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Abstract

Vehicle-to-Vehicle technologies have enabled au-
tonomous vehicles to share information to see through
occlusions, greatly enhancing perception performance.
Nevertheless, existing works all focused on homogeneous
traffic where vehicles are equipped with the same type of
sensors, which significantly hampers the scale of collab-
oration and benefit of cross-modality interactions. In this
paper, we investigate the multi-agent hetero-modal cooper-
ative perception problem where agents may have distinct
sensor modalities. We present HM-ViT, the first unified
multi-agent hetero-modal cooperative perception frame-
work that can collaboratively predict 3D objects for highly
dynamic Vehicle-to-Vehicle (V2V) collaborations with
varying numbers and types of agents. To effectively fuse
features from multi-view images and LiDAR point clouds,
we design a novel heterogeneous 3D graph transformer
to jointly reason inter-agent and intra-agent interactions.
The extensive experiments on the V2V perception dataset
OPV2V demonstrate that the HM-ViT outperforms SOTA
cooperative perception methods for V2V hetero-modal
cooperative perception. Our code will be released at
https://github.com/XHwind/HM-ViT.

1. Introduction

Recent advances in Vehicle-to-Vehicle (V2V) com-
munication technology and intelligent transportation sys-
tems [13, 31, 27, 14, 7, 19, 28, 51, 53, 52] have allowed au-
tonomous vehicles (AVs) to share sensory information, en-
abling them to perceive their surroundings better [3, 32, 54].
With the rapid growth of autonomous driving, V2V percep-
tion systems have the potential to be deployed at scale and
create a safer transportation system. Cooperative perception
systems, as shown in recent studies [49, 48, 40], can intelli-
gently aggregate features from multiple vehicles within the
communication range to enhance visual reasoning and over-
all performance.
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Figure 1: Illustration of multi-agent hetero-modal V2V sys-
tems where each agent may be equipped with either LiDAR
or multi-view cameras.

Despite the rapid growth in this field, previous stud-
ies [49, 40, 46, 22, 37, 47] have primarily focused on ho-
mogeneous multi-agent cooperative perception, where all
agents are equipped with the same type of sensors. In re-
ality, however, agents may have different sensor modalities
(hetero-modality) due to the cost and sensor preferences of
ADS developers and car makers. As shown in Fig. 1, some
agents are equipped with only LiDARs (LiDAR agents),
while others only have multiple cameras (camera agents).
Enabling collaboration between these heterogeneous agents
could improve the sensing capability by allowing agents to
see through occlusions and increase the scale and reliabil-
ity of V2V systems. Additionally, LiDAR agents can pro-
vide accurate geometric information, while camera agents
can provide rich semantic context. Thus, the collaboration
between these agents could leverage the distinct but com-
plementary environment attributes captured by each sensor
modality to enhance the V2V perception systems. Further-
more, compared with the single-agent solution where mul-
tiple LiDARs and cameras are installed in a single vehi-
cle, distributing different types of sensors across distinct
agents could also potentially decrease the costs for each
agent while still achieving satisfying performance. Never-
theless, whether, when, and how multi-agent hetero-modal
V2V cooperation can benefit the perception system of het-
erogeneous traffic has not yet been studied.
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Figure 2: Comparison of the single-agent multi-modal sys-
tem and multi-agent hetero-modal system. The graph struc-
ture of the former is fixed whereas for the latter the graph is
both dynamic and heterogeneous.

In this work, we address the multi-agent hetero-modal
cooperative perception problem where each agent could
have distinct sensor types and share/receive information
with each other. Notably, as shown in Fig. 2, this multi-
agent hetero-modal setting is distinct from the single-agent
multi-modal setting. In the hetero-modal setting, the agent
sensors form a dynamic heterogeneous graph where the ex-
istence and types of sensors are random, and the relative
poses vary from scene to scene. In contrast, the sensor
types/numbers and relative positions (extrinsics) between
sensors are fixed in the single-agent multi-modal setting.
Existing multi-modal methods heavily rely on these as-
sumptions, and most of existing works [38, 39, 2, 55, 50]
transform LiDAR points or 3D proposals onto the image
plane to index 2D features. Their network architectures
build upon the co-existence of both LiDAR and camera in-
puts with fixed geometric relationships. However, the dy-
namic nature of hetero-modal V2V perception requires a
flexible architecture that can handle varying agent numbers
and types, and the transmitted neural features are also spa-
tially misaligned. Moreover, there are semantic discrep-
ancies in the transmitted features between camera agents
and LiDAR agents. Hence, these unique characteristics
pose significant challenges for designing the multi-agent
hetero-modal cooperative system and prevent adapting ex-
isting multi-modal fusion methods to this new problem.

To enable collaboration between heterogeneous agents
in V2V systems, we propose Hetero-Modal Vision
Transformer (HM-ViT), the first unified cooperative per-
ception framework that can leverage and fuse distributed
information for hetero-modal V2V perception via a spatial-
aware 3D heterogeneous vision transformer. Fig. 3 demon-
strates the overall framework. Each agent first generates
bird’s eye view (BEV) representations through modality-
specific encoders and then shares compressed features with
neighboring agents. Afterward, the received features are
decompressed and aggregated via the proposed HM-ViT,

which conducts joint local and global heterogeneous 3D
attentions with the consideration of both node and edge
types. Our extensive experiments show that the HM-ViT
can significantly improve the perception capability of cam-
era agents and LiDAR agents over the single-agent base-
line and outperforms SOTA cooperative perception methods
by a large margin. In particular, for camera agents, perfor-
mance can be boosted from 2.1% to 53.2% at AP@0.7 with
the collaboration of LiDAR agents, a 23-fold improvement.
Our primary contributions can be summarized as follows:

• We present the novel transformer framework (HM-
ViT) for multi-agent hetero-modal cooperative percep-
tion, capable of capturing the modality-specific char-
acteristics and heterogeneous 3D interactions. The
proposed model exhibits superior flexibility and ro-
bustness with state-of-the-art performance on highly
dynamic heterogeneous traffic involving varying agent
numbers and types.

• We propose a generic heterogeneous 3D graph atten-
tion (H3GAT), tailored for extracting inter-agent and
intra-agent heterogeneous interactions. We instantiate
two such attentions – local attention (H3GAT-L) and
global attention (H3GAT-G) for capturing both local
and global visual cues.

• We conduct extensive benchmark experiments by
varying sensor modalities, demonstrating the strong
performance of the proposed method for hetero-modal
V2V perception tasks. We will release all the codes
and baselines to facilitate future research.

2. Related work
V2V perception. V2V perception aims to enhance the
perception performance of autonomous vehicles by lever-
aging shared information from other connected vehicles.
Existing works have primarily focused on LiDAR-based
3D object perception. The pioneer cooperative perception
methods transmit raw sensing observation (i.e., early fu-
sion) or perception outputs (i.e., late fusion), whereas re-
cent works [49, 40, 16, 43, 21, 48] are exploring the use of
circulating intermediate neural features for achieving better
performance-bandwidth trade-off. V2VNet [40] employs
graph neural networks to aggregate the shared neural fea-
tures for joint detection and prediction. AttFuse [49] uses
single-head attention to model the per-location multi-agent
interaction. Disconet [22] presents a matrix-valued edge
weight for learning the interactions and a teacher-student
learning framework to facilitate the training. V2X-ViT
explores [48] vision transformer for vehicle-to-everything
cooperation via window attention and heterogeneous self-
attention. CoBEVT [46] presents a generic transformer
framework for camera-based BEV semantic segmentation.
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Figure 3: Overview of proposed hetero-modal V2V cooperative perception system. Each agent first produces BEV features
through modality-specific feature extractors (Sec. 3.1). The BEV features are then compressed and shared (Sec. 3.3) with
neighboring connected agents and the received features are decompressed in the ego agent side and fed into hetero-modal
vision transformer to conduct graph-structured feature fusion (Sec. 3.2 and Sec. 3.3). The refined features are finally passed
into the hetero-modal detection head to predict 3D bounding boxes (Sec. 3.4).

However, none of the existing works explored multi-agent
multi-camera 3D object detection, let alone multi-agent
hetero-modal perception. In contrast to existing methods,
HM-ViT is the first to employ sparse heterogeneous local
and global attentions to capture the 3D inter-agent and intra-
agent interactions in a computationally efficient manner.
Camera-based 3D object detection. Early works [4, 8, 33]
mainly focus on monocular 3D detection but a single cam-
era can only provide a 2D view of the scene, and infer-
ring 3D from 2D is intrinsically hard. Recent develop-
ment of self-driving datasets [5, 34, 6] featured with full
sensor suits has enabled the research direction of 3D ob-
ject detection from multiple cameras. DETR3D [41] pro-
poses a 3D-2D query paradigm for extracting 3D features
from 2D multi-view images. Graph-DETR3D [10] further
utilizes graph structure learning to enhance the representa-
tion at the border regions. Alternatively, another stream of
works [17, 29, 44, 23] focuses on aggregating BEV features
from multi-view cameras for conducting downstream per-
ception tasks. LSS [29] lifts the 2D features to 3D frustum
via latent depth and then splats frustums into a BEV grid.
M2BEV [44] further extends LSS with less memory con-
sumption and conducts detection and segmentation. BEV-
Former [23] constructs BEV queries and explores spatial
cross-attention and temporal self-attention to recurrently re-
fine the BEV features, achieving SOTA performance on
both NuScenes [5] and Waymo Open Datasets [34].
Multi-modal fusion. Existing multi-sensor fusion methods
can be divided into point-level fusion, proposal-level fusion,
and BEV-level fusion. Point-level fusion decorates the input
from one modality with attributes from the other modality.
PointPainting [38] and PaintAugmenting [39] decorate the
LiDAR point clouds with semantic segmentation scores and
2D CNN image features respectively while [11, 1] project

LiDAR onto the image plane to augment the RGB values
with depth information and conduct detection. On the other
hand, proposal-level fusion generates proposals from one
modality and then indexes features from the other modality
for further refinement. MV3D [9] produces object queries
from LiDAR BEV and then extracts the features from cam-
era data and LiDAR front view. [30, 42] lift 2D bounding
boxes to frustum and conduct 3D object detection from the
frustum of point clouds. Conversely, BEV-level fusion con-
verts features from different modalities to unified BEV rep-
resentations, preserving both geometric and semantic infor-
mation. BEVFusions [26, 24] concatenate BEV features
from camera and LiDAR and fuse it via a fusion module.
Hence, existing single-agent multi-modal fusion methods
rely on the co-existence of both camera and LiDAR with
fixed geometric relationships, which is unsuitable for our
multi-agent hetero-modal cooperative perception problem
with a dynamic heterogeneous collaboration graph.

3. Methodology

In this paper, we explore the multi-agent hetero-modal
cooperative perception, where each AV is equipped with
either a LiDAR or multiple cameras. Our goal is to cre-
ate a robust and flexible cooperative perception system that
allows for efficient collaboration between any number of
agents with varying sensor types, ultimately improving the
perception capabilities of the vehicle in a unified end-to-end
fashion. The pipeline, illustrated in 3, includes modality-
specific feature extraction, compression and sharing, HM-
ViT for feature fusion, and hetero-modal detection head.
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Figure 4: HM-ViT architecture. (a) Graph-structured fusion process. (b) Heterogeneous 3D graph attention (H3GAT). (c)
Illustration of sampled tokens for H3GAT-L and H3GAT-G.

3.1. Modality-specific feature extraction

LiDAR stem: We leverage PointPillar [20] to process point
clouds for each LiDAR agent. The raw point cloud is con-
verted to a 2D pseudo-image, flattened along the height di-
mension, and fed into 2D convolutional neural networks to
produce the salient feature map Fj ∈ RH×W×C , which is
compressed and shared with all the neighboring agents.
Camera stem: Each camera agent is equipped with m
monocular cameras. The sensing observation of i-th agent
includes the input images Iik ∈ Rh×w×3 and the known
projection matrix P i

k ∈ R3×4 that maps 3D reference points
to different image views. Our goal is to generate a BEV
feature representation Fi ∈ RH×W×C that is amenable for
feature fusion with other collaborators. In this work, we
adopt similar architecture to BEVFormer [23] with no tem-
poral information for feature extraction. For a faster running
time, we adopt ResNet50 to extract 2D image features and
then adopt a learnable 2D BEV query to inquire spatial in-
formation from the encoded multi-view features via spatial
cross attention and projection matrices. The resulting re-
fined BEV feature Fi is centered around agent i and shared
with connected AVs.

3.2. Heterogeneous 3D Graph Attention (H3GAT)

To account for the distinct characteristics of BEV fea-
tures extracted from different sensor modalities, the learn-
ing process of each modality must be distinguished, and the
cross-modality interactions between multiple agents should
vary. To capture this heterogeneity, we present a novel het-
erogeneous 3D graph attention (H3GAT), in which nodes
and edges are type-dependent to reason spatial interactions
and cross-agent relations jointly. We encode both local and
global interactions to better capture the 3D ambiguity in
BEV feature space. Local attention can help preserve object
details, while global attention can provide a better under-
standing of environmental contexts such as road topology

and traffic density.
As shown in Fig. 4b, We build a 3D heterogeneous col-

laboration graph. Each node v (i, x) = Fi
x ∈ RC is a

feature vector of agent i’s feature map at spatial location
x ∈ R2. 3D heterogeneous graph attention is performed
for spatially connected nodes in the BEV feature space. De-
pending on the definition of spatial connectivity, we will de-
rive local attention and global attention. Here for notation
simplicity, we only derive single-head equations but in real
implementations, multi-head variants are used. Formally,
we first project feature vectors onto different feature spaces
to form query, key, and value vectors:

Qj
x = DenseτjF

j
x (1)

Kj
x = DenseτjF

j
x (2)

Vj
x = DenseeijF

j
x (3)

where the Dense is a set of linear layers indexed by sub-
script . For the query and key vectors, we use linear pro-
jectors Denseτj indexed by node type τj to extract modality-
specific features. For the value vector, we index the pro-
jector via edge type Denseeij to reflect the heterogeneity
of cross-modality multi-agent interactions. The set of con-
nected nodes of v (i, x) is denoted as N (i, x). Then the
attention is operated as follows:

a (j, y) = Softmax
(j,y)∈N (i,x)

(
Qi

xWeijK
j
y

)
(4)

Fi
x =

∑
(j,y)∈N (i,x)

a (j, y)Vj
y (5)

where Weij ∈ RC×C is used to adjust the dot product of
Qi

x and Kj
y to further encode the heterogeneity of edges.

Depending on how the nodes are sampled (Fig. 4c), we
design two types of attentions: local attention (H3GAT-L)
which performs local window-based attention and global
attention (H3GAT-G) which performs sparse global grid-
based attention. Fig. 4c visualizes how the local and global
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Figure 5: Transformer blocks for local and global atten-
tions.

tokens are sampled, where the local tokens are sampled
within local windows and the global tokens are sparsely
sampled grids scattered across feature maps. The local in-
teractions can help preserve spatial cues and provide reli-
able estimates while the global reasoning can help under-
stand global semantic context.

Both H3GAT-L and H3GAT-G can be implemented ef-
ficiently by decomposing the spatial axes. More specifi-
cally, we stack all the agents’ features to F ∈ RN×H×W×C

where N is the number of agents. For H3GAT-L, we de-
compose the feature map into 3D non-overlapping windows
along the first axis [35, 36], each of size N × P × P . The
partitioned tensor has the shape (HP ×W

P , N×P 2, C) where
the heterogeneous 3D local graph attention is conducted
for NP 2 tokens within the same window. Similarly, for
H3GAT-G , we swap the axis and partition the tensor into
the shape (N × P 2, H

P × W
P , C). Due to the swap opera-

tion, the sampled grids will be sparsely scattered and the at-
tention is operated for these sparsely sampled H

P × W
P grids,

which can capture sparse global information.
To integrate this local and global attention into trans-

former architecture, we further present a heterogeneous nor-
malization layer (HM-LN) and heterogeneous MLP (HM-
MLP) which use type-dependent parameters. As shown
in Fig. 5, we first pass all the features into the HM-LN
where different statistics are calculated and used as per each
agent’s modality type. Afterward, we feed the normalized
features into a heterogeneous 3D graph attention (H3GAT-
L/H3GAT-G) to jointly reason heterogeneous inter-agent
and intra-agent interactions. Then, we pass the fused fea-
tures to another HM-LN followed by a Hetero-modal MLP
layer where different sets of parameters are used for cam-
era and LiDAR features. By carefully designing these com-

Algorithm 1 Multi-agent hetero-modal fusion process
1: Input: decompressed feature Fi, pose xi for each agent
2: F

(0)
i = Fi

3: for l = 1... . . . L do
4: for each agent i do ▷ Process in parallel
5: F

(l−1)
j→i = Γj→i

(
F

(l−1)
j

)
▷ Spatially transform

neighboring agents’ features
6: F

(l)
i = H3GAT-L Block({F(l−1)

j→i }) ▷ Update
node via local attention

7: end for
8: for each agent i do ▷ Process in parallel
9: F

(l)
j→i = Γj→i

(
F

(l)
j

)
▷ Spatially transform

neighboring agents’ features
10: F

(l)
i = H3GAT-G Block({F(l)

j→i}) ▷ Update
node via global attention

11: end for
12: end for
13: Fi = HM-MLP

(
F

(L)
i

)
▷ Output updated features

ponents, we can maintain modality-specific characteristics
throughout the fusion process while benefiting from cross-
modality multi-agent interactions.

3.3. Hetero-modal Vision Transformer

Compression and sharing: To reduce the transmission
bandwidth, a series of 1 × 1 convolutions is applied to re-
duce the transmitted feature size along the channel dimen-
sion. Together with the intermediate features, each agent’s
pose xi is also circulated within the collaboration graph.
The ego agent will receive these features and decompress
them back to the original size via another convolutional net-
work. For processing intermediate features of the camera
agent and LiDAR agent, we leverage distinct parameters
in the compression and decompression modules to preserve
the modality-specific characteristics.
Graph-structured feature fusion: The received BEV fea-
tures are centered around different spatial locations as each
agent perceives the dynamic environment from different
view points. To this end, we present a graph-structured fu-
sion process (Fig. 4a): each node maintains a state repre-
sentation of an agent in its own coordinate frame, and for
a fixed number of iterations, spatially warped messages are
shared between nodes and the node states are updated based
on the aggregated features via the transformer blocks.

The overall process is summarized in Alg. 1. Dur-
ing each iteration, we have two cascaded node updates
which capture the local and global heterogeneous interac-
tions respectively. For each node, we first spatially trans-
form [18] neighboring nodes’ features to its center Fj→i =
Γj→i (Fj). When the transmitting node is the receiving
node itself, the transformation matrix is an identity matrix
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V2V-C V2V-L V2V-H
Models AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7

No Fusion 0.094 0.021 0.524 0.363 0.284 0.157
Late Fusion 0.231 0.070 0.770 0.606 0.502 0.308
V2VNet [40] 0.329 0.125 0.820 0.645 0.650 0.366
DiscoNet [22] 0.287 0.115 0.741 0.590 0.624 0.385
AttFuse [49] 0.261 0.095 0.801 0.644 0.647 0.390
CoBEVT [46] 0.317 0.122 0.828 0.637 0.674 0.416
V2X-ViT [48] 0.332 0.125 0.833 0.679 0.671 0.427
HM-ViT 0.355 0.142 0.853 0.763 0.695 0.515

Table 1: Evaluation of V2V perception methods on OPV2V dataset.

and thus Fi→i = Fi. These spatial aligned feature maps
Fj→i are then shared with agent i to update its state repre-
sentation via the aggregation module. We adopt H3GAT-L
Block as our first aggregation module to capture the local
heterogeneous interactions and leverage H3GAT-G Block
for the second module to further refine the states with global
cues. Within each transformer block, we also adopt a mask
to mask out non-overlapping areas between the field of
views when computing the attention scores. Note that each
agent’s state update can be processed in parallel for better
efficiency. After L such iterations, we pass the features to
a hetero-modal MLP to further refine the feature represen-
tation. Throughout the whole fusion process, the modality-
specific statistics are maintained.

3.4. Hetero-modal Head

As camera and LiDAR contain distinct characteristics,
we design a hetero-modal head where a different set of pa-
rameters are applied for camera and LiDAR ego vehicles
to generate the final predictions. More specifically, the fi-
nal fused feature maps are passed to a series of 3 × 3 con-
volutions with batch normalization and ReLU for feature
refinement. Then, we adopt a 1×1 convolution layer to gen-
erate the regression and classification predictions. Smooth
ℓ1 loss is utilized for regression and a focal loss [25] is used
for classification.

4. Experiments
4.1. Datasets and Evaluation

OPV2V. OP2V [49] is a large-scale multi-modal coopera-
tive V2V perception dataset collected in CARLA [12] and
OpenCDA [45]. It contains over 70 driving scenarios of
around 25 seconds duration each. Each scenario contains
multiple connected AVs (2 to 7) and each AV is equipped
with 1 LiDAR and 4 monocular cameras covering 360◦ hor-
izontal field of view (FoV). In our hetero-modal cooperative
perception setting, we only use one type of sensor modality
for each AV, leading to two types of agents: vehicles only

equipped with multiple cameras (camera agent), and vehi-
cles only equipped with LiDARs (LiDAR agent).
Evaluations. We adopt Average precision (AP) at
Intersection-over-Union (IoU) 0.5 and 0.7 to measure the
perception performance. As each scenario consists of mul-
tiple AVs, a fixed agent is selected as the ego agent and
the evaluation is conducted in the range of 100 m × 100
m around it. Following [49, 48], the train/validation/test
splits are 6764/1981/2719. We evaluate models mainly un-
der three configurations: 1) V2V Camera-based 3D detec-
tion (V2V-C) where AVs are only equipped with 4 cameras
with 360 horizontal FoV, 2) V2V LiDAR-based detection
(V2V-L) where all the agents only have LiDAR sensors,
and 3) V2V Hetero-modal detection (V2V-H) where half
of the agents only has cameras while the other half only has
LiDARs. To further assess models’ capability with dynamic
sensor configurations, we also assess models with fixed ego
sensor modality and varying collaborator sensor types.

4.2. Experimental Setups

Implementation details. We use the PointPillar [20] as 3D
backbones and a modified BEVFormer [23] for our cam-
era stem. For BEVFormer, we adopt its variant with no
temporal information and ResNet50 [15] as image back-
bones for better computation efficiency and use a smaller
grid resolution (0.4 m) to preserve fine-trained spatial de-
tails. The intermediate BEV feature map has a dimension
of 128×128×256. Following prior works [22, 49, 48, 46],
we only change the fusion module for different intermediate
fusion methods while keeping the other components such
as hetero-modal header, compression, and lidar/camera fea-
ture extractors the same. For the heterogeneous methods,
we provide the network with additional feature types so
that they can distinguish whether the feature is from Li-
DAR or camera while for the homogeneous methods, the
fusion networks would treat the features from LiDAR and
camera equally. For HM-ViT, we conduct two iterations of
graph-structured feature fusion and employ a window size
of 8 for both local and global attentions. We adopt AdamW
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Figure 6: Agent modality ratio experiment. The x-axis is the ratio of LiDAR collaborators among all the collaborators. In (a)
and (b), ego vehicles are equipped with cameras. In (c) and (d), ego vehicles are equipped with LiDARs.
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with a decay rate of 10−2 and cosine annealing learning rate
scheduler to optimize the models.
Training strategy. We find that the intermediate fusion
models won’t converge if directly trained end-to-end un-
der V2V-H and the resulting models usually only exhibit
good performance for either camera perception or LiDAR
perception but hardly for both. Instead, we first train the
model on single modality configurations (i.e., V2V-C and
V2V-L) until convergence for 40 epochs and then fine-tune
the models under V2V-H for 10 epochs with fixed parame-
ters of modality-specific backbones on 4 RTX3090 GPUs.
This training strategy can help models converge well with
reliable performance. For a fair comparison, we leverage
this training strategy for all the methods.

Compared methods. We regard No Fusion as the baseline
method. We also evaluate the Late Fusion, which transmits
the detection proposals and leverages Non-maximum sup-
pression to generate the final predictions. For the interme-
diate cooperation methods, we benchmark five approaches:
V2VNet [40], DiscoNet [22], AttFuse [49], CoBEVT [46],
and V2X-ViT [48]. For a fair comparison, hetero-modal
head is used for all the models.

4.3. Quantitative evaluation

Main performance comparison. Tab. 1 demonstrates the
performance comparisons on V2V-C, V2V-L and V2V-H.
Under all three settings, all the cooperative methods out-
perform the No Fusion baseline and the intermediate fusion
beats the classical Late Fusion, showing the great benefit of
end-to-end V2V hetero-modal cooperative perception. The
HM-ViT outperforms all the other SOTA intermediate fu-
sion methods by at least 1.7%, 8.4%, 8.8% in AP@0.7 un-
der V2V-C, V2V-L, V2V-H settings respectively.

Agent modality ratio experiment. As shown in Fig. 6,
we fix the ego vehicle sensor modality and vary the ratio
of collaborators’ sensor modalities to evaluate the models’
performance under various heterogeneous traffic scenarios.
The larger LiDAR collaborator ratio corresponds to more
vehicles only equipped with LiDARs while a smaller ratio
means more vehicles only equipped with multiple cameras.
The left two figures are the evaluation results for camera
ego vehicles while the right two figures are the performance
for LiDAR ego vehicles. Under most ratios, late fusion out-
performs No Fusion however for LiDAR ego vehicle when
most collaborators are camera agents, the Late Fusion per-
forms poorer than No Fusion. We argue this is due to the
fact that the camera predictions are usually noisy and merg-
ing proposals from different modalities equally could lead
to ambiguity and thus deteriorate the performance. On the
other hand, all the intermediate fusion methods outperform
No Fusion by a large margin especially for the camera ego
vehicles, demonstrating the great value of V2V coopera-
tion between agents with different modalities. Among all
the compared methods, HM-ViT ranks first for both camera
ego vehicles and LiDAR ego vehicles under all the ratios,
illustrating the great capability of HM-ViT for capturing
modality-specific characteristics and cross-modality multi-
agent interactions. In contrast, other intermediate fusion
methods only show good performance for a certain ratio
range, which demonstrates the importance of heterogeneity
for hetero-modal cooperative perception.
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(a) No Fusion (camera) (b) Pure camera fusion (c) Camera ego with LiDAR collaborators

(d) No Fusion (LiDAR) (e) Pure LiDAR fusion (f) LiDAR ego with camera collaborators

Figure 8: Qualitative visualizations for (a) No Fusion with camera ego vehicle, (b) pure camera-based V2V perception, (c)
hetero-modal V2V perception with camera ego vehicle and LiDAR collaborators, (d) No Fusion with LiDAR ego vehicle, (e)
pure LiDAR-based V2V perception, and (f) hetero-modal V2V perception with LiDAR ego vehicle and camera collaborators.
The red and green boxes represent the detection outputs and ground truth respectively. More visualizations can be found in
the supplementary materials.

HM-MLP&LN H3GAT-L H3GAT-G AP@0.7

0.404
✓ 0.420
✓ ✓ 0.460
✓ ✓ ✓ 0.515

Table 2: Component Ablation study on the V2V-H setting

Number of agent. In this experiment, we investigate the ef-
fect of the number of agents on the perception performance
of HM-ViT. As Fig. 7 depicts, for both camera and LiDAR
ego vehicles, the perception performance increases as more
agents are involved in the cooperative perception and both
LiDAR and camera collaborators can contribute to the per-
formance gain for ego vehicles with different modalities,
which again shows the benefit of hetero-modal V2V coop-
eration. Additionally, the increase rate generally decreases
when increasing the number of agents and the LiDAR col-
laborators can bring more AP gains over the camera collab-
orators for both camera and LiDAR ego vehicles. Notably,
similar as Fig. 6a-b display, the camera ego vehicles’ perfor-
mance can be greatly improved with only a small number of
LiDAR collaborators, demonstrating the great potential of
reducing the cost for each vehicle when the V2V system is
deployed at scale as we may only need to install expansive
LiDARs for a small number of agents (e.g., infrastructure)
while all the other agents only require relatively cheap cam-
era sensors.

Compression Rate AP@0.7

0x 0.515
8x 0.513

16x 0.470
32x 0.455

Table 3: Compression rate effects for HM-ViT on V2V-H.

Component ablation study. Here we investigate the key
components of the proposed HM-ViT. As the layer normal-
ization and MLP are usually combined together in typical
transformer designs, thus we jointly evaluate the combined
effect of HM-MLP and HM-LN (HM-MLP&LN). As Tab. 2
shows, all the proposed components improve the perfor-
mance and local and global attentions can largely improve
the AP@0.7 by 4% and 5.5%, proving the great benefit
brought by jointly reasoning inter-agent and intra-agent het-
erogeneous interactions both locally and globally.
Compression rate. Tab. 3 describes the influence of com-
pression rate. It demonstrates that HM-ViT can still outper-
form other methods even under large compression rates.

4.4. Qualitative results

Fig. 8 depicts the qualitative visualizations for HM-ViT
and No Fusion baselines. In fig. 8a-c, we plot the detection
results for camera ego vehicles with no collaborator, camera
collaborators, and LiDAR collaborators respectively while
for Fig. 8d-f, we plot the results for LiDAR ego vehicles. As
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shown in these figures, the collaborations with both homo-
geneous and heterogeneous agents are beneficial for camera
ego vehicles and LiDAR ego vehicles with enhanced detec-
tion results. In particular, the collaboration between camera
ego vehicles and LiDAR collaborators can dramatically en-
hance the perception performance.

5. Conclusion
In this paper, we present HM-ViT, a hetero-modal vi-

sion transformer, for the hetero-modal multi-agent cooper-
ative perception problem which is an important but under-
explored research direction. We propose a generic hetero-
geneous 3D graph attention to jointly reason heterogeneous
inter-agent and cross-agent interactions. Our extensive ex-
periments demonstrate the outstanding performance of the
proposed method and the great potential of hetero-modal
multi-agent collaborations for increasing the scalability and
robustness of V2V systems. We hope our findings and
open-source efforts will inspire more research on this new
problem.
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