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Abstract

Federated learning casts a light on the collaboration of
distributed local clients with privacy protected to attain a
more generic global model. However, significant distribu-
tion shift in input/label space across different clients makes
it challenging to well generalize to all clients, which moti-
vates personalized federated learning (PFL). Existing PFL
methods typically customize the local model by fine-tuning
with limited local supervision and the global model regu-
larizer, which secures local specificity but risks ruining the
global discriminative knowledge. In this paper, we propose a
novel Personalized Semantics Excitation (PSE) mechanism
to breakthrough this limitation by exciting and fusing person-
alized semantics from the global model during local model
customization. Specifically, PSE explores channel-wise gra-
dient differentiation across global and local models to iden-
tify important low-level semantics mostly from convolutional
layers which are embedded into the client-specific training.
In addition, PSE deploys the collaboration of global and
local models to enrich high-level feature representations
and facilitate the robustness of client classifier through a
cross-model attention module. Extensive experiments and
analysis on various image classification benchmarks demon-
strate the effectiveness and advantage of our method over
the state-of-the-art PFL methods.

1. Introduction
Deep learning algorithms typically demand prolific train-

ing samples for model optimization [22, 34, 47], which often
entails crowd-sourcing from different clients. However, data
privacy issue arises when transmitting data across clients
[49, 43, 48]. This motivates the exploration of federated
learning (FL), which aims to learn a highly generalizable
global model from the collaboration across multiple clients
communicating with a centralized server to perform knowl-
edge sharing [25, 18]. While tremendous efforts have been
made by existing method to build a global model of strong
generalizability to all clients, the crowd-sourcing nature of
FL makes it difficult to learn a generic model satisfying the
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Figure 1. Comparison of attention maps drawn by global model
(FedAvg), local models respectively learned by FedAvg+FT [32],
Ditto [23], FedRep [7] and our proposed method. It suggests that
well-learned discriminative semantics by global model are easily
mitigated via customized training of client in several situations.
For example, the global model of FedAvg focuses on the nose and
mouth of the dog and utilizes these discriminative information to
successfully identify the dog. However, FedAvg+FT, Ditto and
FedRep show different degrees of degradation on these parts and
fail to correctly classify it.

demand of all clients with various data distributions [4, 39].
The straightforward and efficient solution to this FL chal-

lenge is directly fine-tuning the well-learned global model
to adapt the distribution property of each client [30, 16, 53].
This widely-explored strategy is named as personalized fed-
erated learning (PFL), which conducts model customization
per client by refining the local model with both local data and
global model constraint [1, 45, 6]. Alternatively, personal-
ization relies on the limited supervision per client refine the
model to preserve client-specific patterns with the integra-
tion of global model [28, 37]. To reach better customization,
[14, 8] adopt additive mixture manner over the global and
local network parameters to gradually adjust the local model
learning. Similarly, one recent work named as Ditto [23]
enforces the local model parameters to be close to the global
ones with ℓ2-norm regularization term, which encourages
clients to obtain generic knowledge and guarantees the con-
vergence of training process. In addition, meta-learning
mechanism has attracted much attention to overcome PFL
challenges, since it enables the learning process of clients to
imitate the attribution of knowledgeable global model [26, 7].
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Differently, FedRep [7] disentangles the top-down network
architecture into a generic feature extractor and a private
classifier. Such a design manner not only preserves abundant
high-level discriminative semantics related to data distribu-
tion but also gains benefits from cross-client collaboration
via information integration in low-level convolutional lay-
ers. These mentioned works suggest that the communal and
private semantic excitation and fusion is the key to achieve
successful personalized client models.

Naturally, we post a question “how to precisely achieve
personalization without hurting universality during model
customization”, which is promising yet underexplored.
Namely, this learning process needs to determine which
universal semantics are essential to improve local model per-
formance and which are unnecessary to be overridden with
local specific semantics. To explicitly answer this question,
this work focuses on the federated image classification.
First, we employ Grad-CAM [36, 5] to identify which pat-
terns captured by convolutional neural network (CNN) are
activated. Figure 1 shows the activated maps of image sam-
ples obtained by the global model learned by FedAvg and
local models obtained from several PFL methods separately.
From the comparison among FedAvg and the existing three
PFL works in Figure 1, we easily observe that the global
model learned by FedAvg pays more attention to the nose and
mouth of the dog and utilizes these discriminative informa-
tion to successfully identify the dog. However, FedAvg+FT,
Ditto and FedRep show different degrees of degradation on
these parts and fail to correctly classify it. This phenomenon
illustrates that local model training introduces client-specific
semantics but easily conceals or updates certain discrimina-
tive global information, which deviates from the eventual
goal of PFL.

To prevent such phenomenons, this paper proposes a
novel Personalized Semantics Excitation (PSE) mecha-
nism to strike a balance between personalization and univer-
sality during local model customization. Our method mainly
involves two modules: adaptively personalized channel ex-
citation module and personalized semantic enhancement
module. The first module considers precisely adjusting the
filter parameters of convolution w.r.t local feature extractor
by discovering which channel the global model provides
more discriminative information. The delicate cross-model
channel excitation to the utmost extent preserves the useful
global knowledge. On the other hand, the second module
aims to enrich high-level features and enhance the robustness
of classifier. To attain this expectation, our method intro-
duces the cross-model attention exchange mechanism over
the last convolutional layer of feature extractor, which relies
on channel-wise similarity to further elevate representation
of discriminative semantics. The main contributions of our
work include three folds:

• First, we empirically validate that local model training

for the existing PFL is likely to override essential global
semantics with weak discriminative client-specific con-
tents. To avoid such a pitfall, we develop the adaptive
channel excitation module to balance personalization
and universality for each local client customization.

• Second, we develop the personalized semantic enhance-
ment module with cross-model attention exchange
mechanism to reach better personalization, which ex-
plores channel-wise similarity across global and local
models to produce more robust high-level semantics
representation for the classifier training.

• Finally, we evaluate our method and other baselines on
novel scenario with data distribution divergence and
conventional PFL with label shift. Extensive experi-
mental results and analysis comprehensively illustrate
the effectiveness of our method on achieving better
model customization for federated image classification.

2. The Proposed Method
2.1. Preliminary and Motivation

Federated learning (FL) typically utilizes the communi-
cation between one centralized server and many distributed
clients to construct a shared model with high generalization
[17]. This problem setting assumes each client locally stores
their own private data Di = {xij , yij}n

i

j=1 collected from the
distribution Pi(xi, yi), where xij and yij denote visual input
and its corresponding label, respectively. Assume there are
m clients, and the i-th client contains ni samples. With the
collaborative protocol, all clients usually adopt the identical
network architecture F(·) with local trainable parameters
Θi formulated by F(xi,Θi). The most popular strategy is
FedAvg [32], which aims to achieve model sharing across
different clients with data privacy protection. Formally, Fe-
dAvg naively averages the local model parameters Θi to
reach the integrated model Θ with its objective functions at
local clients and global server as:

Local : minΘi

∑ni

j=1 L(F(xij ,Θi), y
i
j)

Global : Θ =
∑m

i=1
ni∑m
i=1 niΘi, (1)

where L(·) is usually defined as the cross-entropy loss for
classification task.

However, it is difficult to make the generic global Θ suit-
able for all clients due to the considerable distribution dis-
crepancy in input or label space. The dilemma motivates
the exploration of personalized federated learning (PFL)
[15, 51], which attempts to customize the global model for
each concrete client. Along with this direction, the most
recent FedRep [7] claims that clients can privatize the clas-
sifier and enable it to be more discriminative for their lo-
cal data property with Θi = {Θi

g,Θ
i
c}, where Θi

g are the
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shared parameters of generic feature generator from global
server while Θi

c are the private classifier parameters locally
preserved for i-th client. Another widely-used framework
named as Ditto [23] learns personalized client models with
the following learning objective as:

min
Θi

g,Θ
i
c

∑ni

j=1 L(F(xij ,Θi
g,Θ

i
c), y

i
j)

+λ
(
∥Θi

g −Θg∥2ℓ2 + ∥Θi
c −Θc∥2ℓ2

)
, (2)

where ∥·∥ℓ2 denotes ℓ2-norm and λ is the trade-off parameter
to the second and third terms, which enforce the global model
regularizer to conduct client-specific customization.

Although Ditto and FedRep both achieve promising re-
sults under PFL scenario, their local learning strategy that
simply updates all global network parameter with private
samples hardly counterpoises personalization and universal-
ity to achieve optimal performance (See Figure 1). First, the
low-level convolutional filters learned from color and sketch
images are likely to be diverse. Thus, the second term of
Eq. 2 enforcing Θi

g to be the averaged Θg with no difference
fails to adapt cross-modality clients. Second, the local clas-
sifier Θi

c also needs more augmented knowledge to promote
its robustness and discriminative ability, especially when the
private clients are with insufficient training samples, since
others with similar distribution provide assistance [19, 35].

To reach the better model customization, the ideal solu-
tion not only needs to actively identify the important and
discriminative global semantics by maximizing their con-
tribution for local model training, but also discovers client-
specific semantics to generate discriminative representations.
Consequently, we develop 1) one adaptive personalized ex-
citation mechanism within feature extractor Θi

g and 2) one
personalization enhancement module with cross-model at-
tention in private classifier module Θi

c. It is worth noting
that such shared feature extractor parameters from all clients
will be sent to the server, which would further conduct model
integration as FedAvg in this paper for simplicity.

2.2. Adaptively Personalized Channel Excitation

Recent works on explainable deep learning [3, 50, 33, 44]
suggest that different convolutional filters lying in the same
layer focus on various regions of the input feature map
and propagate their captured semantics into the next layer
[40, 9, 12], i.e., F(l) = Wl ⊗ F(l−1), where ⊗ denotes the
convolutional operation and F(l) represents the 3D feature
map of the l-layer with the total channel number as cl. Based
on this property, Grad-CAM [36] attempts to learn the at-
tention map from the output of the last convolutional (L-th)
layer via A = ReLU(

∑
k αkF

(L)
k ), where F

(L)
k ∈ Rw×h

represents the k-th channel with w, h as the index of the
width and height, and αk =

∑
w

∑
h

∂y
∂F

(L)
k,w,h

. The combina-

tion weight αk indicates the “importance” of the k-th feature

map to the final prediction. Matching the attention matrix A
over the original input image easily explains which regions
lead the model to make the final decision.

The goal of this work is to propose a generic PFL frame-
work by precisely identifying and fusing effective and infor-
mative global knowledge into local models. We follow the
well-established FL theorem that the gradients of local and
global models describe the optimization direction and reflect
the importance of each neural unit. Intuitively, the larger
gradients show more model updates and contain more essen-
tial knowledge. Beneficial from Grad-CAM or other similar
techniques, we easily observe how does the PFL strategy
achieve model customization. For example, we draw the
attention map captured from FedRep [7] and FedAvg+FT
[32] adding the simple fine-tuning on well-learned global
model. As Figure 1 shows, we can attain two important
observations via the corresponding comparison. First, the
local personalized learning in FedRep is likely to conceal or
update certain important task-relevant information which are
helpful for object classification yet activated by the global
model from FedAvg. The reason we speculate lies in that the
insufficient local training samples difficultly guide model to
capture these patterns while the global model can integrate
models across all clients to enrich them. That is also why
Ditto [23] in Eq. (2) attempts to reduce the distance be-
tween each client model parameters and global ones during
the local training stage. Second, the client model actually
can intensify the representations of certain regions around
objects of our interest when compared with the attention
map achieved by global model. The phenomenon results
from that server is averaging the contributions of each client
to realize global optimal solution. Therefore, imitating all
patterns from server side as Ditto [23] is also unsuitable for
reaching personalized federated learning. With these find-
ings, the ideal model customization not only preserves the
local learned discriminative information but also borrows
task-relevant semantics from global model.

To approximate the vision, the intuitive manner is to
discover which convolutional filters of the global model can
be activated to emphasize our interested pattern and embed
them into the local learning process. Thus, we develop
the adaptive channel excitation mechanism in client side
with Θ̃ = {Θ̃g, Θ̃c} 1. To this end, given arbitrary one
training sample at any local client, we can feed it into local
and global models to get the corresponding predictions via
p̃j = F(xj ; Θ̃g, Θ̃c) and pj = F(xj ; Θg, Θ̃c). On the
other hand, we consider global model and local model would
have different channel activation score given the same input
sample. With the ground-truth label of the local training
samples, we are able to deploy Grad-CAM [36, 2] to estimate
the contribution of each feature map F̃

(l)
k /F

(l)
k at l-th layer

1Note that we remove the client index i of Θi with Θ̃ for convenience.
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k-th channel to the correct prediction per mini-batch as:

α̃
(l)
k =

∑bs
j=1

∑
w

∑
h

∂p̃c
j

∂F̃
(l)

k,(wh),j

,

α
(l)
k =

∑bs
j=1

∑
w

∑
h

∂pc
j

∂F
(l)

k,(wh),j

,
(3)

where p̃c
j / pc

j denotes the predictive output of the j-th train-
ing sample on the c-th category (ground-truth), and bs is
the batch size. Intuitively, we can compare α̃

(l)
k with α

(l)
k to

identify the k-th channel’s importance locally and globally
at layer l. Since we hope the highly excited channels only
resided in global model to compensate the local one, thus,
we calculate ∆(l)

k = α
(l)
k − α̃

(l)
k with only positive difference.

In the practical implementation, we first adopt Sigmoid(·)
function to separately normalize the contribution coefficients
of the same layer over client and global models. Thus, the
personalized channel excitation is formulated as:

W̃
(l)
k ⇐ W̃

(l)
k +

{
I(∆kl ≥ ∆̄) · ξ ·

(
W

(l)
k − W̃

(l)
k

)}
, (4)

where ∆̄ = mean(
∑

kl
∆

(l)
k ), and I(·) is the indicator func-

tion. ξ > 0 controls the ratio of accepting external novel
knowledge with its value as 0.01 by default.

2.3. Personalized Semantic Enhancement via Cross-
model Attention

The adaptive channel excitation mechanism effectively
fuses discriminative semantics from local and global sides to
promote the generalization of feature. To examine the activa-
tion difference more correctly through Grad-CAM, we cer-
tainly expect the private classifier module to be more robust
and discriminative in terms of generic feature representa-
tion. To achieve this, we are not fully relying on the generic
feature extractor, but also measure the high-level semantic
feature representation from both local and global models.
The intuition is that the global model is generic for all dif-
ferent tasks across various clients, which contributes feature
robustness. With this thought, we propose the cross-model
attention exchange module which adopts and advances the
traditional self-attention components.

Given the rephrased 3-D feature map F ∈ Rh×w×c from
the last layer of Θg, we aim to automatically discover the
channel-wise similarity in last convolutional layer to capture
addition discriminative knowledge with the cross-model at-
tention exchange. On the other hand, each client in federated
learning typically consists of insufficient training samples
for model optimization. Under this condition, the abun-
dant linear projections to the keys K ∈ Rdhw×c, queries
Q ∈ Rdhw×c and values V ∈ Rdhw×c (where dhw = h×w)
in conventional self-attention module [52, 10, 13, 27] easily
result in significant overfitting issue. To avoid it, we adopt
lightweight convolutional kernel over feature maps to obtain

the projections:

Q = Wq ⊗ F, K = Wk ⊗ F, V = Wv ⊗ F, (5)

where Wq/k/v ∈ R1×1 are 1-D convolutional filter with
convolutional operator ⊗. Thus, we follow the tensor multi-
plication of [46] to obtain the output as:

O = Softmax(
QK⊤
√
wh

)V, (6)

where the self-attention weights Softmax(QK⊤
√
wh

) ∈
Rdhw×dhw highlight the important semantics within per chan-
nel and O ∈ Rdhw×c will be reshaped into the same size as
F. Similarly, these convolutional kernel will be deployed
over the local feature maps F̃ from Θ̃g to obtain the corre-
sponding outputs {Q̃, K̃, Ṽ} ⇒ Õ.

To obtain more discriminative knowledge from global to
local client, we consider to exchange Q̃ with Q to deepen
their consensus on the high-level channel-wise features. Sim-
ilarly, we can replace Q with Q̃ in Eq. (6) to increase input
diversity which further improve the robustness of classifier.
In addition, the relative positions of channels in the same
network layer is important information. With this consider-
ation, beyond the exchange queries, we further introduce a
learnable position variable parameterized as P ∈ Rw×c×h

into cross-model attention exchange module:

Õ = Softmax(QK̃⊤+QP⊤
√
wh

)Ṽ,

O = Softmax( Q̃K⊤+Q̃P⊤
√
wh

)V.
(7)

Finally, we utilize max-pooling on the outputs Õ and O
of cross-model attention module, then flatten and feed them
into two fully-connected layer θfc to access their logits, i.e.,
p̃ = θfc(Õ) and p = θfc(O). Note that the classifier pa-
rameter Θ̃c is specified as {Wq/k/v,P, θfc}. The attention
exchange enables the local model to focus on these informa-
tive and discriminative channels as the global network does
and utilizes its values (V) to heavily preserve local well-
learned knowledge. And, we conduct the similar operation
over the feature maps of global model and feed the outputs
Õ and O into the last fully-connected layer of classifier,
which further promotes the generalization of classifier.

2.4. Overall Objective and Discussion

We can deduce the objective function of our local model
learning as the following by integrating Eq. (4) as a regular-
izer about W̃(l)

k as well as enhanced classification loss:

minΘ̃g,Θ̃c
L̃ =

∑
j
L(p̃j , yj) + L(pj , yj)︸ ︷︷ ︸

Obj 1

+
∑

l

∑
k

ξ

2
· I(∆kl ≥ ∆̄) · ∥W̃(l)

k −W
(l)
k ∥2ℓ2︸ ︷︷ ︸

Obj 2

. (8)
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The global model is frozen during the overall local train-
ing process. Note that in the inference stage, the client model
only depends on the local network Θ̃g, Θ̃c to achieve classi-
fication task without the assistance of global model, which
means the cross-model attention exchange is degenerated
into the self-attention mode.

Discussions: Two strategies mutually work together to
enhance the personalization from shared channel-wise se-
mantic (Obj 2 in Eq. (8)) and private semantic information
(Obj 1 in Eq. (8)). Actually, our model is very relevant
to Ditto [23] but with two most significant improvements.
First, we aim to achieve optimal balance of personalization
and universality to improve local model performance via
channel-wise excitation instead of simply regularizing all
local parameters indifferently. Second, we explore cross-
model high-level semantic correlation to trigger the private
classifier more robust and discriminative. In addition, we
provide the explicit theorem for model convergence and
convergence rate as follows. Moreover, although this work
mainly examines network architecture with convolutional
operation, it is convenient to generalize to other popular net-
works. For instance, in fully-connected computation, we can
consider each weight as one neuron and calculate its gradi-
ent to determine if it is necessary to fuse global knowledge
over this neuron. Thus, our method is applicable for these
situations when it is possible to acquire gradient of network
parameters.

Assumption 1. The stochastic gradient gt = ∇L̃(Θ̃t,xt)
at time t is an unbiased estimator of the local gradient with
the expectation as Ex∼D[gt] = ∇L̃t and variance as E[∥gt−
∇L̃t∥22] ≤ δ2.

Assumption 2. The objective function optimized in each
client is L1-Lipschitz smooth. In other words, the gradient
of Eq. (8) is L1-Lipschitz continuous [29], i.e., ∥∇L̃t1 −
∇L̃t2∥2 ≤ L1∥Θ̃t1 − Θ̃t2∥2, where Lt1/2 means the loss
values at local iteration time t1/2.

Theorem 1. When assumption 1 and 2 hold, we have
the following conclusion in any arbitrary client after per
communication round (r):

E[L̃(r+1)τ ] ≤ L̃rτ+1 − (η −
L1η2

2
)

τ−1∑
e=1

∥∇L̃rτ+e∥22 +
L1τη2

2
δ2,

(9)
where τ is the total iteration of local model update and η
is the learning rate. This theorem suggests that selecting
appropriate η can achieve our expected gradient decrease in
one communication round so that it finally can guarantee the
convergence of model.

Theorem 2. Given any ϵ, after R round communication,
we infer that

1
Rτ

∑R−1
r=1

∑τ−1
e=1 E[∥∇L̃rτ+e∥22] ≤ ϵ,

R ≥ 2(L̃0−L̃∗)
τϵ(2η−L1η2)−τη2L1δ2

, (10)

where η < 2ϵ
L1(ϵ+δ2) and L̃∗ denotes the loss of the optimal

solution for the local model. This theorem illustrates the
convergence rate of model, which is related to the overall
communication round and the expectation of ℓ2-norm of
gradient. Sufficient rounds make the bound tighter.

3. Experiments

3.1. Experimental Setup

Datasets. In practical experiments, we not only consider
label distribution shift across various clients as the tradi-
tional PFL works [41, 11] but also attempt to explore the
interference of cross-client data distribution mismatch. In
terms of the label shift, we follow the protocol of FedRep [7]
to randomly divide 50,000 training images of Cifar-10 and
Cifar-100 [21] into 20/50 clients and each client contains
the same category number. And the 10,000 test samples are
also split into each client according to their categories. Simi-
larly, the original FashionMNIST consists of 60,000 training
gray images and 10,000 test ones, which are also randomly
distributed into 100 client terminals, whose category num-
ber varies from two to four per client. For the data shift
experiments, we first convert gray images of FashionMNIST
and FeMNIST into colorful or edge images. Specifically,
we arbitrarily crop the 28×28 patch from color images of
BSD500 [31] and add them into the gray images to generate
colorful digit or fashion images. Moreover, the edge fash-
ion images are synthesized using classical canny detector
over the gray images. Given another modality dataset, we
adopt the same manner to split the newly-created samples
into the additional 100 clients. To this end, we can evaluate
PFL algorithms over 200 clients with significant data/label
distribution divergence.
Implementation Details. For our proposed method, the
network architecture for all experiments includes one feature
extractor and one classifier. Concretely, the feature extractor
involves three convolutional layers with the specific chan-
nel numbers (1/3→32→64→128)2. The classifier consists
of one multi-head (4-heads) cross-model attention block
and two fully-connected layers. The local model training
within each client adopts stochastic gradient descent (SGD)
to optimize the model with momentum 0.5 and the learning
rate as 0.01. Moreover, in each round of communication,
50% clients of Cifar-10/100 or 10% ones of other experi-
ments are randomly selected to update their local model for
5 epochs and send their feature extractors to the global server
for model integration. The server will conduct 100 rounds
of communication with local clients. Code is available in
https://github.com/HaifengXia/PSE.
Baselines. To evaluate the effectiveness of our method,

2Note that if there exist color images for training, the channel number
of input will be three and that of gray or edge images is also converted into
three-channel input.
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Table 1. Average Recognition Accuracy (%) under novel joint label and data shift scenarios.

Datasets FEMNIST FashionMNIST FashionMNIST
Modality (Gray, Color) (Gray, Color) (Color, Edge)
(#M, #C) (200,3) (200,4) (200,5) (100,3) (100,4) (100,5) (200,3) (200,4) (200,5)

Local 81.97 80.40 79.44 81.46 79.62 76.95 83.53 81.95 80.57
FedAvg+FT [32] 83.17 81.97 81.53 84.28 82.36 79.80 86.39 84.08 82.99
FedProx+FT [24] 82.87 81.36 81.03 84.51 82.31 79.50 87.05 84.25 83.09

SCAFFOLD+FT [20] 84.00 81.54 82.04 84.79 82.12 79.94 85.54 83.19 83.05
Fed-MTL [38] 81.14 80.30 79.24 78.70 77.14 78.39 81.12 79.49 79.89
LG-Fed [26] 83.27 81.40 80.03 81.59 79.23 75.89 83.86 80.90 78.31
L2GD [14] 81.88 80.53 79.68 80.16 78.90 77.46 81.75 80.86 79.52
APFL [8] 82.85 81.17 81.14 85.25 81.16 78.73 85.96 82.46 79.22
Ditto [23] 85.23 82.94 82.34 88.11 85.76 84.46 87.82 84.77 84.13

FedRep [7] 84.43 83.54 83.51 86.71 83.01 83.49 84.78 85.10 84.46
Ours 88.81 87.86 87.98 89.58 88.12 86.61 89.97 87.95 85.69

we compare with the state-of-the-art PFL algorithms. Gen-
erally, they are divided into two branches. One manner is
utilizing conventional federated learning methods such as Fe-
dAvg [32], FedProx [24] and SCAFFOLD [20] to attain their
global models and then fine-tuning (FT) them to customize
the local network named as “X”+FT. The other direction is
to design the specific customized model training approaches
as Fed-MTL [38], LG-Fed [26], L2GD [14], APFL [8], Ditto
[23], and FedRep [7]. For a fair comparison, we perform
experiments with their public available implementations and
replace the network architecture with the above mentioned
design, e.g., three-layer CNNs, one self-attention module
(Eq. (6)) and two FC layers, where only our cross-model
attention mechanism is not deployed.

3.2. Comparison Results

In PFL experiments, all training and test samples are
randomly allocated into multiple clients. To reduce the un-
certain influence of random partition, we carry out many
times for each task and report the average accuracy. It is
worth nothing that each client will evaluate local model with
its private test samples and access the corresponding ac-
curacy. The above test accuracy refers to average the test
classification accuracy across all clients. Table 1 and Table
2 show the performances of our method and other baselines
over various datasets under different partitions. According
to them, we can easily achieve several valuable conclusions.

First, it is straightforward to observe that our method
obtains the state-of-the-art performance in all mentioned
tasks. This convincingly illustrates the effectiveness of our
method on customizing client model under federated learn-
ing scenario. In terms of the experiments on Cifar-100 with
50 clients, there exists considerable label space divergence
across different clients. In other words, arbitrary clients have

a little category information overlap. Under the difficult
situation, our method outperforms others by a large margin,
especially for the case (50, 15), (Ours v.s. FedRep)∼(62.46%
v.s. 58.94%). These comparisons suggest our proposed
method significantly overcomes the negative effect of label
distribution shift when conducting knowledge sharing.

Second, compared with several personalized training
manners as Fed-MTL, LG-Fed, the naive fine-tuning mech-
anism over the global model well-learned from FedAvg or
FedProx produces promising results in many tasks. And
Ditto heavily depends on the global models and attains sta-
ble performances in these experiments. It demonstrates that
the local personalized learning is likely to conceal or update
useful knowledge from the external collaborators. There-
fore, our proposed learning mechanism not only discovers
valuable global information but also gradually adjusts local
model to augment private data distribution.

Third, through the comparison of Table 1 and Table 2
with respect to FashionMNIST, we notice that all involved
methods suffer from performance degradation when intro-
ducing distribution shift on inputs across various clients.
This domain shift scenario brings in more challenges to per-
sonalized federated learning. However, our method still sig-
nificantly outperforms other competitors. The main reason
lies in the collaboration of adaptive channel excitation and
cross-model attention mechanisms, which captures more dis-
criminative information to promote the robustness of model.

3.3. Empirical Analysis

Ablation Study. The cooperation of adaptive channel
excitation and cross-model attention exchange assists our
model in achieving better recognition performance. To
clearly understand the contribution of each component, we
design three variants for our method by separately removing
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Table 2. Average Recognition Accuracy (%) under conventional PFL setting with label shift scenarios.
Datasets CIFAR-10 CIFAR-100 FashionMNIST
(#M, #C) (20,2) (20,3) (20,4) (50,5) (50,10) (50,15) (100,3) (100,4) (100,5)

Local 79.65 73.97 67.54 73.35 58.76 49.79 89.65 86.37 85.75
FedAvg+FT [32] 82.94 78.23 74.62 77.01 61.96 55.40 91.43 89.00 87.36
FedProx+FT [24] 82.44 76.74 73.63 74.10 60.40 53.35 88.35 87.05 85.51

SCAFFOLD+FT [20] 82.03 76.51 72.92 75.09 59.92 51.54 90.33 87.68 85.22
Fed-MTL [38] 83.19 75.81 69.57 65.28 54.84 48.72 84.65 82.59 82.86
LG-Fed [26] 84.24 77.1 71.23 67.17 54.31 50.63 87.07 84.51 81.19
L2GD [14] 83.76 76.26 69.8 67.15 55.30 50.12 85.50 83.88 82.84
APFL [8] 82.09 78.80 74.29 72.81 61.77 54.04 90.58 86.83 85.67
Ditto [23] 84.74 80.34 76.25 75.23 65.40 56.14 91.21 89.91 88.81

FedRep [7] 84.12 80.39 76.28 78.30 63.52 58.94 92.71 90.73 89.56
Ours 86.95 82.98 78.03 79.58 67.10 62.46 94.03 91.77 90.47
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Figure 2. (a) Ablation study of our method with three tasks, (b) Comparison of attention map drawn by our method and its variants.

one of the following components: a) the effect of channel
excitation module (Ours-v1), 2) cross-model attention (Ours-
v2) and 3) position information of Eq. (7) (Ours-v3). The
results in Figure 2(a) show their difference under three sce-
narios. On one hand, by removing two important modules,
Ours-v1 and Ours-v2 suffer from significant performance
degradation, which inversely testifies the effectiveness of
them on personalization. On the other hand, the position
information also provides a little positive effect on perfor-
mance improvement by intensifying valuable channel repre-
sentation. In addition, we also explicitly analyze how does
the cross-model attention help the model to promote its dis-
criminative ability and robustness. We also visualize the
heat map of Ours-v2 in Figure 2(b). From these visualiza-
tions, we achieve the conclusion that cross-model attention
exchange explores the channel-wise similarity to find novel
discriminative knowledge and instructs low-level convolu-
tional operation to achieve them. For example, for the “elk”
in the 2-nd column, Ours-v2 merely focuses neck of “elk”
and provides a little discriminative information for the final

Table 3. Ablation Study with various XAI methods on Our PSE.

Datasets FEMNIST FashionMNIST

(#M, #C) (200,3) (200,4) (100,3) (100,4)

ScoreCAM 88.63 87.42 89.77 88.67
GradCAM++ 87.96 87.35 89.52 88.86

GradCAM 88.81 87.86 89.58 88.12

decision. Differently, our integrated method can pursue more
useful knowledge as head and antlers to object classification.

In addition, the rapid development of explainable artifi-
cal intelligence (XAI) results in more advanced visualiza-
tion methods over Grad-CAM such as Grad-CAM++ [2]
and Score-CAM [42]. Hence, we also attempt to replace
Grad-CAM with others to calculate the difference of chan-
nel knowledge across global and local models and report
results in Table 3. Experiments are conducted on FEMNIST
(Gray,Color) and FashionMNIST (Gray,Color) with label
and data shift. From it, using the recent score-cam assists
our proposed framework in achieving higher classification
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Figure 3. (a) Fairness analysis by calculating the performance per client and overall standard deviation attached behind the method, (b)
Convergence analysis over different communication rounds.
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Figure 4. Confusion matrix of local training manner and our method
in one client from Cifar-100 (50, 15).

accuracy in several cases, while Grad-CAM++ fails to bring
significant benefits. Although these novel XAI methods
may visualize more details around our interested object in
images, these small incremental contents difficultly reflect
more differences across global and local model than what
Grad-CAM does. Therefore, the gradient change derived
from Grad-CAM has effectively supported our model to
discover the discriminative semantics from global side and
embed them into local network.

Fairness & Convergence. PFL setting not only cus-
tomizes local models to attain performance improvement
but also expects that all clients are able to benefit from the
model sharing with fair performance improvement, which
is also defined as “Fairness” [23]. Thus, we utilize the well-
learned local model of each client to do evaluation on test
samples from gray FashionMNIST (100, 4) and record them
in Figure 3(a). Compared with FedAvg+FT and FedRep, our
performance divergence across all clients is relatively slight.
Specifically, the standard deviations of all client test accu-
racy for FedAvg+FT, FedRep and ours are 9.02%, 8.49%
and 5.01%. Thus, our proposed method generates better fair-
ness when solving PFL challenge. Moreover, PFL scenario
generally concerns the training convergence. For this point,
we record the training loss in each communication process
on three cases and show them in Figure 3(b). By observing

them, it is simple to know that the training process of our
method is stable and easily achieves convergence which is
consistent with the theorems.

Confusion Matrix. To clearly understand how our
method benefits the various categories in each client, we
randomly select one client from Cifar-100 (50, 15) by com-
paring our model and local training only. It is worth noting
that there are only 15 categories per client. The confusion
matrices for the local test samples are shown in Figure 4,
where we highlight the significant improved categories in
red, and slightly decreased categories in blue. From it, we
find that our method significantly improves the ratio of cor-
rect classification in most categories, which illustrates our
method captures more discriminative semantics when pre-
serving certain valuable global information.

4. Conclusion
In this paper, with the empirical studies on the existing

PFL solutions, we observed that their local personalization
easily conceals certain important patterns captured by global
model, leading to incorrect classification. To solve this, we
proposed a novel algorithm to attain better customization
with two modules, i.e., adaptive personalized channel ex-
citation and personalized semantic enhancement. The first
module discovers valuable knowledge from global model
and precisely adjust the parameters of convolutional filters
in local model to achieve semantics fusion. The second one
develops the cross-model attention exchange mechanism to
learn more discriminative and robust features. Moreover, we
evaluate the performance of algorithm on conventional PFL
setting with label shift and novel scenario with input distribu-
tion shift. The experimental comparisons and analysis verify
the effectiveness of our method on solving PFL issue.
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