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“A smiling cat, a crown, a balloon, and a red bow” “A gira�e wearing sunglasses and a tie looks very proud”

a bear wearing sunglasses and a tie looks very proud

“As the aurora lights up the sky, a herd of reindeer leisurely wanders on the grassy meadow, admiring the breathtaking view, a serene lake 
quietly re�ects the magni�cent display, and in the distance, a snow-capped mountain stands majestically, fantasy, 8k, highly detailed”

-- written by ChatGPT

“A bear wearing sunglasses and a tie looks very proud”

Figure 1: In a training-free manner, BoxDiff consumes the simplest form of user-provided conditions, such as box or scribble,
to control the location and scale of contents in the image synthesized by the pre-trained text-to-image diffusion model.

Abstract

Recent text-to-image diffusion models have demon-
strated an astonishing capacity to generate high-quality im-
ages. However, researchers mainly studied the way of syn-
thesizing images with only text prompts. While some works
have explored using other modalities as conditions, consid-
erable paired data, e.g., box/mask-image pairs, and fine-
tuning time are required for nurturing models. As such
paired data is time-consuming and labor-intensive to ac-
quire and restricted to a closed set, this potentially becomes
the bottleneck for applications in an open world. This paper
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focuses on the simplest form of user-provided conditions,
e.g., box or scribble. To mitigate the aforementioned prob-
lem, we propose a training-free method to control objects
and contexts in the synthesized images adhering to the given
spatial conditions. Specifically, three spatial constraints,
i.e., Inner-Box, Outer-Box, and Corner Constraints, are de-
signed and seamlessly integrated into the denoising step of
diffusion models, requiring no additional training and mas-
sive annotated layout data. Extensive experimental results
demonstrate that the proposed constraints can control what
and where to present in the images while retaining the abil-
ity of Diffusion models to synthesize with high fidelity and
diverse concept coverage.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Due to the large-scale publicly available image-text

paired data from websites, recent text conditional auto-
regressive and diffusion models, such as DALL-E 1 &
2 [26, 25], Imagen [30], and Stable Diffusion [27], have
demonstrated as one of the panaceas in generating images
with high fidelity and diverse concept coverage. The ex-
cellent capacity of image synthesis increases the potential
of these models for practical applications, e.g., art creation.
However, most existing models can only be conditioned on
class labels or text prompts. A few studies tried to use
other modalities as conditions, e.g., spatial conditions, to
further control the object or context synthesis. More fine-
grained control on the location or scale of synthesized ob-
jects or contexts would widen the applications of text con-
ditional generative models for the realistic scenario. For ex-
ample, users can interactively design objects or contexts for
human-in-the-loop art creation with additional spatial con-
ditioning input. As a more user-friendly solution, this in-
teractive cooperation with artificial intelligence (AI) would
stimulate more potential for content creation.

Layout-to-image literature [19, 32, 33, 36, 40, 12, 2, 1]
has studied on the way to synthesize images adhering to the
spatial conditioning input. However, the setting of these
studies is restricted to the limited closed-set categories,
which is infeasible to novel categories in open-world situ-
ations. Moreover, the previous studies followed the fully-
supervised learning pipeline; hence, considerable paired
box/skeleton/mask-image data is required for high-quality
training. Since pixel-level annotation is time-consuming
and labor-intensive to acquire, label efficiency gradually be-
comes the bottleneck of fully-supervised layout-to-image
methods. Beyond text prompts as conditions, Stable Dif-
fusion [27] and ControlNet [38] have also studied other
modalities as conditioning input and provided qualitative
results. In contrast to closed-set layout-to-image synthesis
methods, Stable Diffusion, and ControlNet nurtured from
large-scale image-text pairs have a strong perception of di-
verse visual concepts, e.g., different kinds of objects and
contexts. Nevertheless, they also follow the general pipeline
of layout-to-image literature in a fully-supervised manner,
in which massive paired image-layout data is indispensable
for high-quality training. Besides, the training period is
time-consuming for train-from-scratch or fine-tuning.

In this paper, we focus on the most efficient setting for
conditional image synthesis. Specifically, the simplest spa-
tial conditions (or termed constraints), e.g., box or scrib-
ble, from users are adopted to seamlessly control object
and context synthesis during the denoising step of Stable
Diffusion models, requiring no additional model train-
ing on the substantial paired layout-image data. As
shown in [15], conditioning mechanisms incorporated in
Stable Diffusion provide explicit cross-attentions between

“A panda is eating bamboo”

at timestep 1 at timestep 50

panda bamboo panda bamboo

panda panda snowboardsnowboard
“A panda is doing tricks on the snowboard”

Figure 2: Cross-attentions between target text tokens, e.g.,
panda, bamboo, snowboard, and intermediate features of
the denoiser, i.e., a UNet, in the Stable Diffusion model.

the given text prompt and intermediate features of the de-
noiser. Specific spatial attention maps for objects or con-
texts in the text prompt can be accordingly extracted. As
the cross-attentions shown in Fig. 2, the spatial location
of high-response attention, i.e., panda and snowboard, is
perceptually equivalent to that of objects or contexts in
the synthesized images. Hence, a simple idea to con-
trol the spatial location and scale of objects/contexts to
be synthesized is adding guidance or constraints on the
extracted cross-attentions. To achieve this goal, we pro-
pose a training-free approach, namely Box-Constrained
Diffusion (BoxDiff), by adding three spatial constraints,
i.e., Inner-Box, Outer-Box, and Corner Constraints, on the
cross-attentions extracted at each denoising timestep. This
plays a role in pointing out directions to update the noised
latent vector, which consequently leads synthesized objects
or contexts to gradually follow the given spatial conditions.
Furthermore, since strong constraints applied to the cross-
attentions will affect the denoising step of diffusion models,
impairing the fidelity of the resulting synthesized images,
we also explore a manner of representative sampling to mit-
igate the problem. Samples synthesized by the proposed
BoxDiff can be found in Fig. 1.

The main contributions of this paper are summarized as:

• We propose a training-free approach, termed Box-
Constrained Diffusion (BoxDiff), for text-to-image
synthesis following the given spatial conditions, re-
quiring no additional model training and massive
paired layout-image data.

• The proposed spatial constraints can be seamlessly in-
corporated into the denoising step, which retains the
strong perception of diverse visual concepts of Stable
Diffusion. Hence, our method can synthesize various
novel objects and contexts beyond the closed world.

• Extensive experiments demonstrate that the proposed
training-free BoxDiff can synthesize photorealistic im-
ages following the given spatial conditions.

2. Related Work
Diffusion Models: Recently, diffusion models have ush-

ered in a new era of image generation. It consists of a
forward process, i.e., adding noise, and a reverse process,
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i.e., removing noise. The denoising diffusion probabilis-
tic model (DDPM) [31, 16] learns to invert a parameterized
Markovian image noising process. Given isotropic Gaus-
sian noise samples, they can transform them into signals,
e.g., images, by iteratively removing the noise. Beyond pure
noise to image fashion, class-conditional and image-guided
synthesis have also been explored [8, 9, 22]. In contrast to
denoising in the pixel space, Rombach et al. [27] proposed
to operate on the compressed latent space by employing an
autoencoder. This significantly lowers the training costs and
speeds up the inference time while retaining the ability to
generate high-quality images.

Text-to-Image Models: Recently, large-scale image-
text pairs available on the Internet dramatically enabled
generative models, e.g., DALL-E [26], Imagen [30], and
Stable Diffusion [27], to synthesize images in higher quality
and richer diversity. [10] and recently introduced [6] oper-
ated on the cross-attention for better content consistency to
subjects in text prompts. However, they are chiefly condi-
tioned on the text prompts or class labels. As compensation,
a few works [12, 1, 2] have been proposed to handle addi-
tional spatial layout conditions, but most of them require
additional model training or have only a limited scope of
knowledge. For example, Gafni et al. [12] incorporated se-
mantic maps to control objects & contexts in the generated
images. However, it is restricted to the closed-set world
(only 158 categories). Concurrently, Balaji et al. [2] il-
lustrated that a modification of the attention map can lead
to corresponding changes in the synthesized objects. Mo-
tivated by the above, we are interested in controlling ob-
ject synthesis by the simplest form of conditions, e.g., box
or scribble, from users, potentially motivating simpler and
more efficient interactive cooperation of image synthesis.

Layout-to-Images Models: Traditional layout-to-image
literature [19, 32, 33, 36, 40, 12] has been focused on how
to synthesize images adhering to the given bounding boxes
of object categories. Generally, they follow the pipeline,
i.e., training and validation, to obtain layout-to-image mod-
els, and promising results have been obtained. However,
they are trapped in a dilemma of time-consuming and labor-
intensive annotation like box/mask-image paired data. In
addition, they are greatly restricted to a fixed number of
categories, failing to synthesize novel categories in the open
world. The image quality of such models is also lower than
that of the recently introduced large-scale image-text-pairs-
driven generative models. Recently, fine-tuning Stable Dif-
fusion models to adhere to additional layout information has
also been explored in [18] and [37]. Compared to the above
methods, we propose a training-free approach by adding the
simplest constraints, e.g., box or scribble, from users to the
denoising step of Stable Diffusion models. It requires no
additional training and paired layout-image data. Besides,
the proposed approach has the ability to synthesize a wide

range of visual concepts rather than the limited closed set.
Note that, there are many concurrent works [23, 7, 3, 21]
that studied a similar area. For example, both Chen et al. [7]
and Phung et al. [23] operated constraints on the cross-
attention to control the synthetic contents. More recently,
VisorGPT [35], LMD [20], LayoutGPT [11], and Control-
GPT [39] have been proposed to plan visual layouts for im-
age synthesis models. Along with image personalization
models such as DreamBooth [29], Textual Inversion [13],
Mix-of-Show [14], and Perfusion [34], our BoxDiff has be-
come increasingly feasible to create a more complex scene
with personalized contents from Diffusion Models.

3. Preliminaries: Stable Diffusion
Different from [16, 9], the Stable Diffusion model effi-

ciently operates on the latent space. Specifically, an autoen-
coder consisting of an encoder E and decoder D is trained
with a reconstruction objective. Given an image x, the en-
coder E maps it to a latent z, and the decoderD reconstructs
the image from the latent, i.e., x̃ = D(z) = D(E(x)). In
this way, at each timestep t, a noisy latent zt can be ob-
tained. Beyond the routine training scheme, Stable Diffu-
sion devises conditioning mechanisms to control the syn-
thesized image content by an additional input, e.g., a text
prompt y. The text prompt is first pre-processed to text to-
kens τθ(y) by the text encoder of pre-trained CLIP [24].
The DDPM model ϵθ can then be trained via:

LDDPM = Ez∼E(x),y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, τθ(y))||22

]
,

(1)
where UNet [28] enhanced with self-attention and cross-
attention layers is adopted as the denoiser ϵθ. During train-
ing, given a noised latent zt at timestep t and text tokens
τθ(y), denoiser ϵθ is tasked with predicting the noise ϵ
added to the current latent.

In inference, a latent zT is sampled from the standard
normal distributionN (0, 1) and the DDPM is used to itera-
tively remove the noise in zT to produce z0. In the end, the
latent z0 is passed to the decoder D to generate an image x̃.

4. Methodology
In this section, we present the proposed BoxDiff ap-

proach and spatial constraints in detail.

4.1. Cross-Modal Attention

Conditioning mechanisms in the Stable Diffusion model
can explicitly form the cross-attentions between text tokens
and intermediate features of the denoiser ϵθ. In the denois-
ing step, given the conditioning text tokens τθ(y) and in-
termediate features φ(xt), the cross-attention A can be ac-
cordingly acquired:

A = Softmax(QK⊤/
√
d), (2)
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Figure 3: Overview of our BoxDiff. Given the box conditions, we transform them into a set of binary spatial masks. A latent
zT sampled from Normal distributionN (0, 1) is passed to the denoiser, i.e., UNet, to obtain the denoised latent. At timestep
t, zt is first passed to UNet to get the cross-attention maps, on which the proposed constraints, i.e., L = LIB +LOB +LCC ,
are applied. Subsequently, the current latent zt can be updated by the gradient ∇L to get z′t for the denoising step.

Q = WQφ(xt), K = WKτθ(y), (3)

where Q,K are the projection of intermediate features
φ(xt) and text tokens τθ(y) by two learnable matrices
WQ,WK , respectively. At each timestep t, given τθ(y)
with N text tokens {s1, · · · , sN}, the cross-attention At

containing N spatial attention maps {At
1, · · · ,At

N} can be
consequently obtained. Here, following [6], we remove the
cross-attention between the start-of-text token (i.e., [sot])
and intermediate features before applying Softmax(·). Be-
sides, a Gaussian filter is applied to smooth the cross-
attentions along the spatial dimension. Therefore, the
aforementioned operations bring an enhancement on cross-
attentions between actual subject tokens, e.g., object or con-
text, with the intermediate features. Cross-attention can be
performed at different scales, i.e., 64 × 64, 32 × 32, 16 ×
16, and 8×8. Following [15], we operate the proposed con-
straints on the cross-attentions with a resolution of 16× 16
as the inherent sufficient semantic information.

4.2. Box-Constrained Diffusion

Given a text prompt with a set of target tokens S = {si}
and a set of user-provided object or context locations B =
{bi} as spatial conditions, a set of corresponding spatial
cross-attention mapsAt = {At

i} between target tokens and
intermediate features can be accordingly obtained. For ex-
ample, cross-attention over target tokens such as “rabbit”
and “sunglasses” can be yielded (as shown in Fig. 3). Each
location bi contains the user-provided top-left and bottom-
right coordinates {(xi

1, y
i
1), (x

i
2, y

i
2)}.

It can be observed from Fig. 2 that, during the denois-
ing step of the Stable Diffusion model, the location and
scale of high response regions in the cross-attention map

are perceptually equivalent to that of synthesized objects in
the decoded image x̃. This motivates us that constraints can
be added on the cross-attention to control the synthesis of
target objects in the image x̃. As shown in Fig. 3, given
user-provided location, i.e., {bi}, a set of binary spatial
masksM = {Mi} can be transformed from the top-left and
bottom-right coordinates, where each Mi ∈ R16×16. Our
target is to synthesize target objects approaching the mask
regions. To achieve this goal, we propose three spatial con-
straints, i.e., Inner-Box, Outer-Box, and Corner Constraints,
over the target cross-attention maps At to gradually update
the latent zt such that the location and scale of synthesized
objects will be consistent with the mask region. Hence-
forward, the diffusion model with our three constraints is
named as Box-Constrained Diffusion (BoxDiff).

Inner-Box Constraint: To ensure the synthesized ob-
jects will approach the user-provided locations, a simple
solution is to ensure that high responses of cross-attention
are only in the mask regions. To this end, we propose the
inner-box constraint as below:

L1
si = 1− 1

P

∑
topk

(
At

i ·Mi, P
)
, (4)

LIB =
∑
si∈S
L1
si , (5)

where topk(·, P ) means that P elements with the high-
est response would be selected. As observed in the ex-
periments, constraints added on all elements in the cross-
attention map potentially lead to a collapse of image fi-
delity. Besides, constraints on only a few elements with
high responses are sufficient to affect the synthesis of ob-
jects, which can reduce the impact of constraints and pre-
vent the failure of denoising. Hence, only P elements are
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constrained to update the latent zt. Binary mask Mi in
Eq. (4) aims to mask out elements of the cross-attention
maps within the mask regions and LIB plays a role to max-
imize the response of the mask-out elements.

Outer-Box Constraint: However, the involvement of
Inner-Box Constraint can only ensure that the user-provided
regions in x̃ will contain objects. It cannot guarantee that no
object pixels are synthesized out of the user-provided boxes.
To prevent the object from moving out of the target regions,
we propose the outer-box constraint as follows:

L2
si =

1

P

∑
topk

(
At

i · (1−Mi), P
)
, (6)

LOB =
∑
si∈S
L2
si . (7)

In Eq. (6), we get the reversion of mask (1 −Mi) to mask
out elements of the cross-attention map beyond the target
regions. Here, LOB aims to minimize the response of cross-
attentions out of the target regions. Note that two con-
straints LIB and LOB work in a complementary manner.

m
ax

( )
 as

 p
ro

je
ct

io
n

Mi Ai1 Ai5 Ai30

Figure 4: Examples of projection on the x-axis.
Corner Constraint: Since there are only weak spatial

conditions, i.e., box or scribble, from users, exact boundary
pixels of objects or contexts are not available to restrict the
scale. Hence, there will be some tricky solutions, e.g., the
target objects are synthesized on a smaller scale than the
box regions, with only the above two constraints. In this
regard, we propose the corner constraint at the projection of
the x-axis and y-axis, respectively. First, we project each
target mask Mi and cross-attention At

i on the x-axis via the
max operation as below:

mx(k) = maxj=1,··· ,H{Mi(j, k)}, (8)

atx(k) = maxj=1,··· ,H{At
i(j, k)}, (9)

where mx ∈ RW and atx ∈ RW . mx is employed as the
target and we aim to optimize atx close to mx:

L3
si =

1

L

∑
sample

(
{|mx(k)− atx(k)|}Wk=1, L, x

i
1, x

i
2

)
,

(10)
where sample(·, L, xi

1, x
i
2) indicates a uniform sampling of

L error terms from the set {|mx(k) − atx(k)|}Wk=1 around
the given corner coordinates xi

1 and xi
2 at x-axis. It plays

the same role as the topk sampling in Eqs. (4) and (6).
For y-axis projection, same operations are performed:

my(j) = maxk=1,··· ,W {Mi(j, k)}, (11)

aty(j) = maxk=1,··· ,W {At
i(j, k)}, (12)

L4
si =

1

L

∑
sample

(
{|my(j)− aty(j)|}Hj=1, L, y

i
1, y

i
2

)
.

(13)
The corner constraint is the summation of L3

si and L4
si as

below:
LCC =

∑
si∈S
L3
si + L

4
si . (14)

At each timestep, overall constraints is formulated as:

L = LIB + LOB + LCC . (15)

Having computed the loss L, the current latent zt can be
updated with a step size of αt as follow:

z′t ← zt − αt · ∇L, (16)

where αt decays linearly at each timestep. With a combina-
tion of the aforementioned constraints, zt at each timestep
gradually moves toward the direction of generating high-
response attention in the given location and with a similar
scale to the box, which leads to a synthesis of target objects
in the user-provided box regions.

Note: We prioritize enabling users to provide conditions
in the possibly simplest way, i.e., bounding boxes. Beyond
that, BoxDiff can interact with other types of conditions
such as scribble. More details are in the appendix. Addi-
tionally, BoxDiff can be used as a plug-and-play component
in many diffusion models, including GLIGEN [18].

5. Experiments
5.1. Experimental Setup

Datasets: Current layout-to-image methods are mainly
trained on paired layout-image data of COCO-Stuff [5] or
VG [17]. It is unfair to directly make comparisons between
our training-free BoxDiff and the fully-supervised meth-
ods. Hence, we propose to compare performance on a new
dataset. Details can be found in the appendix. Specifically,
we collect a set of images (no intersection with COCO and
VG) and use YOLOv4 [4] to detect objects. For evaluation,
we consider two types of situations: i) a single instance, i.e.,
“a {}”; ii) multiple instances, i.e., “a {}, a {}”. In this way,
189 different text prompts are combined with conditional
boxes for image synthesis.

Evaluation Metrics: To validate the effectiveness of our
BoxDiff, YOLOv4 is employed to detect object-bounding
boxes and predict classification scores on the synthesized
images. YOLO score [19], including AP, AP50 and AP75,
is adopted to evaluate the precision of the conditional syn-
thesis. Additionally, we employ a metric of Text-to-Image
Similarity (T2I-Sim) to explicitly evaluate the correctness
of semantics in the synthesized images. In particular, syn-
thesized images and the text prompts, e.g., “a photo of {}”
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French bulldog“A rabbit wearing sunglasses looks very proud” bear giraffe

“Aurora, reindeer, meadow,  and lake” (the same text prompt as Figure 1) 
 mountain

“Castle, water, sky, fantasy, 8k, highly detailed”

“A colorful parrot and a red hat”

duck

Figure 5: Multiple samples synthesized with fixed spatial conditioning inputs.
Table 1: Ablation studies on various components.

LIB LOB LCC sample(·) topk(·) T2I-Sim (↑) AP (↑)
Stable Diffusion 0.3511 2.8

✓ ✓ ✓ 0.3516 9.8
✓ ✓ ✓ ✓ 0.3518 20.2
✓ ✓ ✓ ✓ ✓ 0.3513 22.3
✓ ✓ ✓ ✓ 0.3489 24.8
✓ ✓ ✓ ✓ 0.3472 7.7

or “a photo of {} and {}”, are passed to the image and text
encoder of pre-trained CLIP [24], respectively, to calculate
their similarity (i.e., T2I-Sim). In CLIP feature space, the
similarity can reflect whether the semantics of objects or
contexts are correctly presented in the images.

5.2. Ablation Studies

Impact of Various Constraints: To validate the impact
ofLIB , LOB , andLCC , we perform ablation studies on dif-
ferent combinations of constraints, and the results are listed
in Table 1. As shown, the model achieves a T2I-Sim of
0.3516 and an AP of 9.8 in terms of YOLO score with only
the inner-box constraint LIB . Such a result reveals that the

synthesized objects are mostly not consistent with the con-
ditional spatial input. As LIB and LOB work complemen-
tary to restrict the cross-attention of objects inside the con-
ditional boxes, a higher YOLO score of 20.2 AP is achieved
on the synthesized images. When corner constraint LCC is
involved to limit the corner elements on the projection of
cross-attention, the scales of synthesized objects are guar-
anteed to be consistent with the given bounding box con-
ditions, which accordingly increases the AP from 20.2 to
22.3. Obviously, the proposed constraints are effective in
controlling the location and scale of synthesized objects.
Visual variations can be found on the left in Fig. 6.

Impact of Representative Sampling: As aforemen-
tioned, adding constraints to all elements in the cross-
attentions may potentially affect image synthesis. The
quantitative evaluation is presented in Table 1. Without
topk(·) in Eq. (4) and Eq. (6), though there is an im-
provement of AP, T2I-Sim of the synthesized images de-
creases. This accordingly represents that the consistency
between semantics synthesized in the images and the given
text prompts is impaired, and the image quality is decreased.
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(a) (b)Figure 6: Left: Ablation studies on various combinations of constraints. Right: Visual comparison with [27] and [10].
Table 2: Comparison among various sampling manners.

All Sampling Random Sampling topk(·) (Ours)

AP (↑) 24.8 21.4 22.3
T2I-Sim (↑) 0.3489 0.3491 0.3513

When sample(·) in Eq. (10) and Eq. (13) is removed, T2I-
Sim of synthesized images significantly degrades. The re-
moval of sample(·) also impairs the consistency of synthe-
sized objects to the conditional input, leading to a lower AP.
Hence, we adopt topk(·) and sample(·) for the better image
quality and consistency with the text prompts.

Impact of sampling in LIB and LOB . In Table. 2. One
can observe that while sampling all pixels in LIB and LOB

can lead to a more precise synthesis adhering to the condi-
tions, the quality of synthetic contents will be correspond-
ingly degraded (lower T2I-Sim than that of topk(·)). Ran-
domly sampling pixels cannot effectively maximize the ac-
tivation of foreground pixels and may activate background
regions in cross-attention, leading to significant degradation
of the AP and T2I-Sim. To balance these trade-offs, we
propose topk(·), which achieves the best synthetic quality
while maintaining a relatively good AP.

5.3. Visualization Results

Fixing Locations and Scales: Fig. 5 presents synthe-
sized samples using BoxDiff and samples at each row have
the same spatial conditioning input. Given a text prompt “a
{} wearing sunglasses”, and the conditioning layout, the lo-
cation and scale of the animals and sunglasses in the images
are consistent with that of the conditional boxes. In addi-
tion, one can observe in other rows, the mountains, aurora,
castle, and hats are also nearly consistent with the locations
and scales of the given conditional boxes.

Visual Comparison: We present visual comparison be-
tween the proposed BoxDiff with the state-of-the-art text-
to-image synthesis models such as Stable Diffusion [27]
and Structure Diffusion [10] in Fig. 6. Beyond text prompts
as conditional input for image synthesis, additional spatial
layout, e.g., box, is used in BoxDiff. One can observe from
the figure that, in Stable Diffusion and Structure Diffusion,
some subjects are occasionally missing in the synthesized
images, e.g., the tie in the second column. Besides, these
methods may yield unexpected subjects like the soldier, in
which the helmet is actually the target object. In contrast,
given spatial conditions, the proposed BoxDiff can correctly
synthesize target objects we want in the images. In addition,
objects are relatively consistent with the conditional boxes.

Varying Locations: Fig. 7 presents synthesized samples
using BoxDiff and samples at each row have one fixed and
one varying box constraint. Specifically, given a text prompt
of “a castle in the middle of a calm lake”, the same condi-
tioning inputs are applied for the calm lake, and the con-
ditioning of the castles varies from right to left at the top.
Clearly, the lake is always synthesized in the bottom, obey-
ing the given fixed red dashed box. Besides, the location of
the castle is changed from the leftmost to the rightmost ac-
cording to the varying conditioning, i.e., blue dashed box.
The same visual variations can also be found in the third
row, in which the location of the synthesized castle is moved
according to the conditional box. Note that while the text
prompts contain the words, e.g., “in the middle of”, indi-
cating the positional relation between objects, the proposed
constraints added on the cross-attentions have a stronger im-
pact on the position of synthetic contents.

Varying Scales: We further probe the controllability of
the object scale of the proposed BoxDiff, and visual results
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“A castle in the middle of a calm lake”

“A castle in the middle of a marsh”

“A castle in the middle of the grasslands” a sea of sunflowers a marsh

Figure 7: Synthesized samples obtained with various spatial conditioning inputs, e.g., location, scale, and content.
are illustrated in the second and third rows of Fig. 7. Given
a text prompt of “a castle in the middle of a marsh”, we
constrain the location and scale of the marsh by a fixed red
dashed box and vary the scale of the castle by expanding
the red dashed box. Clearly, the size of castles varies from
small to large following the given conditional boxes, and
the location and scale of the marsh are kept unchanged.

Multi-level Variations: Beyond variation at a single as-
pect, we simultaneously vary at multiple aspects, e.g., scale,
and content, to further demonstrate the effectiveness of our
method. As shown in the third row of Fig. 7, given a text
prompt of “a castle in the middle of {}” and a fixed red
dashed box, BoxDiff can successfully synthesize different
contents, i.e., “the grasslands”, “a sea of sunflowers”, and
“a marsh”, in the red dashed box while controlling the scale
of the castle from small to large.

5.4. Quantitative Results

As shown in Table 3, we compare fully-supervised
layout-to-image methods, e.g., LostGAN [32], LAMA [19],
and TwFA [36] using the newly collected spatial conditions.
One can observe from the table, BoxDiff significantly out-
performs those fully-supervised ones in terms of the YOLO
score. Besides, BoxDiff also achieves the best T2I-Sim,
which equivalently represents a better precision of seman-
tic synthesis. Besides, when BoxDiff is integrated, the per-
formance of GLIGEN [18] can be further improved. This
validates that our BoxDiff can be used as a plug-and-play
component to improve the existing models.

Table 3: Comparison to fully-supervised methods. †: model
inference with FP16 due to the memory cost.

Methods Layout Data T2I-Sim (↑)
YOLO score

AP (↑) AP50 (↑) AP75 (↑)
LostGANTPAMI’21 [32] COCO-Stuff 0.2279 5.3 8.9 5.6
LAMAICCV’21 [19] COCO-Stuff 0.2396 10.2 15.3 11.7
TwFACVPR’22 [36] COCO-Stuff 0.2443 10.6 14.7 12.6

Stable Diffusion [27] None 0.3511 2.8 9.2 1.1
Stable Diffusion [27] + BoxDiff None 0.3513 22.3 46.8 20.2

GLIGEN† [18] COCO-Stuff 0.3489 29.7 45.8 33.9
GLIGEN† [18] + BoxDiff COCO-Stuff 0.3511 40.2 62.0 46.2

6. Conclusion and Discussion

This paper proposed a training-free approach, i.e.,
BoxDiff, to controlling object synthesis in spatial dimen-
sions. In contrast to conventional layout-to-image methods,
the proposed constraints are seamlessly applied to the de-
noising step of Diffusion models, requiring no additional
training. Extensive results demonstrated that BoxDiff en-
abled the Diffusion models to control objects and contexts
where to synthesize.

To exploit semantic information effectively, we only ap-
plied spatial constraints to the cross-attentions at the scale
of 16× 16. Resolution potentially restricts the precision of
the control of object and context synthesis. We believe that
as only the simplest form of conditions, e.g., box or scrib-
ble, are required, BoxDiff can be potentially extended to
data synthesis adhering to additional bounding box condi-
tions, from which a lot of downstream tasks, such as open-
vocabulary, weakly- and semi-supervised detection, would
benefit. More discussions are included in the appendix.
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