], Kinetics [5] and SSv2-Full
[10]. For Kinetics and SSv2-Full, we follow the data
split protocol of [4, 28, 37] to build meta-training set
Dirain, meta-validation set D,,,; and meta-testing set Dyesy,
which consists 64, 12 and 24 categories, respectively. For
UCF101, we adopt the split and sampling manners in [44].

Implementation Details. Following the existing works
[4, 28, 35], 8 image frames per video are randomly and
uniformly selected as its raw representations and the pre-
trained ResNet-50 [1 1] is considered as the backbone to ex-
tract high-level features from frame-level images. For the
task-shared bank, we regard D as one learnable tensor ran-
domly initialized and optimized by Eq. (1) with SGD op-
timizer (learning rate: 103 — 107) in each episode dur-
ing training stage and it is frozen for the test procedure. In
addition, the DQN in our RIR module includes three fully-
connected (FC) layers mapping the input to the number of
actions, whose training is independent of other parts. Con-
cretely, we first train DQN with several episodes by freez-
ing the remaining networks (ResNet-50, task-shared Bank,
and Transformer block), and then update the remains with
the fixed DQN by other episodes. The iterative process
is repeated by many times. Other training regulations are
preserved as each specific method. For inference, 10,000
episodes are randomly selected from D;.s; to evaluate the
performance of the model.

Baselines. Currently, HyRSM [37] and STRM [35] achieve
the state-of-the-art results on most FSVC tasks, which are
considered as important baselines. Besides, other excellent
works such as TRN [47], CMN [48], CMN-J [49], TARN
[3], OTAM [4], TTAN [19], TRX [28], ITANet [45], ARN
[44], MAML [8] and MatchingNet [36] also serve as strong
competitors.

4.2. Result Analysis

Table 1 summarizes the results of our method and other
competitors on three datasets (UCF101, Kinetics, SSv2-
Full) when solving various few-shot video classification
tasks. According to the results, it is straightforward to
achieve several important conclusions.
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Table 1. Result comparison of multiple methods on few-shot video classification problem. Evaluations are conducted on the meta-testing
set of UCF101, Kinetics, and SSv2-Full under 5-way scenario. The number of support videos per class varies from 1 to 5 within each

episode. The highest and second results are highlighted by bold and underline.

Methods Source Dataset 1-shot 2-shot 3-shot 4-shot 5-shot
ARN [44] ECCV-20 66.3 - - - 83.1
TTAN [19] ArXiv-21 80.9 - - - 93.2
OTAM [4] CVPR-20 79.9 85.5 87.0 88.3 88.9

[28] CVPR-21 UCFI101 78.2 88.9 92.4 94.1 96.1
STRM [35] CVPR-22 78.3 88.9 91.9 93.5 96.9
HyRSM [37] CVPR-22 839 - 93.0 - 94.7
Ours+OTAM - 84.3T44 889Tg4 902T;2 91.9T3,(; 92.1T3,2
Ours+TRX - 82.5 91.1 94.1 95.6 96.3
Ours+STRM - 79.7T1_4 MTLQ M’h_g 95.8T2,3 967.7\L0_2
MatchNet [36] NeulPS-16 533 64.3 69.2 71.8 74.6
MAML [8] ICML-17 54.2 65.5 70.0 72.1 75.3
Plain CMN [48] ECCV-18 57.3 67.5 72.5 74.7 76.0
CMN-J [49] TPAMI-20 60.5 70.0 75.6 773 78.9

TARN [3] BMVC-19 64.8 - - - 78.5

ARN [44] ECCV-20 63.7 - - - 82.4
ITANet [45] JCAI-21 Kinetics 73.6 - - - 84.3
OTAM [4] CVPR-20 73.0 75.9 78.7 81.9 85.8
[28] CVPR-21 63.6 76.2 81.8 834 85.9
STRM [35] CVPR-22 62.1 78.6 82.2 82.8 86.7
HyRSM [37] CVPR-22 73.7 80.0 83.5 84.6 86.1
OuI‘S+OTAM - 74.6T1_6 MT./i_l 82.1?3_1 84,”\2_2 86.8T1,0
Ours+TRX - 66.2 775 83.8 85.1 87.3
Ours+STRM - 64.9T2 8 80.3T1 7 84.3T2 1 mTz 0 87.7T1 0
CMN++ [43] ECCV-18 34.4 R - - 438
TRN++ [47] ECCV-18 38.6 - - - 48.9
TTAN [19] ArXiv-21 46.3 52.5 57.3 59.3 60.4
ITANet [45] IJCAI-21 49.2 55.5 59.1 61.0 62.3
OTAM [4] CVPR-20 42.6 49.1 51.5 52.0 52.3
[28] CVPR-21 42.0 53.1 57.6 61.1 64.6
STRM [35] CVPR-22 SSva-Full 42.1 53.8 59.3 64.2 68.1
HyRSM [37] CVPR-22 54.3 62.2 65.1 67.9 69.0
Ours+OTAM - 47.0T4,2 54.6T5_5 58~3T6.8 603T53 61.0’]\8,7
Ours+TRX - 44.6 54.2 59.9 63.1 64.6
Ours+STRM - 45.713.6 55.812.0 61.712.4 66.812.6 69.511 .4

First, when plugging our proposed modules into the ex-
isting FSVC works such as OTAM, its performance gains
significant improvement. Concretely, for 5-way-5-shot task
on SSv2-Full, the classification accuracy of OTAM using
our module attains 61.0% which is much higher than its
original 52.3%. In addition, the integration of our designed
modules and OTAM exceeds the original one by 4.4% on 1-
shot task of UCF101. These phenomenons illustrate that our
method effectively facilitates OTAM to conduct more accu-
rate temporal alignment across support and query videos by
refining video representations with task-shared knowledge
and discriminative frame selection. Second, compared with
OTAM, original TRX and STRM not only consider learning
temporal relationships but also draw assistance from Trans-
former block to achieve information complementary within
each episode. Although their methods seem to be perfect

and promising, our RFPL still facilitates them to boost 2%
on most tasks. The main reason for success lies in that
our method further helps them enrich the representations
of action semantics by introducing meta-action semantics
and accurately capture the intrinsic similarity across sup-
port and query instances via the increasing effect of impor-
tant image frames. Finally, injecting our RFPL into other
baselines achieves comparable performance with HyRSM
on most tasks. Especially, STRM with our RFPL surpasses
HyRSM by an obvious gain margin, i.e., 1.6% on 5-shot
task of Kinetics, validating that our proposed method is an
efficient auxiliary tool for addressing the FSVC problem.

4.3. Performance Study

Path Visualization & Confusion Matrix. From Table 1,
we conclude that our RFPL effectively promotes the perfor-
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Figure 2. Comparison between plain OTAM and Ours+OTAM on action recognition result and temporal alignment path. This episode is
randomly selected from the meta-testing set of Kinetics. The query video belongs to dancing ballet. Our+OTAM successfully matches it
with the support sample from the same category, while plain OTAM matches into a dancing charleston video.

Ground Truth

3 3 4
Prediction Prediction
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1 3
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Figure 3. Comparison of confusion matrix deduced from the model prediction of plain OTAM and Ours+OTAM. These two episodes are
collected from the meta-testing set of Kinetics (2-shot) and SSv2-Full (5-shot).

mance of OTAM by a large margin. To explicitly explain
the reason for improvement, we randomly select an episode
from meta-testing set Dq.s; and visualize the frame-level
cumulative distance across query video and the selected
support ones as Fig. 2 shows. This visualization indicates
that OTAM is sensitive to image background and its tempo-
ral alignment becomes invalid. Thus, it considers that this
query video from the dancing ballet class has the highest
similarity with the support sample from dancing charleston.
Differently, our method assists OTAM to focus on the simi-
larity of action semantics, especially on distinguishing body
posture. Hence, Ours+OTAM accurately matches the query
sample with the support video from the identical category
and achieves better temporal alignment.

In addition, we draw the confusion matrix of two specific
episodes to further discuss their differences. Concretely,
during the inference stage, for 2-shot of Kinetics or 5-shot
of SSv2-Full, we randomly choose an episode with 200
query samples uniformly distributed in five categories and
compare model prediction and ground-truth to form Fig.
3. For the task of Kinetics, with the help of our RFPL,
the recognition abilities of OTAM in five categories are all
strengthened. With respect to the more challenging task of
SSv2-Full, OTAM with our method learns more discrimina-

tive action semantics and achieves significant performance
improvement on several categories without reduction on the
remaining ones.

Reinforced Image Frames. In our RFPL, reinforced im-
age representation as one important module aims to dis-
cover the discriminative image frames via the comparison
of the paired videos. To analyze its effect, we record the
frame-wise weights deduced from the agent as Fig. 4 in
one test episode. From two “folding paper” videos, sev-
eral image frames without any “folding” action are pro-
vided with lower weights such as frames in the red box.
For action-relevant images, the learned network produces
higher weights for them as the blue box shows. From the
other example “cutting watermelon”, we have an interest-
ing finding. The well-trained network does not give larger
weights for frames including “cutting” action, while high-
lighting images with two halves of the red pulp of a water-
melon as the green box shows. It suggests that the network
considers that these image contents are useful for the im-
provement of cross-video similarity.

Parameter Analysis. There is one hyper-parameter p in
our RFPL, which serves as a trade-off between accepting
external global knowledge and preserving current feature
representations. In practical experiments, this parameter is
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paper, while the remaining videos are from cutting watermelon. Images in the red box are regarded as key action semantics by the network,
while the effect of others in the blue box is reduced. Similarly, the representations of images in the green box are also enhanced.

p 1-shot
Figure 5. Parameter analysis of p with different selections.

tuned for different tasks, i.e., p € {0.001,0.01,0.1,0.5}.
Definitely, the optimal parameter is determined by the per-
formance of the learned model on the meta-validation set.
Concretely, Fig. 5 shows the change of model classifica-
tion ability on the validation set of SSv2-Full with the vary-
ing p. Based on this parameter analysis, we find that when
p = 0.5, the video classification accuracy is lower than that
of smaller p on many tasks. Therefore, it is reasonable to in-
fer that while introducing global knowledge to enhance se-
mantics information, the protection of current information
is very necessary and stabilizes the model training.

Ablation Study. Our RFPL consists of two modules:
meta-action learning and reinforced image representation.
The first one aims to enrich video representation by fus-
ing global knowledge of the meta-action bank to each spe-
cific episode, while the second one expects to emphasize the
representation of informative image frames via reinforce-
ment learning selection. In fact, we also separately plug
each module into the existing baseline, named as Ours-v1
(adding MAL) and Ours-v2 (adding RIR). These variants

90
85
80
75
70
65
60
55
50
45
40

B OTAM mOurs-V1 m Ours-V2 OurstOTAM

2-shot 3-shot 4-shot
Figure 6. Ablation study. Ours-v1 and Ours-v2 mean that meta-

action learning and reinforced image representation modules are
plugged into the existing FSVC works, respectively.

are combined with OTAM and evaluated on three tasks of
Kinetics with results in Fig. 6. The comparisons with plain
OTAM mean that each module can independently make
positive contributions on advancing it. And the collabora-
tion of MAL and RIR will bring more benefits to OTAM
than each independent module. Thus, using the complete
RFPL is the optimal strategy.

5. Conclusion

In this paper, we propose a flexible representation fu-
sion and enhancement learning (RFPL) mechanism with
two sub-modules to solve few-shot video classification. The
meta-action learning module builds a generic action bank
and fuses the adapted one to enrich video features, while
the reinforced image representation module identifies im-
portant frames via an agent and promotes their positive ef-
fect to precisely capture cross-video similarity. Consider-
able experimental results and analysis verify that our RFPL
effectively advances the existing FSVC methods.
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