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Figure 1: Man-made environments are often characterized by repetitive scene objects, e.g. tables, chairs, and trees. AssetField represents

these environments with a set of informative ground feature planes aligning with the physical ground, from which neural representations of

scene objects are extracted and grouped into categories. The proposed mechanism allows users to manipulate and compose assets directly

on the ground feature plane and produces high-quality rendering on novel scene configurations.

Abstract

Both indoor and outdoor environments are inherently
structured and repetitive. Traditional modeling pipelines
keep an asset library storing unique object templates, which
is both versatile and memory efficient in practice. Inspired
by this observation, we propose AssetField, a novel neu-
ral scene representation that learns a set of object-aware
ground feature planes to represent the scene, where an asset
library storing template feature patches can be constructed
in an unsupervised manner. Unlike existing methods which
require object masks to query spatial points for object edit-
ing, our ground feature plane representation offers a natu-
ral visualization of the scene in the bird-eye view, allowing
a variety of operations (e.g. translation, duplication, defor-
mation) on objects to configure a new scene. With the tem-
plate feature patches, group editing is enabled for scenes
with many recurring items to avoid repetitive work on ob-

ject individuals. We show that AssetField not only achieves
competitive performance for novel-view synthesis but also
generates realistic renderings for new scene configurations.

1. Introduction
The demand for bringing our living environment into a

virtual realm continuous to increase these days, with exam-

ple cases ranging from indoor scenes such as rooms and

restaurants, to outdoor ones like streets and neighborhoods.

Apart from the realistic 3D rendering, real-world applica-

tions also require flexible and user-friendly editing of the

scene. Use cases can be commonly found in interior de-

sign, urban planning etc. To save human labor and expense,

users need to frequently visualize different scene configu-

rations before finalizing a plan and bringing it to reality,

like shown in Fig.1. For their interests, a virtual environ-

ment offering versatile editing choices and high rendering
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quality is always preferable. In these scenarios, objects are

primarily located on a horizontal plane like ground, and can

be inserted to/deleted from the scene. Translation along the

plane and rotation around the vertical axis are also common

operations. Furthermore, group editing becomes essential

when scenes are populated with recurring items (e.g. sub-

stitute all chairs with stools and remove all sofas in a bar).

While recent advances in neural rendering [27, 3, 44, 28]

offer promising solutions to producing realistic visuals,

they struggle to meet the aforementioned editing demands.

Specifically, traditional neural radiance field (NeRF)-based

methods such as [47, 26, 3] encode an entire scene into a

single neural network, making it difficult to manipulate and

composite due to its implicit nature and limited network

capacity. Some follow-up works [41, 16] tackle object-

aware scene rendering in a bottom-up fashion by learn-

ing one model per object and then performing joint ren-

dering. Another branch of methods learn object radiance

fields using instance masks [42], object motions [46], and

image features [39, 21] as clues but are scene-specific, lim-

iting their applicable scenarios. Recently, some approaches

have attempted to combine voxel grids with neural radiance

fields [23, 44, 28] to explicitly model the scene. Previous

work [23] showed local shape editing and scene composi-

tion abilities of the hybrid representation. However, since

the learned scene representation is not object-aware, users

must specify which voxels are affected to achieve certain

editing requirements, which is cumbersome, especially for

group editing. Traditional graphical workflows build upon

an asset library that stores template objects, whose copies

are deployed onto a ‘canvas’ by designers, then rendered

by some professional software (e.g. interior designers ar-

range furniture according to floorplans). This practice sig-

nificantly saves memory for large scene development and

offers users versatile editing choices, which inspires us to

resemble this characteristic in neural rendering.

To this end, we present AssetField, a novel neural rep-

resentation that bears the editing flexibility of traditional

graphical workflows. Our method factorizes a 3D neural

field into a ground feature plane and a vertical feature axis.

As illustrated in Fig. 1, the learned ground feature plane is

a 2D feature plane that is visually aligned with the bird-eye

view (BEV) of the scene, allowing intuitive manipulation of

individual objects. It is also able to embed multiple scenes

into scene-specific ground feature planes with a shared ver-

tical feature axis, rendered using a shared MLP. The learned

ground feature planes encode scene density, color and se-

mantics, providing rich clues for object detection and cate-

gorization. We show that assets mining and categorization,

and scene layout estimation can be directly performed on

the ground feature planes. By maintaining a cross-scene

asset library that stores template objects’ ground feature

patches, our method enables versatile editing at object-level,

category-level, and scene-level.
In summary, AssetField 1) learns a set of explicit ground

feature planes that are intuitive and user-friendly for scene

manipulation; 2) offers a novel way to discover assets and

scene layout on the informative ground feature planes, from

which one can construct an asset library storing feature

patches of object templates from multiple scenes; 3) im-

proves group editing efficiency and enables versatile scene

composition and reconfiguration and 4) provides realistic

renderings on new scene configurations.

2. Related Works
Neural Implicit Representations and Semantic Fields.
Since the introduction of neural radiance fields [27], many

advanced scene representations have been proposed[24, 44,

28, 11, 24, 10, 28], demonstrating superior performance in

terms of quality and speed for neural renderings. However,

most of these methods are semantic and content agnostic,

and many assume sparsity to design a more compact struc-

ture for rendering acceleration [24, 11, 28]. We notice that

the compositional nature of a scene and the occurrence of

repetitive objects within can be further utilized, where we

can extract a reusable asset library for more scalable usages,

similar to those adopted in the classical modeling pipeline.

A line of recent neural rendering works has explored the

jointly learning a semantic fields along with the original ra-

diance field. Earlier works use available semantic labels

[50] or existing 2D detectors for supervision [22]. The real-

ized semantic field can enable category or object-level con-

trol. More recently, [39, 21] explore the potential of distill-

ing self-supervised 2D image feature extractors [8, 2, 14]

into NeRF, and showcasing their usages of support local

editing. In this work, we target an orthogonal editing goal

where the accurate control of high-level scene configuration

and easy editing on object instances is desired.

Object Manipulation and Scene Composition. Tradi-

tional modeling and rendering pipelines [5, 7, 33, 34, 35,

17] are vastly adopted for scene editing and novel view syn-

thesis in early approaches. For example, Karsch et al. [17]

propose to realistically insert synthetic objects into legacy

images by creating a physical model of the scene from user

annotations of geometry and lighting conditions, then com-

pose and render the edited scene. Cossairt et al. [12] con-

sider synthetic and real objects compositions from the per-

spective of light field, where objects are captured by a spe-

cific hardware system. [49, 19, 18] consider the problem of

manipulating existing 3D scenes by matching the objects to

cuboid proxies/pre-captured 3D models.

These days, several works propose to tackle object-

decomposite rendering under the context of newly emerged

neural implicit representations [27]. Ost et al. [31] target

dynamic scenes and learn a scene graph representation that

encodes object transformation and radiance at each node,
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which further allows rendering novel views and re-arranged

scenes. Kundu et al. [22] resort to existing 3D object detec-

tors for foreground object extraction. Sharma et al. [36]

disentangles static and movable scene contents, leverag-

ing object motion as a cue. Guo et al. [16] propose to

learn object-centric neural scattering functions to implicitly

model per-object light transportation, enabling scene ren-

dering with moving objects and lights. Neural Rendering

in a Room [41] targets indoor scenes by learning a radi-

ance field for each pre-captured object and putting objects

into a panoramic image for optimization. While these meth-

ods need to infer object from motion, or require one model

per object, ObjectNeRF [43] learns a decompositional neu-

ral radiance field, utilizing semantic masks to separate ob-

jects from the background to allow editable scene render-

ing. uORF [45] performs unsupervised discovery of object

radiance fields without the need for semantic masks, but re-

quires cross-scene training and is only tested on simple syn-

thetic objects without textures.

3. AssetField
In this work, we primarily consider a branch of real-

world application scenarios that require fast and high-

quality rendering of scenes whose configuration is subject

to change, such as interior design, urban planning and traf-

fic simulation. In these cases, objects are mainly placed on

some dominant horizontal plane, and is commonly manip-

ulated with insertion, deletion, translation on the horizontal

plane, and rotation around the vetical axis, etc.

We first introduce our ground feature plane representa-

tion in Sec. 3.1 to model each neural field. Sec. 3.2 de-

scribes the process of assets mining with the inferred the

ground feature plane. We further leverage the color and

semantic feature planes to categorize objects in an unsu-

pervised manner, which is illustrated in Sec. 3.3. Finally,

Sec. 3.4 demonstrates the construction of a cross-scene as-

set library that enables versatile scene editing.

3.1. Ground Feature Plane Representation

Ground plane has been commonly used for indoor and

outdoor scene modeling [36, 13, 32]. We adopt a similar

representation to parameterize a 3D neural field with a 2D

ground feature plane M of shape L×W×N , and a globally

encoded vertical feature axis H of shape H × N , where

N is the feature dimension. A query point at coordinate

(x, y, z) is projected onto M(plane) and H(axis) to retrieve

its feature values m and h via bilinear/linear interpolation:

m = Interp(M, (x, y)), h = Interp(H, z), (1)

which are then combined and decoded into the 3D scene

feature via a MLP decoder. Concretely, a 3D radiance

field is parameterized by a set of ground feature planes

Figure 2: TensoRF with full 3D factorization produces noisy

feature planes; our ground plane representation yields informa-

tive features that clearly illustrated scene contents and layout after

discretization, especially in the density field. Red boxes: two spa-

tially close objects can be clearly separated on the density plane

but not the RGB plane. Blue boxes: objects with similar geometry

but different appearance can be distinguished on the RGB plane

but not the density plane.

M=(Mσ,Mc), and vertical feature axes H=(Hσ,Hc), for

the density and color fields respectively. The retrieved fea-

ture values m=(mσ,mc) and h=(hσ, hc) are then combined

and decoded into point density σ and view-dependent color

c values by two decoders Decσ , Decrgb. Points along a ray

r are volumetrically integrated following [27]:

Ĉ(r) =
N∑

i=1

Ti (1− exp (−σiδi)) ci, (2)

where Ti = exp(−∑i−1
j=1 σjδj), and supervised by the 2D

image reconstruction loss with
∑

r(‖Ĉ(r)−C(r)‖22), where

C(r) is the ground truth pixel color.

Such neural representations are beneficial to our scenar-

ios. Firstly, the ground feature planes are naturally aligned

with the BEV of the scene, mirroring the human approach

to high-level editing and graphic design, where artists and

designers mainly sketch on 2D canvas to reflect a 3D scene.

Secondly, the globally encoded vertical feature axis encour-

ages the ground feature plane to encode more scene infor-

mation, which aligns better with scene contents. Thirdly,

this compact representation is more robust when trained

with sparse view images, where the full 3D feature grids

are easy to overfit under insufficient supervision, producing

noisy values, as depicted in Fig. 2.

3.2. Assets Mining on Ground Feature Plane

For the ease of demonstration, let us first consider a sim-

plified case where objects are scattered on an invisible hor-

izontal plane, as in Fig. 3 (a). We start from modeling

the radiance field, where a set of ground features planes

M=(Mσ,Mc) describing scene density and color are in-

ferred following the formulation in Sec. 3.1. It can be ob-

served that Mσ tends to exhibit sharper object boundaries
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Figure 3: Overview of AssetField. (a) We demonstrate on a scene without background for clearer visuals. (b) The proposed ground

feature plane representation factorizes a neural field into a horizontal feature plane and a vertical feature axis. (c) We further integrate

color and semantic field into a 2D neural plane, which is decoded into 3D-aware features with the geometry guidance from scene density.

The inferred RGB-DINO plane is rich in object appearance and semantic clues whilst being less sensitive to vertical displacement between

objects, on which we can (d) detect assets and grouping them into categories. (e) For each category, we select a template object and store

its density and color ground feature patches into the asset library. A cross-scene asset library can be construct by letting different scenes fit

there own ground feature planes whilst sharing the same vertical feature axes and decoders/renderers.

Figure 4: (a) Nested structure can be separated by (c) identify the

enclosed chair then set its value to background feature for table

patch. (b) Items placed on top of a surface can be detected by (d)

another round of filtering that treats table surface as background.

compared to the color feature plane, as shown in the red

boxes in Fig. 2. This could be attributed to the mechanism

of neural rendering (Eq. 2), where the model firstly learns a

clean and accurate density field to guide the learning of the

color field. We therefore prefer to use Mσ for assets min-

ing. In the example scene, the feature plane is segmented

into two clusters with K-means [25] to obtain a binary mask

of the objects. Contour detection [37, 6] is then applied to

locate each object, resulting in a set of bounding box. Note

that the number of clusters can be customized according to

the objects users want to highlight. In more complex sce-

narios where objects are arranged in a hierarchical struc-

ture, (e.g. computer - table - floor), the clustering step can

be repeated to gradually unpack the scene, as illustrated in

Fig. 4. With the bounding boxes, a collection of object neu-

ral representations P={(pσ, pc)} can be obtained, which are

the enclosed feature patches on Mσ and Mrgb. To address

complex real-world scenes, we take inspiration from previ-

ous works [21, 39] that models a DINO [9] field to guide

the learning a semantic-aware radiance field. Similarly, we

can learn a separate DINO ground feature plane Mdino to

provide more explicit indications of object presence. As

AssetField models a set of separate fields, object discovery

can be conducted on any field that offers the most distinctive

features in a scene dependent manner.

3.3. Unsupervised Asset Grouping

Despite being versatile, users can only interact with in-

dividual instances in P from the learned ground planes,

whereas group editing is also a desirable feature in real-

world applications, especially when objects of the same cat-

egory need to be altered together. While the definition of
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object category can be narrow or broad, here we assume

that objects with close appearance and semantics are ana-

logues and use RGB and semantic feature plane for assets

grouping. A case where the density features fail to distin-

guish two visually different objects is highlight in Fig. 2.

Occupancy-Guided RGB-DINO field. As our goal is

to “self-discover” assets from neural scene representation,

there is no extra prior on object category to regularize scene

features. 3D voxel-based methods such as those described

in [24, 44], may learn different sets of features to express

the same objects, as grid features are independently opti-

mized. Such issue can be alleviated by our proposed neural

representation, where the ground feature plane M is con-

strained by the globally shared vertical feature axis H. Con-

cretely, given two identical objects i, j placed on a horizon-

tal flat surface, the same feature chunk on H will be queried

during training, which constraints their corresponding fea-

ture patches pi and pj to be as similar as possible so that

they can be decoded into the same set of 3D features. How-

ever, such constraint no longer holds when there is a vertical

displacement among identical objects (e.g. one the ground

and one on the table), where different feature chunks on H
are queried, leading to divergent pi and pj .

To learn a more object-centric ground feature plane rich

in color and semantics clues, we propose to integrate the

color and semantic fields by letting them share the same set

of ground feature planes, denoted by Mrgb-dino. Instead of

appending a vertical feature axis, here we use scene den-

sity features to guide the decoding of Mrgb-dino into 3D-

aware features, as illustrated in Fig. 3(c). It can be inter-

preted as Mσ and Hσ fully capture the scene geometry,

while Mrgb-dino captures the ‘floorplan’ of scene semantics

layouts and appearances. For a query point at (x, y, z), its

retrieved density feature mσ and hσ are mapped to a color

feature vrgb and a semantic feature vdino via two MLPs,

which are then decoded into scene color c and semantic

fdino along with the RGB-DINO plane feature mrgb-dino =
Interp(Mrgb-dino, (x, y)) via Decrgb and Decdino.

Assets Grouping and Template Matching. On the in-

ferred RGB-DINO ground feature plane, we then categorize

the discovered objects by comparing their RGB-DINO fea-

ture patches enclosed in bounding boxes. However, due to

the absence of object pose information, pixel-wise compar-

ison is not ideal. Instead, we compare the distributions of

color and semantic features among patches. To do this, we

first discretize Mrgb-dino with clustering (e.g. K-means),

which results in a set of labeled object feature patches K.

The similarity between two object patches ki, kj ∈ K are

measured by the Jensen-Shannon Divergence over the dis-

tribution of labels, denoted by JSD(ki||kj). Agglomerative

clustering [29] is then performed using JS-divergence as the

distance metric. The number of clusters can be set by in-

specting training views, and can be flexibly adjusted to fit

users’ desired categorization granularity.

With scene assets grouped into categories, a template ob-

ject can be selected from each cluster either randomly or in

a user-defined manner. We can further extract scene layout

in BEV by computing the relative pose between the tem-

plate object and its copies, i.e. to optimize a rotation an-

gle θ that minimizes the pixel-wise loss between the RGB-

DINO feature patches of the template and each copy with

θ∗ = argminθ
∑N

i ||p̂i − Rθ(p)i||22 for p ∈ Prgb-dino,

where p̂ is the template RGB-DINO feature patch, Rθ ro-

tates the input feature patch by θ.

3.4. Cross-scene Asset Library

Following the proposed framework, a scene can be

represented with (1) a set of template feature patches

P={(pσ, prgb)}, (2) a layout describing object position and

pose in the BEV, (3) the shared vertical feature axes H =
(Hσ,Hrgb), and (4) MLP decoders Decσ , Decrgb, which

enables versatile scene editing at object-, category-, and

scene-level. The newly configured scenes can be directly

rendered without retraining. An optional template refine-

ment step is also allowed. Examples are given in Sec. 4.

Previous work [24] demonstrates that voxel-based neural

representations support multi-scene modeling by learning

different voxel embeddings for each scene whilst sharing

the same MLP renderer. However, it does not support cross-

scene analogue discovery due to the aforementioned lack of

constraints issue, whereas in reality, objects are not exclu-

sive to a scene. Our proposed neural representation has such

potential to discover cross-scene analogues by also sharing

the vertical feature axes H among different scenes. Specif-

ically, (1) if the user decides to construct a cross-scene asst

library from the beginning, AssetField can be trained jointly

on the target scenes by letting them share the same H. (2)

if the user later wants to expand the current asset library,

the new scene can be modeled by optimizing its own set

of ground feature planes whilst fixing H from the exist-

ing scene(s). Consequently, we can construct a cross-scene

asset library storing template feature patches, and continu-

ously expand it to accommodate new ones.

4. Experiment
In this section, we first describe our experiment setup,

then evaluate AssetField on novel view synthesis both

quantitatively and qualitatively, demonstrating its advan-

tages in asset mining, categorization, and editing flexibil-

ity. More training details and ablating results of hyper-

parameters (e.g. the number of clusters, the pairing of plane

feature, and axis feature) are provided in supplementary.

4.1. Experimental Setup

Dataset. A synthetic dataset is created for evaluation. We

compose 10 scenes resembling common man-made envi-
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Scene1 Scene2 Scene3 Scene4
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NeRF 32.977 0.969 0.067 35.743 0.967 0.051 32.521 0.959 0.058 34.212 0.964 0.072

TensoRF 35.751 0.990 0.057 38.184 0.995 0.027 36.933 0.994 0.034 37.795 0.993 0.059

S-AssetField 36.471 0.992 0.049 36.856 0.993 0.037 36.753 0.994 0.038 37.445 0.990 0.065

I-AssetField 36.526 0.992 0.047 37.271 0.994 0.035 37.249 0.995 0.032 37.716 0.991 0.060

Table 1: Quantitative comparison on test views for the 4 scenes

in Fig. 7. We report PSNR(↑), SSIM(↑) [40] and LPIPS(↓) [48]

for evalution. The best and second best results are highlighted.

ronments such as conference room, living room, dining hall

and office. Each scene contains objects from 3∼12 cate-

gories with a fixed light source. For each scene, we ren-

der 50 views with viewpoints sampled on a half-sphere,

among which 40 are used for training and the rest for test-

ing. We demonstrate flexible scene manipulation with As-

setField on both the synthetic and real-world data, including

scenes from Mip-NeRF 360 [4], DONeRF [30], and Ob-

jectNeRF [42]. We also show manipulation results on city

scenes collected from Google Earth Studio [1].

Implementation. We use NeRF [27] and TensoRF [11]

as baselines to evaluate the rendering quality of the orig-

inal scenes. For a fair comparison, all methods are im-

plemented to model an additional DINO field. Specifi-

cally, (1) NeRF is extended with an extra head to pre-

dict view-independent DINO feature [2] in parallel with

density. (2) For TensoRF, we additionally construct the

DINO field which is factorized along 3 directions the same

as its radiance field. (3) S(tandard)-AssetField sepa-

rately models the density, RGB, and DINO fields. (4)

I(ntegrated)-AssetField models the density field the same

as S-AssetField, and an integrated RGB-DINO ground fea-

ture plane. Both S-AssetField and I-AssetField adopt outer-

product to combine ground plane features and vertical axis

features, following [11]. The resolution of feature planes

in TensoRF baseline and AssetField are set to 300×300.

Detailed model adaptation can be found in the supplemen-

tary. We train NeRF for 200k iterations, and 50k iterations

for TensoRF and AssetField using Adam [20] optimization

with a learning rate set to 5e−4 for NeRF and 0.02 for Ten-

soRF and AssetField.

4.2. Results

Novel View Rendering. We compare S-AssetField and I-

AssetField with the adapted NeRF [27] and TensoRF [11] as

described above. Quantitative results are provided in Tab. 1.

It is noticeable that AssetField’s ground feature plane repre-

sentation (i.e. xy-z) achieves comparable performance with

TensoRF’s 3-mode factorization (i.e. xy-z, xz-y,yz-x), in-

dicating the suitability of adopting ground plane represen-

tations for such scenes. Our method also inherits the merit

of efficient training and rendering from grid-based meth-

ods. Compared to NeRF, our model converges 40x faster at

training and renders 30x faster at inference.

Our ground feature plane representation is also effective

NeRF-Synthetic 360-v2
Chair Ficus Garden Room

TensoRF 34.80 33.37 24.27 30.91

S-AssetField 34.77 33.27 23.97 30.73

I-AssetField 34.82 33.34 24.13 31.20

Table 2: Quantitative comparison (PSNR) on test views of exam-

ple scenes from NeRF-Synthetic [27] and 360-v2 [4].

Figure 5: The RGB-DINO ground feature plane from I-

AssetField yields consistent features for analogues with vertical

displacement, whereas S-AssetField infers different set of features

due to the lack of constraints.

Figure 6: Multi-scene learning on the Toydesk dataset [42]. As

real-world scenes usually exhibit noisier color and density fea-

tures, we apply the object mask obtained from the density plane

before categorization. The common object between scenes (yel-

low) can be correctly clustered with I-AssetField’s occupancy-

guided RGB-DINO plane features (green) whilst the indepen-

dently modeled neural planes by S-AssetField fails (red).

on most NeRF datasets. Below we show test view PSNR

on NeRF-Synthetic [27] and 360-v2 [4] scenes. The idea

of having a vertical feature axis shared by different ground

locations is to encourage the ground feature plane to en-

code more scene information. Compared to the full 3D

representation, despite it may slightly decrease performance

on scenes with large variations along the vertical direction,

the derived ground feature plane can support assets mining

much better.

Object Detection and Categorization. In Fig. 2 we al-

ready showed an example of the ground feature planes

learned by AssetField compared to the xy-planes learned by

TensoRF. While TensoRF produces noisy and less informa-

tive feature planes that is unfriendly for object discovery in

the first place, AssetField is able to identify and categorize

most of the scene contents, as shown in Fig. 7 (b). Further-

more, I-AssetField is more robust to vertical displacement,

as shown in Fig. 5.
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Figure 7: Results of assets mining and scene editing with I-AssetField on synthetic scenes. (a) Our approach learns informative density

and RGB-DINO ground feature planes that support object detection and categorization. (b) With joint training, an asset library can be

constructed by storing ground feature plane patches of the radiance field (we show label patches here for easy visualization). (c) The

proposed ground plane representation provides an explicit visualization of the scene configuration, which can be directly manipulated by

users. The altered ground feature planes are then fed to the global MLP renderer along with the shared vertical feature axes to render the

novel scenes. Operations such as object removal, translation, rotation and rescaling are demonstrated on the right.

Recall that I-AssetField is able to identify object ana-

logues across different scenes, to demonstrate such ability,

we jointly model the two toy desk scenes from [42] by let-

ting them share the same vertical feature axes and MLPs

as described in Sec. 3.4. The inferred feature planes are

showed in Fig. 6. Since the coordinate systems of these

two scenes are not aligned with the physical world, we per-

form PCA [15] on camera poses such that the xy-plane is

expanded along the ground/table-top. However, we cannot

guarantee their table surfaces are at the same height, mean-

ing that vertical displacement among objects is inevitable.

I-AssetField is able to infer similar RGB-DINO feature val-

ues for the common cube plush (yellow circle), whilst the

independently learned RGB/DINO planes in S-AssetField

are affected by the height difference.

Scene Editing. Techniques on 2D image manipulation can

be directly applied to ground feature planes. Fig. 7 shows

that AssetField supports a variety of operations, such as ob-

ject removal, insertion, translation and rescaling. Scene-

level reconfiguration is also intuitive by composing ob-

jects’ density and color ground feature patches. In par-

Figure 8: Density warping from the blue bottle to the region of the

brown one. S-AssetField loses the structure of the brown bottle in

terms of part semantics, while I-AssetField gives plausible editing

result with appropriate structure transfer.

ticular, I-AssetField associates the RGB-DINO field with

space occupancy, producing more plausible warping results.

Fig. 8 demonstrates a case of topology deformation, where

the blue bottle’s density field is warped to the region of

the brown bottle, while keeping their RGB(-DINO) fea-

ture unchanged. Results show that I-AssetField success-

fully preserves object structure and part semantics, whereas
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Figure 9: Object removal on toydesk [42]. Objects are first iden-

tified on each ground feature plane then substituted by the table

feature patches. We simply ‘crop’ a feature patch from the table

region and ‘paste’ it on to the object regions. Note that our method

can also remove the shadow along with the object, whereas Object-

NeRF [42] cannot and leaves a black hole on the table-top (red).

Figure 10: Expanding the 2D ground plane back to 3D feature

grids, explicit control on full 3D space is allowed. We remove the

ceiling light by setting the density grids as zero at the target region.

Figure 11: Example editings on real-world scenes [4] and indoor

scenarios [30]. We use RGB-DINO plane for assets discovery.

S-AssetField fails to render the cork correctly.

Fig. 9 demonstrates an example where objects on the ta-

ble are removed, which is realized by substituting the orig-

inal object feature patches with the table feature patches.

Note that our method can also remove the shadow along

Figure 12: Editing two city scenes collected from Google

Earth ©2023 Google. AssetField is versatile where users can di-

rectly operate on the ground feature plane, supporting both within-

scene and cross-scene editing with realistic rendering results.

Figure 13: We apply batch-wise color changing for all instances

of the chair, by replacing the template RGB feature map solely.

with the object, whereas ObjectNeRF [42] cannot eliminate

the shadow and leaves a black hole on the table-top. Nev-

ertheless, for cases where objects on top is larger (e.g. a

chair being pushed in) or of the same size as the bottom

object (e.g. a stack of boxes), it is necessary to lift the 2D

ground plane to a full 3D voxel grid to distinguish. Despite

the convenience of ground feature plane representation, it

does not directly support manipulating overlapping/stacked

objects. However, one can expand the ground feature plane

back to 3D feature grids with its pairing vertical feature

axis, and control the scene in the conventional way as de-

scribed in [24]. An example is given in Fig. 10.

Fig. 11 shows AssetField’s editing capability on real-

world datasets [4, 42, 30]. Additionally, on a self-collected

city scene from Google Earth, we find a construction site

and complete it with different nearby buildings (within-

scene editing), even borrow Colosseum from Rome (cross-

scene editing). Results are shown in Fig 12.

Group Editing and Scene Reconfiguration. Recall that

a template object can be selected for each asset category

to substitute all its instances in the scene (on the ground

feature planes). Consequently, we are allowed to perform

group editing like changing the color of a specific category

as depicted in Fig. 13. Scene-level reconfiguration is also

intuitive, where users can freely compose objects from the

asset library on a neural ‘canvas’ to obtain a set of new

ground feature planes, as demonstrated in Fig. 14. The en-

vironments or containers (e.g. the floor or an empty house)

can also be considered as a special asset category, where
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Figure 14: We expand the asset library from the living room with

the newly included assets mics from [27]. The template of mics

is in the shared latent space with the living room and can thus

naturally composed together for rendering.

Figure 15: Feature plane refinement. The object template, when

trained among all instances within the scene, produces more accu-

rate feature map compared to the isolated ones.

Figure 16: We insert the plastic bowl from toydesk1 to toy-

desk2 [42]. Vertical translation of the bowl is realized by jointly

modeling the aligned/lifted/sunken-toydesk1 with toydesk2 and

compose the new scene with feature patches inferred at different

scene elevation.

small objects (e.g. furniture) can be placed into the con-

tainer to deliver immersive experience. The final scene can

be composited with summed density value and weighted

color, as has been discussed in [38].

Template Refinement. Grid-based neural fields are sen-

sitive to training views with insufficient point supervision,

leading to noisy and inaccurate feature values. Appearance

differences caused by lighting variation, occlusion, etc., in-

terferes the obtaining of a clean template feature patch. An

example can be found in Fig. 15. Due to imbalanced train-

ing view distribution, the chair in the corner receives less

supervision, resulting in inconsistent object feature patch

within a category. Such issue can be alleviated with a

following-up template refinement step. With the inferred

scene layout and the selected object templates (Sec. 3.3).

We propose to replace all instances p ∈ P with their repre-

sentative category template p̂ and optimize this set of feature

patches to reconstruct the scene instead of the full ground

planes. Consequently, the template feature patch integrates

supervisions from all instances in the scene to overcome ap-

pearance variations and sparse views.

Failure Cases. As our proposed ground feature plane

representation targets scenes widespread along a horizon-

tal plane, the flexibility of moving objects vertically is re-

stricted because of the shared vertical feature axes. In

Fig. 16 we show an example of (cross-scene) insertion of

an object to different heights. In this experiment, we jointly

model 4 scenes, namely toydesk2, aligned-toydesk1, lifted-

toydesk1 and sunken-toydesk1. Specifically, the camera

poses of lifted/sunken-toydesk1 is shifted up/down to repre-

sent toydesk1 at different elevation. The new scene is then

composed using the bowl’s feature patches inferred at each

height variation. However, since the feature patch of the

bowl is entangled with the table, such strategy results in ar-

tifacts where part of the table is also lifted, as shown in the

middle of Fig. 16. Alternatively, one may choose to expand

the ground plane into 3D and directly exchange the feature

voxels along the vertical direction as in Fig. 10; or incorpo-

rate a new elevation map that is used to be subtracted by the

z values when indexing the corresponding z embedding.

5. Discussion and Conclusion
We present AssetField, a novel framework that mines as-

sets from neural fields. We adopt a ground feature plane

representation to model scene density, color and semantic

fields, on which assets mining and grouping can be directly

conducted. The novel occupancy-guided RGB-DINO fea-

ture plane enables cross-scene asset grouping and the con-

struction of an expandable neural asset library, enabling a

variety of intuitive scene editing at object-, category- and

scene-level. Extensive experiments are conducted to show

the easy control over multiple scenes and the realistic ren-

dering results given novel scene configurations. However,

AssetField still suffer from limitations like: separating con-

nected objects in the scene; handling stacked/overlapped

objects; and performing vertical translations. Rendering

quality might also be compromised due to complex scene

background in real-world. More limitations are discussed in

the supplementary. We believe the proposed representation

can be further explored for the manipulation and construc-

tion of large-scale scenes, e.g., by following floorplans or

via a programmable scheme like procedural modeling.
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