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Abstract

Multi-label classification aims to learn classification
models from instances associated with multiple labels. It
is pivotal to learn and utilize the label dependence among
multiple labels in multi-label classification. As a result of
today’s big and complex data, noisy labels are inevitable,
making it looming to target multi-label classification with
noisy labels. Although the importance of label dependence
has been shown in multi-label classification with clean la-
bels, it is challenging and hard to bring label dependence
to the problem of multi-label classification with noisy la-
bels. The issues are, that we do not understand why la-
bel dependence is helpful in the problem, and how to learn
and utilize label dependence only using training data with
noisy multiple labels. In this paper, we bring label depen-
dence to tackle the problem of multi-label classification with
noisy labels. Specifically, we first provide a high-level un-
derstanding of why label dependence helps distinguish the
examples with clean/noisy multiple labels. Benefiting from
the memorization effect in handling noisy labels, a novel al-
gorithm is then proposed to learn the label dependence by
only employing training data with noisy multiple labels, and
utilize the learned dependence to help correct noisy multi-
ple labels to clean ones. We prove that the use of label de-
pendence could bring a higher success rate for recovering
correct multiple labels. Empirical evaluations justify our
claims and demonstrate the superiority of our algorithm.

1. Introduction
Multi-label classification assigns a set of multiple labels

for each instance [71]. As a practical learning paradigm,
multi-label classification has been widely applied in vari-
ous domains, ranging from computer vision [7] and nat-
ural language processing [41], to recommendation sys-
tems [69] and bioinformatics [8]. Consensually, compared
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with multi-class classification [20, 23, 24], where each in-
stance is assigned with a single label, multi-label classifi-
cation is more challenging [35]. Plenty of advanced meth-
ods are proposed in recent years for multi-label classifica-
tion [77, 45, 14, 74, 37, 9, 19, 64].

The great majority of the methods assume that training
data are annotated precisely. However, noisy labels are
inevitable in multi-label classification [36], especially for
classification with big and complex data. They may be re-
sulted by unintentional mistakes of manual and automatic
annotators [51, 75, 13], or intentional corruptions on clean
labels [50, 44]. Noisy labels severely impair the generaliza-
tion of learned models, over-parameterized deep models in
particular [26, 61, 58, 59, 55, 56]. A straightforward way
to address the problem of multi-label classification with
noisy labels is to treat each label in isolation and convert
the multi-label problem into a number of binary classifica-
tion problems. Afterward, the methods in multi-class clas-
sification with noisy labels [16, 47] are applied to train in-
dependent binary classifiers, which capture instance-label
dependence robustly to strengthen classification. This way
is a remedy to handle noisy labels, but ignores the label
dependence among multiple labels. It is essential to learn
and utilize the label dependence in multi-label classifica-
tion [70, 18, 11, 31].

Prior works [65, 6, 52] illustrate the successes of consid-
ering the label dependence among multiple labels in multi-
label classification with clean labels. In different ways, e.g.,
helping learn inter-dependent classifiers [7], the label de-
pendence can be used to boost the learning of the instance-
label dependence, which improves final classification. In-
spired by the successes, it is concerned that label depen-
dence could be exploited to handle the problem of multi-
label classification with noisy labels. However, there are
few attempts before for this important problem. At least
three questions make the solution remain mysterious. First,
in intuition, we need to understand why label dependence is
helpful for the problem. Second, in technique, we need to
know how to learn and utilize the label dependence in the
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Figure 1. The illustration of why the label dependence among multiple labels helps distinguish the examples with noisy/clean multi-
ple labels. The arrow presents the label dependence between a label pair. For the labels “a” and “b”, “a → b” means that, when
“a” appears, “b” will also occur with high probability. The example comes from a web search. The set of clean multiple labels is
{Sea,Human,Motorboat}, where the label dependence is strong with both “Motorboat → Sea” and “Motorboat → Human”.
However, due to label corruption, Motorboat is flipped to be Motorcycle, which causes “Motorcycle ↛ Sea”. Therefore, the
label dependence among noisy multiple labels is weaker than the label dependence among corresponding clean ones.

problem. As we only have training data with noisy labels,
both the accurate catch and application of the label depen-
dence are challenging. Third, in verification, we need to
know what improvements the label dependence can bring.

In this paper, we answer the three questions one by
one. The first answer is illustrated in Figure 1. That is,
compared with noisy multiple labels, the label dependence
among clean multiple labels is stronger with high proba-
bility. Therefore, such dependence could help distinguish
the examples with noisy/clean multiple labels for our prob-
lem. The second answer is given by the proposed holis-
tic correction for multi-label classification with noisy labels
(aka HLC). Specifically, HLC inherits the memorization ef-
fect in handling noisy labels [1, 25, 53]: the deep model
would firstly memorize the training examples with clean
labels, leading to reliable model predictions in early train-
ing. In HLC, the label dependence is learned by a dynamic
graph [65], and then applied to correcting noisy multiple
labels. In more detail, the holistic score in HLC is pro-
posed to measure the instance-label and label dependencies
in an example. The stronger instance-label and label depen-
dencies make a larger holistic score. We compare the ratio
between the holistic scores of the example with noisy mul-
tiple labels and its variant with predicted multiple labels,
with an easily determined threshold. The noisy multiple
labels are corrected or changeless based on the compari-
son result. Benefiting from the memorization effect, both
dependence learning and multi-label correction are useful.
Besides, they fulfill a positive cycle [3]. Namely, better de-
pendence learning results in a better multi-label correction,
and better multi-label correction makes better dependence
learning, leading to final enhanced classification.

The third answer is given by both theoretical analyses
and empirical evaluations. Theoretically, we show that the
additional use of label dependence brings a higher proba-
bility to handle noisy multiple labels successfully than the
sole use of instance-label dependence under some condi-
tions. Empirically, we demonstrate the power of label de-

pendence through experiments and show that, in most sit-
uations, HLC outperforms comparison methods with large
margins.

The contributions of this paper are summarized as fol-
lows. (1) We focus on a realistic problem of multi-label
classification with noisy labels. The challenges of using
label dependency to address the problem are carefully an-
alyzed, which benefits future research on the problem. (2)
We propose an effective method to handle noisy labels in
multi-label classification. The method measures simultane-
ous instance-label and label dependencies in an example for
follow-up label correction. (3) Theoretical analysis is pro-
vided to explain the success rate of the proposed method.
Besides, we confirm that the use of label dependence is in-
deed powerful under some conditions. (4) Extensive empir-
ical results on multiple benchmarks demonstrate the supe-
riority of our method. Detailed ablation studies and discus-
sions are also provided. Codes are attached in the supple-
mentary material.

2. Preliminaries

Problem setup. Let X ∈ Rd denote the input space and
Y ∈ {l1, · · · , lq} denote the label space with q class labels.
An example with multiple labels is denoted as (x,y), where
x ∈ X is the feature vector of an instance, and y ⊆ Y
is its set of associated labels. Denote the size of the la-
bel set y as |y|. For the feature vector x, its label set y
may be corrupted and is flipped into ȳ ⊆ Y . We utilize a
class-dependent noise transition matrix T [43, 46, 34, 60] to
characterize the label flip process. Formally, for any i ̸= j,
Tij = P(lj ∈ ȳ ∧ li /∈ ȳ|lj /∈ y ∧ li ∈ y) represents the
probability of the i-th class label to be flipped into the j-th
class label. Consider a noisy multi-label dataset comprising
several examples (x, ȳ). The aim is to learn a classification
model robustly by only using the noisy dataset. Given an
instance in testing, with the learned model, we can predict
its relevant label set precisely.
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Note that some works employ another problem setting
that the total number of multiple labels can be changed after
label flipping, which is referred to as multi-label classifica-
tion with missing or redundant labels. For the former set-
ting, it is not accurate to consider it as a classification with
noisy labels, since all annotated labels are correct [67, 57].
For the latter setting, it is normally called partial multi-label
learning [62], which is different from the problem setting of
this paper, as detailed in Appendix C.4. Our setting, i.e.,
the total number of labels is preserved after label flipping,
is realistic. In many practical situations, it is easy to deter-
mine the number of objects in an image, in particular with
object detection techniques. In contrast, it can be harder
to annotate the objects perfectly, resulting in noisy labels.
In addition, in Section 4.4, we will show that our problem
setting well fits the realistic situation. That is to say, the
proposed method can achieve superior performance on a re-
alistic noisy multi-label dataset.

Preparation technology. As discussed, we need both the
instance-label dependence and the label dependence among
multiple labels. Given an example (x,y), for the instance-
label dependence, it can be learned with the conditional
probability of li ∈ y given x according to model’s prob-
ability outputs. For the label dependence among multiple
labels, it is often estimated by counting the occurrence of
label pairs in training data [7].

Recently, the graph convolutional network (GCN) is
used in multi-label classification and achieves great suc-
cesses [7, 65, 6]. The advantage of the GCN-based methods
is that they can capture the instance-label and label depen-
dencies simultaneously during training. In this paper, we
inherit the advantage of the GCN-based methods and build
HLC based on ADDGCN [65]. ADDGCN designs a seman-
tic attention module (SAM) to estimate the content-aware
class-label representations for each class from the extracted
feature map. The representations are fed into a GCN mod-
ule (GCNM) for final classification. We provide the techni-
cal details of ADDGCN [65] in Appendix C.1. Before delv-
ing into the next section, readers only need to remember that
the instance-label and label dependencies can be learned
during training. Note that we also review prior works on
multi-class classification with noisy labels and multi-label
classification with clean/noisy labels in Appendix C.2 and
Appendix C.3.

3. Proposed Method
3.1. Holistic Judgment in Multi-Label Classification

Holistic score. We begin with an example with clean
multiple labels. Given an example (x,y), we can mea-
sure the instance-label dependence Sf , and the label de-
pendence Sl. Denote the variable of clean multiple la-
bels by Y . Mathematically, we define two dependen-

Algorithm 1: Holistic Correction.

Input: (x, ȳ), h, and δ̂.
Output: ȳnew.
1: y∗ = h(x);
2: κ(h,x, ȳ) = ˆ̄Sȳ(x)/

ˆ̄Sy∗(x);
3: if κ(h,x, ȳ) ≤ δ̂ then ȳnew = y∗;
4: else ȳnew = ȳ.

cies as Sf
z (x) :=

∑
{Y =z,li∈z}P(li|x) and Sl

z(x) :=∑
{Y =z,li,lj∈z}

1
2 [P(lj |li,x) +P(li|lj ,x)], where z is the

value of the random variable Y . The holistic score of the
example (x,y) considers two dependencies at the same
time. Formally, we denote the holistic score of (x,y) as
Sy(x) and define it as

Sy(x) := Sf
y(x) + Sl

y(x). (1)

Afterward, denote the variable of noisy multiple labels by
Ȳ . For the example with noisy multiple labels, i.e., (x, ȳ),
the instance-label dependence and label dependence are
measure by S̄f

z (x) :=
∑

{Ȳ =z,li∈z}P(li|x) and S̄l
z(x) :=∑

{Ȳ =z,li,lj∈z}
1
2 [P(lj |li,x) +P(li|lj ,x)]. Accordingly,

the holistic score of the example (x, ȳ) is denoted by
S̄ȳ(x), which is defined as S̄ȳ(x) := S̄f

ȳ(x) + S̄l
ȳ(x).

Note that, during training, we cannot access S̄f
ȳ(x) and

S̄l
ȳ(x). Instead, the estimated posterior probabilities are

used. We denote the estimations of S̄f
ȳ(x) and S̄l

ȳ(x) as
ˆ̄Sf
ȳ(x) and ˆ̄Sl

ȳ(x). The estimation of the holistic score is
ˆ̄Sȳ(x) = ˆ̄Sf

ȳ(x) +
ˆ̄Sl
ȳ(x). With preparation technology

discussed in Section 2 and Appendix C.1, ˆ̄Sf
ȳ(x) and ˆ̄Sl

ȳ(x)
can be obtained.

Holistic correction. For the example (x, ȳ), we feed it into
the deep network h included in ADDGCN [65]. The mem-
orization effect in handling noisy labels [25, 33] shows that
the deep network would first memorize the training data
with clean labels and then the training data with noisy la-
bels. Therefore, early in training, the outputs of the deep
network are relatively reliable and can be used for label cor-
rection. For (x, ȳ), we denote its set of predicted multiple
labels as y∗. Here, the set of predicted labels is obtained
with the top |ȳ| predictions based on the model’s probabil-
ity outputs.

Recall that the holistic score of an example holistically
measures the instance-label dependence and label depen-
dence among multiple labels simultaneously. From both
human and machine cognition, if an example is annotated
accurately, both dependencies should be strong [70, 18, 68,
28, 7] with high probability. Namely, the holistic score is
large. We propose to check the ratio between the holistic
score on (x, ȳ) and holistic score on (x,y∗). Specifically,
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we check
κ(h,x, ȳ) = ˆ̄Sȳ(x)/

ˆ̄Sy∗(x). (2)

We compare this ratio with a predetermined threshold
δ̂. The value of δ̂ is given in the next subsection. If
κ(h,x, ȳ) ≤ δ̂, we flip the labels ȳnew = y∗. Otherwise,
the labels remain unchanged with ȳnew = ȳ. The detailed
algorithm of holistic correction for multi-label classification
with noisy labels (aka HLC) is provided in Algorithm 1. Af-
ter holistic correction for noisy labels, we use (x, ȳnew) to
train the deep network h based on ADDGCN [65].

3.2. Theoretical Insights

We extend the Tsybakov condition [75, 2, 15, 49]
from multi-class classification to multi-label classification.
Specifically, denote by ax the label set predicted based
on Sf (x) with ax := h∗(x) = argmaxz S

f
z (x). Be-

sides, denote by bx the second best prediction with bx :=
argmaxz ̸=ax Sf

z (x). The maximum length of a label set is
denoted as m (m ≪ q). In this paper, we call the predicted
label set by the Bayes optimal classifier for an instance as
the correct label set. We present the Tsybakov condition on
instance-label (abbreviated as ins.-label here) dependence
and holistic Tsybakov condition as follows.

Definition 1 (Tsybakov condition on ins.-label dependence)
∃C1, λ1 > 0 and ∃t0 ∈ (0,m], such that for all t ≤ t0, we
have

P[Sf
ax

(x)− Sf
bx
(x) ≤ t] ≤ C1t

λ1 . (3)

Definition 2 (Holistic Tsybakov condition) ∃C2, λ2 > 0,
and ∃t0 ∈ (0,m], such that for all t ≤ t0, we have

P[Sax(x)− Sbx(x) ≤ t] ≤ C2t
λ2 . (4)

Remark 1 Definition 1 stipulates that the uncertainty of Sf

is bounded. The margin region that is close to the decision
boundary has a bounded volume. Definition 2 shares the
similar idea and bound the uncertainty of S.

Theorem 1 Suppose S(x) fulfills the holis-
tic Tsybakov condition for constants C2,
λ2 > 0, and t0 ∈ (0,m]. We define ϵ :=

maxx,z

[
| ˆ̄Sf

z (x)− S̄f
z (x)|, | ˆ̄Sl

z(x)− S̄l
z(x)|, |S̄l

z(x)− Sl
z(x)|

]
and τ := mini Tii. We analyze two cases:
(1) If ȳ is corrected by κ(h,x, ȳ) with δ̂, let

δ1 = min

[
τSbx (x)+

∑
lj∈ȳ

∑
i̸=j TijP(li|x)

ˆ̄Sy∗ (x)

]
and

ρ1 := |δ̂ − δ1|. Assume that ϵ ≤ t0τ−ρ1m
3 .

Then, P[ȳnew = h∗(x), ȳ is flipped] is at least
1− C2[O(max(ϵ, ρ1))]

λ2 −P[ax ̸= {y∗, ȳ}].
(2) If ȳ is not corrected by κ(h,x, ȳ) with δ̂, let δ2 =

max

[
ˆ̄Sȳ(x)

τSbx (x)+
∑

lj∈y∗
∑

i̸=j TijP(li|x)

]
and ρ2 := |δ̂ − δ2|.

Assume that ϵ ≤ t0δ
2
2τ−ρ2m−ρ2

2m

3δ22
. Then, P[ȳnew =

h∗(x), ȳ is accepted] is at least 1−C2[O(max(ϵ, ρ2))]
λ2−

P[ax ̸= {y∗, ȳ}].

The proof of Theorem 1 is provided in Appendix B.1.
Theorem 1 extends the theoretical results of [75] to multi-
label classification with noisy labels. It claims that, even
though with noisy multiple labels, the holistic correction
has a guaranteed success rate to make proper corrections.
Besides, if we can reasonably approximate the optimal δ
with δ̂, our algorithm flips noisy multiple labels to correct
ones with a good chance. Below, as a corollary of Theo-
rem 1, we show that, there are certain circumstances, the
use of holistic scores has a better chance to make correc-
tions satisfactorily, than the sole use of instance-label de-
pendence.

Corollary 1 Suppose that S(x) fulfills the holistic Tsy-
bakov condition. Denote the set threshold δ̂ and optimal
threshold δ. We define ρ := max |δ̂ − δ|. We have that,
∃ϵ and ρ, if C2[O(max(ϵ, ρ))]λ2 < C1[O(max(ϵ, ρ))]λ1 ,
holistic correction brings higher probability to handle noisy
labels successfully than instance-label dependence.

The proof of Corollary 1 is provided in Appendix B.2.
Corollary 1 claims that there exist cases where holistic
scores better combat noisy labels. Note that, from a theoret-
ical view, we do not state that holistic scores can work bet-
ter in all circumstances of multi-label classification. Nev-
ertheless, with the determination of the threshold δ̂, holistic
scores can perform better in the experiments of this paper,
which demonstrates the help of label dependence to handle
noisy multiple labels.

4. Experiments
4.1. Experimental Setup

Datasets. We verify the effectiveness of the proposed
method on the synthetic noisy versions of three datasets,
i.e., Pascal-VOC 2007 [12], Pascal-VOC 2012 [12], and
MS-COCO [32]. Pascal-VOC 2007 contains 5,011 images
in train and validation sets, while Pascal-VOC 2012 con-
sists of 11,540 images in train and validation sets. The im-
ages come from 20 common object categories. For Pascal-
VOC 2007 and Pascal-VOC 2012, we train methods using
the noisy training and validation sets, and evaluate them on
the test set of Pascal-VOC 2007 that has 4,952 images [14].
MS-COCO contains 82,081 training images and 40,137 val-
idation images from 80 common object categories. As did
in [74, 5, 65, 77], we evaluate the performance of methods
using validation images.

Noisy-label generation. The class-dependent noise transi-
tion matrix T [42, 21, 46, 72] is used to corrupt the three

1486



Table 1. Comparisons with advanced methods on noisy Pascal-VOC 2007. The mean and standard deviation of results (%) are presented.
Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 64.50±1.20 58.65±2.16 48.19±0.23 71.77±1.15 60.94±4.25 48.72±2.13
CSRA 66.99±0.48 59.62±0.61 46.97±0.48 72.45±0.69 63.58±1.48 52.72±1.52
ADDGCN 63.89±0.94 55.75±1.98 44.14±1.37 71.02±0.95 61.05±0.06 50.18±2.70
APL 66.79±1.19 58.86±1.53 47.64±1.81 72.61±0.99 61.99±0.78 49.10±0.15
CDR 67.35±1.70 60.05±1.06 49.12±0.59 72.66±0.79 64.58±0.60 50.51±2.49
JOINT 67.43±0.73 63.37±0.92 53.27±4.70 70.28±1.85 68.70±2.88 58.57±2.75
WSIC 65.43±0.55 59.53±0.73 48.34±0.47 72.57±1.03 61.88±2.57 50.15±0.86
CCMN 69.97±1.36 62.58±1.47 53.20±1.28 70.68±1.08 60.94±3.12 48.62±1.26
HLC† 72.07±0.67 70.20±0.46 68.00±0.89 74.83±0.64 69.86±1.61 60.09±1.73

OF1 ↑

BCE 63.52±0.48 56.70±2.45 48.10±1.43 68.28±0.69 58.30±2.82 51.18±3.10
CSRA 65.40±0.47 59.39±0.81 48.32±1.50 69.72±0.50 61.89±0.43 51.56±2.28
ADDGCN 62.63±0.18 55.50±1.87 44.38±2.92 68.95±0.64 59.64±0.56 53.12±0.62
APL 64.85±1.46 56.51±1.70 47.54±2.40 68.89±0.89 58.04±0.97 52.27±2.20
CDR 65.31±0.99 57.93±1.05 48.86±1.71 69.53±0.65 59.89±1.07 51.68±3.83
JOINT 69.72±0.88 67.93±0.77 61.62±1.40 71.24±1.03 64.20±0.88 60.30±1.24
WSIC 63.45±0.97 57.96±1.25 48.38±2.41 69.88±1.22 57.97±2.19 51.99±1.65
CCMN 69.66±1.55 60.43±1.31 53.84±0.69 67.12±0.61 59.55±1.45 53.46±1.04
HLC† 71.03±0.33 69.08±1.00 68.62±0.48 72.09±0.74 65.76±2.39 60.71±1.37

CF1 ↑

BCE 58.91±1.34 53.21±2.04 43.66±0.53 65.93±0.81 57.03±3.43 47.21±1.89
CSRA 62.31±0.50 55.67±0.61 43.11±0.76 67.39±0.80 59.66±1.04 51.13±1.12
ADDGCN 60.41±1.04 53.72±1.38 42.42±0.59 66.05±0.97 57.81±0.58 48.89±2.64
APL 60.23±1.53 52.85±2.18 42.38±1.67 66.59±0.71 58.33±0.49 47.67±1.83
CDR 61.37±1.47 54.17±0.86 43.60±0.82 67.11±0.63 59.91±0.39 48.40±1.98
JOINT 63.13±0.38 60.22±1.68 48.17±5.01 66.03±1.25 62.05±2.98 54.03±3.17
WSIC 59.54±1.10 54.22±0.53 43.82±0.62 66.97±1.00 58.04±1.70 48.19±0.96
CCMN 65.19±1.10 58.55±1.31 49.85±1.06 65.47±0.93 58.05±2.24 48.46±0.80
HLC† 68.87±0.10 66.62±0.81 64.82±0.48 69.95±1.19 65.13±1.04 57.54±1.84

datasets. Here, for any i ̸= j, Tij = P(lj ∈ ȳ ∧ li /∈ ȳ|lj /∈
y ∧ li ∈ y) represents the probability of the i-th class la-
bel to be flipped into the j-th class label. We consider both
symmetric (abbreviated as Sym.) and pairflip (abbreviated
as Pair.) noise settings [17]. The details of the transition
matrix are provided in Appendix D.2. For symmetric noise,
the noise rate is set to 30%, 40%, and 50% . For pairflip
noise, the noise rate is set to 20%, 30%, and 40%.

Baselines. We exploit three types of baselines in total.
Specifically, Type-I baselines contain the methods that are
designed for multi-label classification with clean labels.
Type-II baselines consider the methods for multi-class clas-
sification with noisy labels. Type-III baselines consider the
methods that focus on multi-label classification with noisy
labels. It should be noted that, there are relatively few meth-
ods belonging to this type [36]. More advanced methods
belonging to Type-III baselines need to be investigated [36],
which is also our focus in this paper. In more detail, Type-I
baselines include CSRA [77] and ADDGCN [65]. Type-
II baselines include APL [40], CDR [58], and JOINT [48].
Type-III baselines include WSIC [22] and CCMN [63]. As
a simple baseline, we compare our method with the standard
deep network that directly trains on noisy datasets (abbrevi-
ated as BCE). We detail all baselines in Appendix D.1.

Network & Optimizer. We use a ResNet-50 network [20]
pretrained on ImageNet as the backbone for all methods.
We train the models for 30 epochs in total. We utilize

Adam [27] for the network optimization. The batch size
is set to 128 for all the datasets. The learning rate is fixed
to 5 × 10−5. The images in Pascal-VOC 2007, Pascal-
VOC 2012, and MS-COCO resize to 224 × 224. Note
that, to make experiments more comprehensive, we also
employ different experimental settings, e.g., different net-
works and different image sizes. The details are provided in
Section 4.3.

Measurement. As did in multi-label classification [77,
7], evaluation metrics include the mean average precision
(mAP) [71], the average F1-measure (OF1), and the aver-
age per-class F1-measure (CF1). For fair comparison, we
implement all methods with default parameters by PyTorch,
and conduct all experiments on NVIDIA GTX3090 GPUs.
All experiments are repeated three times with different ran-
dom seeds. Following the works in learning with noisy la-
bels [17, 54, 29, 30], the mean and standard deviation of
results in the last epoch are reported. In addition, for dif-
ferent evaluation metrics, we report the mean and standard
deviation of best results. Supplementary results are shown
in Appendix E. Afterwards, the best mean results are high-
lighted in red. The second best mean results are also high-
lighted in blue.

4.2. Comparison with the State-of-the-Arts

The results on noisy Pascal-VOC 2007, Pascal-VOC
2012, and MS-COCO are shown in Table 1, Table 2, and
Table 3 respectively. In summary, HLC consistently works
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Table 2. Comparisons with advanced methods on noisy Pascal-VOC 2012. The mean and standard deviation of results (%) are presented.
Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 66.74±0.80 56.07±0.50 45.15±1.56 70.91±1.13 57.61±1.14 49.85±0.36
CSRA 66.35±0.50 56.20±1.35 45.54±1.14 71.29±0.83 60.71±1.18 47.63±1.56
ADDGCN 63.34±0.96 54.54±0.86 44.88±1.71 70.41±0.54 57.96±0.68 47.66±1.08
APL 67.07±1.04 56.79±1.86 43.51±1.93 71.32±1.60 59.59±1.27 48.14±1.16
CDR 66.13±1.49 56.85±0.48 44.84±1.11 71.55±1.87 60.13±1.89 49.44±1.81
JOINT 65.19±2.17 58.40±2.87 45.13±1.69 68.93±2.54 61.64±1.78 53.64±1.61
WSIC 65.96±0.79 56.34±0.41 44.80±0.54 70.40±1.11 59.40±1.87 48.95±1.34
CCMN 69.15±0.66 61.00±1.01 50.71±0.26 69.08±1.78 59.72±2.32 46.67±2.78
HLC† 72.14±0.66 70.11±0.27 68.69±1.04 74.51±0.67 69.90±0.43 64.20±1.26

OF1 ↑

BCE 64.99±1.10 56.92±2.08 45.49±2.23 68.48±2.28 60.21±1.35 54.05±1.95
CSRA 64.08±0.37 56.25±2.57 48.67±3.14 69.06±0.65 59.75±1.70 52.89±0.95
ADDGCN 63.53±1.41 54.28±0.86 47.56±2.67 47.62±2.39 57.90±1.78 52.33±0.56
APL 64.70±1.17 58.05±1.68 45.74±1.55 70.68±1.03 60.22±1.58 51.38±1.55
CDR 64.06±1.38 57.31±1.21 46.51±0.95 70.45±1.44 60.57±1.24 52.26±2.42
JOINT 67.35±1.86 64.57±2.39 54.37±3.33 70.81±1.40 64.40±1.76 56.27±1.29
WSIC 62.74±2.10 57.13±0.73 45.52±1.28 69.72±1.19 59.11±2.04 52.49±1.38
CCMN 65.77±0.23 59.91±0.93 51.45±0.94 67.93±1.73 59.26±0.51 48.61±4.71
HLC† 71.14±0.60 69.50±0.40 67.80±0.33 72.13±0.26 67.59±0.96 64.28±0.81

CF1 ↑

BCE 62.47±0.44 53.26±0.41 43.43±1.67 66.03±1.69 55.90±0.70 49.29±0.64
CSRA 62.08±0.70 53.23±1.27 43.23±1.25 66.02±0.74 57.71±1.02 47.46±1.68
ADDGCN 59.67±1.14 52.61±0.52 44.33±1.99 65.22±0.86 55.32±0.76 47.30±1.12
APL 62.99±1.07 53.69±1.80 41.72±1.42 66.44±1.40 57.52±0.91 48.14±1.02
CDR 62.18±1.04 53.61±0.45 42.83±0.87 66.29±2.12 57.23±1.43 49.03±1.50
JOINT 60.57±2.82 54.39±3.72 40.48±7.70 66.30±2.33 59.72±2.12 55.06±0.36
WSIC 61.70±0.92 53.10±0.74 42.72±0.54 65.34±1.48 57.21±1.62 48.51±1.12
CCMN 64.46±0.62 57.45±0.99 48.27±0.68 67.48±1.44 56.93±1.69 47.01±1.82
HLC† 69.54±0.56 67.35±0.48 65.72±1.48 70.07±0.41 65.68±0.94 60.57±1.27

Table 3. Comparisons with advanced methods on noisy MS-COCO. The mean and standard deviation of results (%) are presented.
Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 53.23±0.15 47.33±0.79 40.25±0.26 56.58±0.22 49.16±0.04 41.57±0.64
CSRA 53.89±0.40 47.64±0.86 39.58±0.19 58.27±0.23 50.95±0.07 43.07±0.64
ADDGCN 51.08±0.95 44.75±1.15 38.66±1.30 56.94±0.61 50.28±0.81 41.45±0.19
APL 54.34±0.32 48.61±0.72 43.55±1.43 57.73±0.20 50.87±0.34 41.77±0.50
CDR 54.01±0.04 49.01±0.26 43.94±1.25 57.03±0.28 50.99±0.77 42.71±0.09
JOINT 53.93±0.41 48.01±1.04 45.27±0.68 57.30±0.33 51.94±0.20 42.74±0.55
WSIC 52.99±0.53 46.84±0.86 39.76±0.64 56.66±0.31 49.46±0.25 42.52±0.62
CCMN 51.73±0.18 50.36±0.71 45.32±0.89 58.13±0.44 51.17±0.29 42.12±0.76
HLC† 54.87±0.68 51.09±0.53 48.15±0.50 58.55±0.09 53.41±0.13 45.91±0.39

OF1 ↑

BCE 51.34±1.70 44.36±0.82 34.85±1.24 59.16±0.95 52.44±0.81 42.94±1.13
CSRA 52.03±1.86 41.63±1.41 33.47±3.18 59.17±0.14 50.27±0.88 41.75±1.36
ADDGCN 55.67±1.48 47.79±0.40 35.95±3.73 60.96±0.65 55.05±1.78 47.47±0.77
APL 51.07±1.32 43.93±2.70 33.90±4.00 60.04±1.16 50.64±2.86 44.34±1.99
CDR 53.43±1.16 45.10±0.83 34.91±0.90 59.34±0.61 52.72±0.63 44.17±0.61
JOINT 54.56±0.06 49.00±1.66 37.78±0.93 58.20±0.40 53.21±0.17 46.55±0.61
WSIC 50.91±0.52 42.93±0.85 35.47±1.52 58.89±1.13 51.63±1.57 43.99±1.47
CCMN 52.71±1.04 43.24±1.19 34.62±1.38 58.61±1.18 52.18±0.76 45.92±0.59
HLC† 59.92±0.65 57.84±0.38 55.47±0.95 62.28±0.06 58.56±0.37 51.09±0.60

CF1 ↑

BCE 45.92±0.23 38.96±1.61 31.34±0.27 52.54±0.58 45.54±0.63 39.79±0.99
CSRA 44.97±1.88 37.49±1.73 28.96±1.16 52.18±0.44 44.96±0.43 36.88±0.21
ADDGCN 46.77±1.80 39.35±1.83 30.57±1.57 54.18±0.23 47.55±0.18 39.44±0.33
APL 42.91±0.54 38.38±0.77 28.17±2.50 52.87±1.07 46.27±1.27 37.76±1.02
CDR 46.62±0.42 39.47±0.54 29.59±2.52 52.51±0.69 45.75±0.81 39.15±0.53
JOINT 49.51±0.81 42.38±1.21 24.24±0.61 54.39±0.17 49.90±0.85 38.34±0.55
WSIC 45.30±1.09 39.15±1.62 31.42±0.94 52.04±0.28 45.76±0.70 39.44±1.11
CCMN 44.20±1.19 35.18±1.01 27.90±1.25 53.23±0.58 46.88±0.92 40.55±0.89
HLC† 51.94±0.63 49.24±0.30 46.69±0.66 55.44±0.13 50.91±0.48 43.35±0.82

best across all noise settings. In many cases, the best results
achieved by HLC outperform the second best results by a
large margin, especially when the noise level is high. Be-
low, we further discuss the results based on the comparisons

with three different types of baselines.

Compared with Type-I baselines. We first notice that
Type-I baselines are fragile to noisy labels in multi-label
classification. Without considering the side-effect of noisy
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labels, in many cases, they perform worse than BCE, which
clearly illustrates the necessity for attention to handling
noisy labels. Second, we compare HLC with ADDGCN.
Without the proposed correction method for combating
noisy labels, HLC will reduce to ADDGCN. As shown in
the reported results, HLC performs much better than AD-
DGCN. To be specific, on noisy Pascal-VOC 2007, for
Sym. 40%, HLC brings about +15% performance improve-
ment w.r.t. three evaluation metrics over ADDGCN. For
Sym. 50%, the performance improvement is increased to
more than +20%. Also, for Pair. 30% and Pair. 40%, HLC
enhances ADDGCN with about +10% improvement. On
noisy Pascal-VOC 2012 and MS-COCO, the performance
improvement is also very clear.

Compared with Type-II baselines. On noisy Pascal-VOC
2007, with Sym. noise, we can see that HLC outperforms
APL, CDR, and JOINT clearly, especially for Sym. 50%.
Additionaly, with Pair. noise, although the improvement
is less than the cases with Sym. noise, HLC still performs
best. On noisy Pascal-VOC 2012, for both Sym. and Pair.
noise, the improvement is significant. Lastly, for noisy MS-
COCO, HLC works better than all Type-II baselines with
varying enhancement.

Note that, compared with APL and CDR, JOINT seems
to be a stronger baseline. Benefiting from label correction,
after a few training epochs, JOINT less overfits to wrong
labels, following better performance. Nevertheless, the pro-
posed label-correction paradigm is argued to be more ad-
vanced. As shown in all results, HLC surpasses JOINT,
which verifies the effectiveness of our method.

Compared with Type-III baselines. On noisy Pascal-VOC
2007 and noisy Pascal-VOC 2012, HLC outperforms WSIC
and CCMN distinctly. For example, with Sym. 50% noise,
more than +10% performance promotion is brought by our
method. On noisy MS-COCO, although WSIC and CCMN
are sometimes competitive w.r.t. mAP, they are inferior
w.r.t. both OF1 and CF1.

4.3. More Analyses and Justifications

In this subsection, we conduct performance analysis in
more detail. The experiments are conducted with Sym. 50%
noise, which is more challenging than the experiments in
low-noise-rate cases.

Role of label dependence. We study the effect of removing
the consideration of label dependence to provide insights
into what makes HLC successful. The experiments are
conducted on noisy Pascal-VOC 2007, Pascal-VOC 2012,
and MS-COCO. The ResNet-50 network pretrained on Im-
ageNet is used as the backbone. The image size is set to
224×224. Recall that HLC considers instance-label and la-
bel dependences simultaneously. When we remove the con-
sideration of the label dependence in HLC, the correspond-

Table 4. Ablation study results on noisy Pascal-VOC 2007, Pascal-
VOC 2012, and MS-COCO. The mean and standard deviation of
results are presented. The best result in each case is in bold.

Dataset Noisy Pascal-VOC 2007
Methods mAP ↑ OF1 ↑ CF1 ↑
HLC w/o l. 67.06±0.41 67.23±1.92 63.42±0.58
HLC 68.00±0.89 68.62±0.48 64.82±0.48
Dataset Noisy Pascal-VOC 2012
Methods mAP ↑ OF1 ↑ CF1 ↑
HLC w/o l. 67.88±0.75 66.30±1.28 64.33±1.67
HLC 68.69±1.04 67.80±0.33 65.72±1.48
Dataset Noisy MS-COCO
Methods mAP ↑ OF1 ↑ CF1 ↑
HLC w/o l. 46.21±0.36 52.90±0.92 44.51±1.29
HLC 48.15±0.50 55.47±0.95 46.69±0.66

Figure 2. Ablation study results with different values of the set
threshold δ̂. The experiments are conducted on noisy Pascal-VOC
2007 (Top) and noisy Pascal-VOC 2012 (Bottom).

ing method is named as HLC w/o l. here. For both HLC
w/o l. and HLC, the value of the threshold δ̂ is searched
in the range {0.25, 0.30, 0.35, 0.40, 0.45}. We use the 10%
noisy training data as a validation set for the threshold de-
termination and performance report. The results are shown
in Table 4. As can be seen, HLC outperforms HLC w/o
l.. The results justify our claims that the label dependence
could help combat the noisy labels in multi-label classifica-
tion, which demonstrate the effectiveness of the proposed
holistic correction.

Analysis of the threshold δ̂. We analyze the influence
of different values of δ̂. The experiments are conducted
on noisy Pascal-VOC 2007 and Pascal-VOC 2012. The
ResNet-50 network pretrained on ImageNet is used as the
backbone. The image size is set to 224× 224. The value of
the threshold δ̂ is chosen in {0.25, 0.30, 0.35, 0.40, 0.45}.
Figure 2 shows that HLC is robust to the determination of
the threshold δ̂ in the certain range, which facilitates the
practical application of our method.

Evaluations with different networks. We use pretrained
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Table 5. Comparisons with advanced methods on noisy MS COCO
with different networks. The mean and standard deviation of re-
sults (%) are presented.

Metrics Methods ResNet-34 ResNet-101

mAP ↑

BCE 42.63±0.74 38.17±0.41
CSRA 41.35±0.18 37.24±1.20
ADDGCN 40.15±0.98 36.13±0.69
APL 44.82±0.70 40.90±1.51
CDR 45.43±0.65 41.00±0.38
JOINT 44.81±0.77 39.96±1.30
WSIC 41.86±0.62 37.49±0.68
CCMN 45.31±0.47 46.01±1.01
HLC† 46.05±0.81 46.24±2.13

OF1 ↑

BCE 37.65±2.46 38.65±2.50
CSRA 35.05±0.78 34.28±2.40
ADDGCN 35.11±1.26 37.18±0.50
APL 34.31±1.73 37.89±1.30
CDR 36.67±3.43 39.88±1.15
JOINT 39.66±1.13 41.36±0.88
WSIC 35.08±1.74 38.44±0.57
CCMN 32.86±1.50 37.03±1.48
HLC† 44.11±0.80 47.79±4.19

CF1 ↑

BCE 28.95±2.09 34.11±1.13
CSRA 27.40±0.44 31.21±1.57
ADDGCN 26.11±0.86 30.41±0.72
APL 26.64±2.39 31.97±1.95
CDR 27.13±2.39 35.17±1.06
JOINT 30.77±1.63 37.63±0.81
WSIC 27.62±0.65 33.83±0.61
CCMN 24.75±0.48 26.65±0.26
HLC† 34.79±1.41 40.88±2.42

ResNet-50 before. To show that our method is robust to the
choice of network structures, we use different networks in
experiments. Specifically, we employ pretrained ResNet-
34 [20] and pretrained ResNet-101 [20] respectively. The
noisy MS-COCO is considered. The image size is 224 ×
224. The results on mAP are reported in Table 5. As can be
seen, with different networks, HLC still works well.

Evaluations with different image sizes. We resize the im-
age size to 224 × 224 before. To test the performance of
advanced methods with different image sizes, we further
consider 112× 112, 384× 384, and 448× 448 image sizes.
Pretrained ResNet-50 is used. The results are reported in
Table 6. For mAP, we can see that HLC is competitive
compared with CCMN and CSRA. For OF1 and CF1, HLC
works better than all baselines with a clear margin.

4.4. Experiments on the Real-world Dataset

To demonstrate that our problem setting can be adapted
to the real world and our method can well handle practical
scenes, we employ the real-world dataset NUS-WIDE [10]
that originally contained 269,648 images from Flicker,
which have been manually annotated with 81 visual con-
cepts. Since some urls for download have been deleted, we
employ the dataset version in [45]. A standard 70-30 train-
test split is used. The backbone is chosen as ResNet-101.
As the computation cost of training on NUS-WIDE is rela-

Table 6. Comparisons with advanced methods on noisy
MS COCO. The mean and standard deviation of results (%) are
presented. Difference image sizes are considered here.

Metrics Image sizes 112× 112 384× 384 448× 448

mAP ↑

BCE 32.22±0.69 39.40±1.36 35.24±1.73
CSRA 29.55±0.16 43.55±0.70 44.56±0.75
ADDGCN 32.34±0.46 38.72±1.64 34.87±1.89
APL 34.41±0.48 43.65±0.28 41.44±1.21
CDR 34.75±0.39 43.26±0.72 39.97±1.40
JOINT 32.89±0.16 42.95±0.88 40.17±1.26
WSIC 31.98±0.23 39.57±1.02 36.08±0.23
CCMN 36.17±0.41 44.39±0.39 44.03±0.17
HLC† 35.98±1.05 45.12±0.13 44.23±1.20

OF1 ↑

BCE 26.70±0.88 34.71±2.76 26.72±3.35
CSRA 20.14±1.28 36.41±0.71 38.54±0.78
ADDGCN 26.36±2.29 42.83±2.05 40.73±1.04
APL 24.02±1.22 34.68±1.46 30.73±2.64
CDR 26.50±1.23 31.31±1.76 31.15±3.46
JOINT 34.11±0.95 38.67±1.25 38.11±0.69
WSIC 24.61±1.10 34.09±2.94 30.69±0.97
CCMN 23.89±1.49 36.16±2.12 25.03±2.48
HLC† 39.05±2.68 46.55±3.77 45.14±2.34

CF1 ↑

BCE 19.61±0.61 30.77±2.28 24.94±3.31
CSRA 13.34±1.29 32.66±0.98 32.68±0.22
ADDGCN 18.67±1.47 35.63±1.37 33.89±2.41
APL 17.21±0.78 29.24±0.09 25.01±1.31
CDR 18.04±1.07 29.62±1.19 26.28±1.23
JOINT 20.76±0.75 34.90±1.88 33.75±1.31
WSIC 19.07±0.57 31.63±2.49 28.50±1.36
CCMN 16.75±1.21 30.09±2.32 26.68±1.57
HLC† 29.70±2.07 40.34±2.14 37.48±2.36

Table 7. Comparison of our method to known state-of-the-art mod-
els on the NUS-WIDE dataset. Metrics are in %.

Method mAP ↑ OF1 ↑ CF1 ↑
S-CLs [39] 60.1 73.7 58.7
MS-CMA [66] 61.4 73.8 60.5
SRN [76] 62.0 73.4 58.5
ICME [7] 62.8 74.1 60.7
ASL [45] 63.9 74.6 62.7
HLC† 63.1 74.6 62.9
HLC+ASL† 64.5 75.1 63.4

tively large, we run experiments one time. Here we compare
our method with S-CLs [39], MS-CMA [66], SRN [76],
ICME [7], and ASL [45]. For convenient comparison, we
refer to the results of their original papers. Note that to fur-
ther improve the performance on NUS-WIDE, we utilize
ASL to replace the loss function of our method. We name
the new method “HLC+ASL”. Results are provided in Ta-
ble 7, which demonstrate the effectiveness of our method
on the real-world dataset.

5. Conclusion

In this paper, we focus on the realistic problem of multi-
label classification with noisy labels. We learn and utilize
the label dependence among multiple labels to handle this
problem. With the help of label dependence, a novel al-
gorithm named HLC is proposed to correct noisy multiple
labels to clean ones. We demonstrate the effectiveness of
our algorithm both theoretically and empirically. For future
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work, we are interested in adapting HLC to other domains
such as natural language processing and recommendation
systems. We are also interested in promoting our algorithm
to tackle instance-dependent label noise [73, 4, 78, 38] in
multi-label classification.
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