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Abstract

Neural radiance fields (NeRF) have garnered significant at-
tention, with recent works such as Instant-NGP accelerat-
ing NeRF training and evaluation through a combination of
hashgrid-based positional encoding and neural networks.
However, effectively leveraging the spatial sparsity of 3D
scenes remains a challenge. To cull away unnecessary re-
gions of the feature grid, existing solutions rely on prior
knowledge of object shape or periodically estimate object
shape during training by repeated model evaluations, which
are costly and wasteful. To address this issue, we propose
HollowNeRF, a novel compression solution for hashgrid-
based NeRF which automatically sparsifies the feature grid
during the training phase. Instead of directly compressing
dense features, HollowNeRF trains a coarse 3D saliency
mask that guides efficient feature pruning, and employs an
alternating direction method of multipliers (ADMM) pruner
to sparsify the 3D saliency mask during training. By ex-
ploiting the sparsity in the 3D scene to redistribute hash
collisions, HollowNeRF improves rendering quality while
using a fraction of the parameters of comparable state-of-
the-art solutions, leading to a better cost-accuracy trade-
off. Our method delivers comparable rendering quality to
Instant-NGP, while utilizing just 31% of the parameters. In
addition, our solution can achieve a PSNR accuracy gain of
up to 1dB using only 56% of the parameters.

1. Introduction

Neural Radiance Fields (NeRF [1, 15]) have gained
widespread recognition across academia and industry due to
their remarkable capability to generate photorealistic novel
views of 3D scenes from a collection of 2D images. In-
spired by the volumetric representation, NeRF models the
scene as a continuous 5D plenoptic function, enabling the
creation of high-fidelity renderings with accurate lighting
and shading effects. This technique has found versatile ap-

Figure 1: Cross-section views of rendered 3D scenes. The
left column shows the hollow interior of HollowNeRF’s
rendering, while the middle column shows the solid inte-
rior of Instant-NGP’s rendering. The right column displays
HollowNeRF’s rendering without slicing.

plications in fields such as computer graphics, virtual and
augmented reality, as well as robotics.

Training and evaluating NeRF models can be computa-
tionally expensive, and many recent works [20, 16, 4, 22,
18, 23] have focused on improving the efficiency of NeRF.
Instant-NGP [16] is an established solution with state-of-
the-art training speed. It employs a lightweight hashgrid for
input encoding and a small multi-layer perceptron (MLP)
to disambiguate hash collisions. However, the lightweight
hashgrid unavoidably causes severe collisions at fine reso-
lutions. These collisions are evenly scattered across the oc-
cupied voxels, resulting in a suboptimal accuracy. Another
line of research focuses on accelerating NeRF rendering by
only sampling near the surface of interest, but has to rely on
prior knowledge of surface geometries (either from conven-
tional algorithms such as shape-from-silhouette [13] or an
MLP predicting the depth distribution along each camera
ray [18]). However, a coarse surface estimation degrades

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3480



NeRF rendering quality, while a precise surface estimation
adds too much complexity, defeating the purpose of accel-
eration.

We propose HollowNeRF, a novel NeRF compression
method using trainable hash collision mitigation to improve
rendering accuracy while consuming less parameters than
existing NeRF methods. Built on a hash-based pipeline
from Instant-NGP, HollowNeRF prioritizes the important
features (of visible voxels) and prunes unnecessary features
(of invisible voxels), leading to a redistribution of hash col-
lision probability across the 3D volume. When two vox-
els direct to the same hash bucket, Instant-NGP shapes the
shared feature in this bucket as a mixture of the desired
features, which harms the accuracy. In contrast, Hollow-
NeRF steers the shared feature to fit the more important
voxel, and prunes the feature of the less important voxel to-
ward 0, reducing interference to features sharing the same
bucket. Specifically, when reading the feature of a certain
voxel, HollowNeRF further scales the feature by a train-
able saliency weight whose value captures the voxel’s visi-
bility. To reduce the cost, we divide the 3D space into coarse
grid regions and assign a saliency weight to capture each re-
gion’s visibility, forming a trainable 3D saliency grid. Un-
like existing methods [13, 18] that require prior knowledge
of the surface geometries, HollowNeRF learns to prioritize
the important features by training the saliency grid, which
converges to a “hollow” saliency distribution across the 3D
volume. Figure 1 showcases this “hollow” rendering result.

The proposed design consists of three main components:
a trainable 3D saliency grid to guide the compression of
dense features (§3.1); a soft zero-skipping gate that enhance
the MLP in the NeRF model to ensure a feature compressed
to 0 translates to a zero density in the 3D space (§3.2);
a pruner to further push unnecessary features to exact 0
instead of a small non-zero value by alternating direction
method of multipliers or ADMM [3] (§3.3). Our experi-
ments demonstrate that HollowNeRF achieves better accu-
racy (PSNR and LPIPS) than state-of-the-art methods while
using significantly fewer parameters.

The key contributions of this work are:

• We propose a novel NeRF compression solution,
HollowNeRF, that learns to prioritize features defining
the visible surface and prune invisible internal features
without prior knowledge of surface geometries.

• We use an ADMM-based optimization framework to
prune unnecessary features during NeRF training and
enhance the MLP with a soft zero-skipping gate to en-
sure that pruned features correctly map to zero density.

• We evaluate the performance of HollowNeRF on pop-
ular NeRF datasets and our solution demonstrates a
significantly superior balance between cost and accu-
racy than state-of-the-art solutions.

2. Background and related work
Differentiable rendering [15, 7, 5, 22, 17] has emerged as
a prominent alternative framework for novel view synthe-
sis, alongside the conventional 3D rendering approaches.
Following the seminal NeRF paper [15], the research com-
munity has matured the approach and enables it to han-
dle arbitrarily large scenes [24, 29, 27, 2], complex reflec-
tions [8, 34, 21, 28, 14],and small training datasets with
a limited number of views [10, 6, 19]. Recent works
also substantially improve the efficiency of NeRF, reduc-
ing the run-time complexity at training [16, 22] and infer-
ence [16, 12, 18, 30, 32, 31, 9].

Comparatively fewer works have tackled the problem
of maximizing visual fidelity for a given space complex-
ity budget [16, 26], which is the focus of this paper. The
original NeRF technique [15] encodes the entire 3D scene
in the weights of an MLP that predicts opacity (σ) and color
(r, g, b) given a 3D position (x, y, z) and direction (θ, ϕ).
While spatial complexity ( 438K parameters) is not the pri-
mary bottleneck, the substantial limitation of NeRF lies in
the remarkably slow training and inference speeds. This
is primarily attributed to the deep MLP with 8 hidden lay-
ers, each having a width of 256 neurons. It has since been
shown [22] that differentiable rendering does not necessar-
ily require neural networks. In [22], a scene is encoded as a
neuron-free sparse voxel grid of opacities and RGB spheri-
cal harmonics. Without the MLP, training and inference run
fast, at the cost of a significantly high spatial complexity.

In the continuum between the two extremes discussed
above, there are techniques that harness the strengths of
both ends and fare better in the balance between train-
ing speed and spatial complexity. Instant-NGP [16] is
a representative example, which encodes features using a
multi-resolution hashgrid and then feed the features into a
lightweight MLP with only 2 hidden layers to decode the
color and density; both the features in the hashgrid and
the MLP are trained in conjunction. Our work extends the
hash-based pipeline from Instant-NGP by achieving higher
quality (PSNR & LPIPS) with less number of parameters.
We achieve this goal by reclaiming the resources spent
on empty, invisible, or internal regions. Instead of using
an auxiliary MLP to predict space occupancy like DON-
eRF [18], we learn it through a trainable lightweight volu-
metric saliency grid.

Some existing literature has applied model compression
techniques to NeRF: CC-NeRF [26] uses tensor decomposi-
tion to obtain a low-rank approximation of the learned net-
work. Similarly, TensoRF [4] represents the volume as a
4D tensor and factorizes it into low-rank components. Un-
like these compression works, HollowNeRF vets informa-
tion based on its actual impact on the rendering accuracy,
rather than raw entropy. The relative performance of these
approaches are investigated in §4.4.
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Figure 2: Overview of the HollowNeRF workflow.

3. HollowNeRF design

This section presents the system design of HollowNeRF,
as outlined in Figure 2: (i) Given an input coordinate
x = (x, y, z), we fetch the corresponding feature f
from the multi-level hashgrid, following the Instant-NGP
method [16]. (ii) We predict the saliency weight p of posi-
tion x by processing the information from a trainable 3D
saliency grid G through trilinear interpolation and a sig-
moid function (§3.1), and use p to scale the feature f by
v = pf . Figure 3a showcases a trained saliency grid G,
demonstrating that training G can mitigate hash collisions
by suppressing the unnecessary features in empty or invisi-
ble regions. (iii) The weighted feature v is fed into an MLP,
which decodes v to obtain the density σ and color at po-
sition x. To ensure that v = 0 maps to σ = 0, we in-
troduce a zero-skipping gate (§3.2). (iv) The density and
color outputs of the MLP are used for volume rendering,
and the resulting image is compared to the ground truth to
obtain a loss function L. During training, an ADMM pruner
(§3.3) sparsifies the saliency value distribution across the
3D space by enforcing a sparsity constraint when optimiz-
ing the loss L. Figure 3a shows that a large portion of the
unnecessary features are not entirely eliminated by training
the saliency grid, with saliency weights diminished but not
reaching 0. Therefore, we introduce the ADMM pruner to
explicitly prune saliency weights of the empty or invisible
regions to 0, as shown in Figure 3b.

3.1. Trainable 3D saliency grid

In typical 3D scenes without large transparent objects, most
regions of the space do not contribute to the final rendering
as they are either empty or invisible from any view angle.
To leverage this sparsity, methods such as Instant-NGP use
a coarse-grained binary mask to capture space occupancy,
which is periodically updated during training by evaluating
the NeRF model at each voxel and checking if the density is
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(a) Without ADMM pruner.
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(b) With ADMM pruner.

Figure 3: Slices of a 64 × 64 × 64 saliency grid trained on
the “Chair” scene from the NeRF synthetic dataset[15].

above a threshold. This occupancy mask guides sampling in
ray marching by skipping unoccupied regions. However, it
still keeps unnecessary features in internal occluded regions
that have non-zero densities but make no contributions to
the visible surfaces from any view angle, as shown in Fig-
ure 1.

With this insight, we propose to reclaim the capacity
spent on internal regions by learning the sparsity pattern
through training, effectively making objects hollow. The
benefits of this approach are twofold: it reduces space com-
plexity by requiring fewer features, and improves accuracy
by reducing hash collisions. However, precisely locating
the invisible regions of objects can be challenging without
any prior knowledge of the object’s shape.

To addresses this challenge, our approach utilizes the
hashgrid-based positional encoding from Instant-NGP [16]
and extends it by introducing a trainable saliency grid G
with a resolution of T × T × T . Specifically, HollowNeRF
trains a 3D tensor data structure G alongside the NeRF
model (feature hashgrid H and MLP weights W), which
gradually learns which regions to prioritize, such as a non-
transparent object surface. We split the space coarsely as
T × T × T uniform grids and the 3D tensor G stores train-
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able values representing the saliency of features near each
grid voxel. Instead of letting multiple dense features in the
same coarse grid share one value, we interpolate the values
associated to the 8 voxels surrounding the input coordinate
x to get a smoothed saliency distribution P over the 3D
space. The trainable saliency grid represents in itself an op-
portunity to compress the NeRF model using differentiable
model compression techniques, as discussed later in §3.3.

We initialize G as an all-ones tensor, where T is typically
much smaller than the resolution of the dense feature grid
(In §4.2, we further investigate how different T values affect
the performance). Given a 3D coordinate x = (x, y, z), we
fetch its corresponding feature vector f from the multi-level
hashgrid [16]. We then locate the 8 voxels (x1,x2, . . . ,x8)
surrounding x in the 3D saliency grid G, and fetch its cor-
responding saliency value gi. Specifically, the coordinate
xi = (xi, yi, zi) are quantized to the values (x̂i, ŷi, ẑi) be-
tween 0 and T−1, which are then used to index the saliency
grid G. This gives us the saliency value gi = G(x̂i, ŷi, ẑi).
After obtaining gi for each of the 8 saliency grid voxels sur-
rounding x, we calculate the saliency weight p at coordinate
x by trilinear interpolation followed by a sigmoid operator,
so that 0 < p < 1. The final weighted feature vector v
is obtained by multiplying the saliency weight p with the
feature vector f fetched from the hashgrid, i.e., v = pf .

For mathematical analysis, we define the saliency distri-
bution P as the collection of saliency weights p at every
possible coordinate x, such that p = P(x). Our proposed
method, HollowNeRF, learns the saliency distribution P by
training the saliency grid G using gradient descent. It is
worth noting that we inject P (and thus G) to the training
pipeline by feeding the weighted feature v instead of the
raw feature f to the MLP for decoding; the rationale for
this choice is that since the sigmoid function in the above
workflow projects the saliency weights to the range (0, 1),
we can view the 3D saliency distribution as a probability
distribution P(x) indicating the likelihood p that a feature
is non-zero at a given 3D position x. There are only two
possibilities for the feature at a given position: either the
position is visible with probability p = P(x), and we re-
trieve the feature vector f from the multi-level hashgrid as
in [16]; otherwise the position is empty or occluded with
probability 1−p, and the corresponding feature vector is an
all-zero vector 0. Taking both cases into account, we can
calculate the expectation v of the feature as:

v = P(x)f + (1− P(x))0 = pf

Thus the weighted feature v fed to MLP decoder has a phys-
ical meaning, namely the expectation of the feature at x be-
ing either f fetched from feature hashgrid or 0. Then train-
ing the saliency grid is equivalent to learning the probability
distribution P(x). This probability distribution represents
the likelihood that a given voxel x contains a non-zero fea-

ture. A feature with a lower saliency weight p is more likely
to be 0 and will cause less interference to other features as-
signed to the same bucket in the feature hashgrid. When the
saliency weight converges to 0, that feature is pruned with
a probability of 1 and becomes a zero vector 0.

Training the saliency distribution can also be viewed as
hash collision mitigation. Instant-NGP employs hash en-
coding and distributes hash collisions evenly across voxels
with non-zero density. By learning to shuffle hash collisions
across the space, HollowNeRF guarantees less interference
for more important features. When the feature of a voxel
is scaled by a higher saliency weight, it tends to accumu-
late more gradients during backward propagation, and the
information at this voxel will dominate the trained feature
value inside the hash bucket shared with other voxels. On
the other hand, a feature scaled by zero saliency weight has
a zero gradient, hence causes no harm to colliding features.

3.2. Soft zero-skipping gate

While HollowNeRF mitigates hash collisions by pruning
unnecessary features to zero, the MLP used to decode these
features into densities can break the sparsity in the 3D
space: the MLP can be viewed as a function σ = M(v)
mapping the feature vector v to the density σ, and typically
M(0) ̸= 0. Even though the saliency grid and ADMM
pruner ensure most voxels direct to 0 features in the hash-
grid, a typical MLP translates such a sparse feature domain
to a non-sparse 3D space with non-zero densities scattered
everywhere, which is evidently inaccurate. To enforce a 0
output density when the input feature is 0, we introduce a
zero-skipping gate g(v) to the MLP decoder:

M̂(v) = ĝ(v) · M(v)

where ĝ(v) := tanh (α ∥v∥2) (1)

The gate ĝ(v) is a differentiable approximation of the
“hard” gate in Eq. (2) to enforce the desired property
M̂(0) = 0, and we use a constant α to control the steepness
of the 0-to-1 transition.

g(v) :=

{
0, if ∥v∥2 = 0

1, otherwise
(2)

The non-differentiable “hard” gate in Eq. (2) may cause
abrupt density value changes during training. Also, the gra-
dient ∂g

∂p of g(v) = g(pf) is 0 with p ̸= 0, this 0 gradi-
ent prevents the ADMM pruner from suppressing a small
saliency value p to 0, resulting in insufficient feature prun-
ing and little improvement in hash collision. Our experi-
ments in §4.3 confirm that adding the “hard” gate g(v) pro-
vides little gain over adding no gate.

Thus, we propose a “soft” zero-skipping gate ĝ(v) in
Eq. (1) that smoothly reduces the density output to zero for
input features being pruned. As an approximation of g(v),
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the value of ĝ(v) should smoothly transition from 0 to 1 for
input v with small magnitudes ∥v∥2, while otherwise stay-
ing close to 1 to avoid perturbing necessary information.
The tanh function is a suitable choice. In our implemen-
tation we adjust the α value with a schedule, to gradually
“harden” the soft gate as the training progresses. Specifi-
cally, for epochs below 1000, we set α to 104 to ensure fast
convergence. Afterward we increase α to 105 to minimize
the perturbation to the fine-tuning process.

3.3. ADMM pruner

Training the 3D saliency grid improves the accuracy by re-
distributing hash collisions, which, However, cannot fully
eliminate unnecessary features, as shown in Figure 3a. To
address this, we introduce an ADMM pruner that enforces
sparsity in the saliency grid G during training.

We first motivate the use of ADMM pruner rigorously.
Assuming a K × K × K volume where each voxel x
corresponds to a feature f , and the ground truth feature
f1 at voxel x1 = (x1, y1, z1) and f2 at a different voxel
x2 = (x2, y2, z2) are typically different for a 3D scene.
Instant-NGP encodes this K × K × K feature grid into a
small hashgrid H whose size << (K × K × K). When
f1 and f2 collide with each other by directing to the same
hash bucket, their values queried from the hashtgrid become
identical f∗

1 = f∗
2 = fH , where fH is the trained feature

stored in the shared hash bucket. Since the ground truth
features f1 ̸= f2 while the queried features f∗

1 = f∗
2 , the

queried values differ from the ground truth, causing com-
pression artifacts. To solve this problem, HollowNeRF al-
lows the colliding features to be different by introducing
the scalar saliency weight p to scale the queried features:
f∗
1 = p(x1)fH and f∗

2 = p(x2)fH . However, during
training, the share feature fH may not find a value that satis-
fies both equations, as they can be written as f∗

1 = p(x1)
p(x2)

f∗
2

which is not always true especially when f1 and f2 are non-
zero. Then the queried features f∗

1 and f∗
2 may still cause

compression artifacts (although less than instant-NGP). The
ADMM pruner addresses this challenge by pruning the
ground truth f1 or f2 to 0 when x1 or x2 is empty/invisible.
For example, if voxel x1 is invisible from any view angle
(f1 = 0), there exists a single fH value to satisfy both
f1 = p(x1)fH and f2 = p(x2)fH , that is fH = f2, and
there is no compression artifacts. The optimizer can con-
verge to this optimal fH value through gradient descent by
learning that p(x1) is 0. In summary, making the feature
grid sparse reduces the compression artifacts when encod-
ing features into a hashgrid.

In what follows, we describe two methods for achiev-
ing sparsity: a basic L1-regularization approach and our
ADMM pruner. To sparsify the saliency grid G, one simple
approach is to add an L1 regularization term to the original

MSE loss function L typically used in NeRF training:

min
W,H,G

(L+ λ∥Ssig (G) ∥1) (3)

where λ is a constant weight to control the amount of spar-
sity and compression, and H and W denote respectively the
embeddings in the multi-level hashgrid and the weights in
the MLP. We use the sigmoid operator Ssig(·) here because
the forward pipeline (Figure 2) uses the saliency value after
the sigmoid operator to weight the feature vector, and our
ultimate goal is a sparse distribution of saliency value to
prune unnecessary features. Note that Ssig(G) here denotes
applying sigmoid operator on each element g of the 3D ten-
sor G, and the result is a 3D tensor with all non-negative
elements. Therefore, the absolute operator in the L1 regu-
larization term can be removed:

∥Ssig(G)∥1 =
∑
g∈G

|Ssig(g)| =
∑
g∈G

Ssig(g)

Removing the absolute operator from the regularization
term makes it differentiable and compatible with the train-
ing pipeline, eliminating the need to use more complex op-
timization algorithms such as proximal gradient descent to
handle non-differentiable regularization terms.

Although the usage of L1 regularization is already a
marked improved over the baseline (see §4.3), we find it
is often difficult to select a single λ hyperparameter to con-
trol sparsity and compression. During training when the 3D
saliency grid G has already become sparse enough, the regu-
larization term λ∥Ssig(G)∥1 may still provide gradients that
further prune G. If λ is set too high or if the algorithm is let
to run for too long, visible features may be pruned resulting
in performance degradation.

We use an ADMM pruner to overcome the limitations
of simple L1 regularization. By introducing a configurable
sparsity constraint C such that ∥Ssig(G)∥1 < C, feature
pruning becomes the constrained optimization problem:

min
M,H,G

L (M,H,G)

s.t. ∥Ssig (G) ∥1 < C

We transform this constrained optimization problem into an
equivalent unconstrained minimax problem in Problem (5)
by using the augmented Lagrangian method which employs
a trainable dual variable γ, also known as a Lagrange mul-
tiplier. In essence, γ serves as a trainable alternative to the
fixed hyperparameter λ in Problem (3).

min
W,H,G

max
γ≥0

L (W,H,G) + ργ
2

[∥Ssig (G) ∥1 − C]
2
+

+ γ (∥Ssig (G) ∥1 − C) (5)
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Method Param #

Hashgrid size
214 215 216 217 218 219

Instant-NGP 0.50M 0.94M 1.77M 3.34M 6.22M 11.49M

HollowNeRF
T=64 0.76M 1.21M 2.04M 3.60M 6.48M 11.75M
T=96 1.39M 1.83M 2.66M 4.22M 7.10M 12.37M
T=128 2.60M 3.04M 3.87M 5.43M 8.32M 13.58M

Table 1: The total number of model parameters, depending on the hashgrid size and saliency grid resolution T . This number
counts the parameters in the hashgrid, MLP, and saliency grid. (both HollowNeRF and Instant-NGP employ a multi-resolution
hashgrid with 16 levels. We use the maximum entries per level to denote the hashgrid size, following the notation in the
Instant-NGP paper [16]. )

where ργ denotes the learning rate of dual variable γ, and
[·]+ clamps the input to non-negative values.

At each iteration t, the optimizer first updates the coarse
saliency grid G, the feature hashgrid H, and the MLP
weights W to minimize the augmented loss function in
Problem (5) using gradient descent, where the dual variable
γ is treated as a constant. γ is then updated using gradient
ascent with γ(t+1) =

[
γ(t) + ργ (∥Ssig (G) ∥1 − C)

]
+

4. Evaluation

In this section, we first investigate the effect of different
hyper-parameters, including hashgrid sizes, saliency grid
sizes, and sparsity constraints, on the performance (§4.2).
We then conduct an ablation study to validate each of
HollowNeRF’s design components (§4.3). Finally, we eval-
uate the performance of HollowNeRF on various 3D scenes
and compare it with the state-of-the-art works (§4.4).

4.1. Experimental setup

We implement HollowNeRF on top of torch-ngp [25,
26], a PyTorch CUDA extension implementation of instant-
NGP [16]. To ensure a fair comparison, we evalu-
ated both HollowNeRF and instant-NGP using the same
torch-ngp implementation. Both methods use a 16-level
hashgrid with a feature dimension of 2, where the coarsest
resolution of the feature grid is 16, and the finest resolu-
tion is 1024. Both methods employ a MLP decoder that has
only two hidden layers with a width of 64 neurons, while
HollowNeRF augments the MLP with a zero-skipping gate
as described in §3.2.

We use the peak signal-to-noise ratio (PSNR) and the
Learned Perceptual Image Patch Similarity (LPIPS) [33]
with the default AlexNet backend as the performance met-
rics to assess the rendering quality. Each experiments was
conducted on a single NVIDIA Tesla A100 GPU for both
training and evaluation. The machine used was equipped
with an AMD EPYC 7742 64-Core CPU, 1TB of memory,
and 8 GPU cards in total.
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Figure 4: Performance vs. saliency grid size T .

Unless otherwise specified, we train the model for
300, 000 steps using the Adam optimizer with an initial
learning rate of 1× 10−2. Further details regarding the ap-
propriate selection of HollowNeRF hyper-parameters, such
as T and C, are discussed in §4.2.

4.2. Investigating the cost-accuracy tradeoff

We first investigate the cost-accuracy tradeoff of Hollow-
NeRF to determine the appropriate hyper-parameter config-
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Figure 5: Performance vs. sparsity constraint C.

uration for larger scale experiments in §4.4. We conducted
experiments on the chair scene from the NeRF synthetic
dataset, varying the hashgrid size from 214 to 219 and test-
ing the saliency grid resolution of 64, 96, and 128 for each
hashgrid size. Table 1 summarizes the cost of different con-
figurations, including the number of parameters in the hash-
grid, MLP, and saliency grid. We use a sparsity constraint
of C = 0.04 in this experiment.

The results in Figure 4 indicate that increasing the
saliency grid resolution T from 64 to 96 or 128 does not
improve accuracy much but results in a higher parameter
count, which harms the cost-accuracy tradeoff. On the other
hand, lowering T below 64 causes unstable convergence.
Consequently, we use a grid resolution of T = 64 for
the subsequent experiments. Figure 4 further shows that
HollowNeRF outperforms the baseline over a wide range
of model sizes, achieving higher PSNR and lower LPIPS
values for comparable parameter counts. The best overall
model, HollowNeRF with T = 64, uses 6.48M parameters
to attain a 34.85dB PSNR, as compared to Instant-NGP’s
33.86dB using 11.49M. In other words, it achieves about
1dB higher PSNR than Instant-NGP, while utilizing only
56% of the parameters employed by Instant-NGP.
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Figure 6: Ablation study for the design components.

We also repeated the training and evaluation for each
hashgrid size five times for HollowNeRF with T = 64 and
instant-NGP, and plotted the standard deviations across the
five tests as error bars in Figure 4. The results demonstrate
that our approach is more stable than Instant-NGP in terms
of convergence, with lower performance variation.

To investigate the impact of the choice of sparsity con-
straint C on performance, we conducted additional exper-
iments following the same setup as previous tests, while
varying the C values, and report the results in Figure 5.
First, from Figure 5a, we observe that the C = 0.04 config-
uration yields the highest PSNR, in other words, Hollow-
NeRF achieves the highest accuracy when 4% of the spa-
tial voxels are non-zero. C = 0.02 exhibits slightly dimin-
ished accuracy, potentially due to excessive pruning in the
3D space, which compromises crucial information for scene
reconstruction. Conversely, C = 0.08 shows the lowest ac-
curacy across all tested HollowNeRF configurations, sug-
gesting that keeping 8% non-zero voxels causes excessive
hash collisions when packing them into the hashgrid, and
the 3D scene to capture could be sparser. We have similar
observation for LPIPS, as depicted in Figure 5b.
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(a) HollowNeRF,
6.48M

Lego Ficus Chair Hotdog

(b) HollowNeRF,
11.75M

(c) Instant-NGP,
11.49M

Figure 7: Qualitative comparison with instant-NGP over scenes from the NeRF synthetic dataset.
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Figure 8: Comparison of PSNR(↑) and LPIPS (↓) performance between HollowNeRF and Instant-NGP on various scenes.
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Figure 9: Comparison of HollowNeRF and recent meth-
ods in terms of the trade-off between PSNR and model size
(“HollowNeRF-H19” means using a hashgrid size of 219).

4.3. Ablation study

In this ablation study, we analyze the impact of each com-
ponent in our solution by comparing the convergence speed
and resulting performance of the configurations with and
without each design component. We use a saliency grid
resolution of 64 and a hashgrid size of 218 (total 6.48M
parameters) for all HollowNeRF configurations, while the
baseline is instant-NGP with a hashgrid size of 219 (to-
tal 11.49M parameters). To investigate how each compo-
nent affects the convergence speed, we evaluate the perfor-
mance on the test sets every 300 epochs during the total
3000 epochs.

The results presented in Figure 6 show that each de-
sign component presence gracefully increases the overall
performance, without any catastrophic failure. Each of
the HollowNeRF ablated configurations still outperforms
instant-NGP, while employing less parameters.

4.4. Comparisons on standardized datasets

Finally, we evaluate the performance of HollowNeRF on
3D scenes from the NeRF synthetic dataset [15] and the
more complicated Tanks and Temples dataset [11]. Based
on the cost-accuracy tradeoff investigated in Sec. 4.2, we set
HollowNeRF’s hyper-parameters to a sparsity constraint of
C = 0.04 and a saliency grid resolution of T = 64.

We first provide qualitative example views comparing
HollowNeRF with Instant-NGP. The distinct advantages of
HollowNeRF are evident through the visuals showcased in
Figure 7. For example, from the lego scene in column 1, we
observe that HollowNeRF with 6.48M parameters achieves
notably superior rendering accuracy over Instant-NGP with
77% more parameters (11.49M). The advantage is partic-
ularly pronounced within the bulldozer track region. Fur-
thermore, HollowNeRF with 11.75M parameters exhibits

the highest accuracy, capturing fine details such as the tiny
indentation on the edge of the black rod located at the left
border of the view.

Then we show the PSNR and LPIPS performance of
HollowNeRF and Instant-NGP on various 3D scenes (we
sample 10 different scenes due to the page limit) in Fig-
ure 8. For each scene, we test three hashgrid sizes (217, 218,
219) for both methods. We can observe that HollowNeRF
consistently outperforms Instant-NGP on all the 10 scenes
tested, achieving better PSNR and LPIPS performance with
fewer parameters when using the same hashgrid size. For
seven out of ten tested scenes, the HollowNeRF with the
smallest hashgrid size (217, for a total parameter count in-
cluding MLP of 3.34M) achieves higher PSNR than the best
Instant-NGP model (hashgrid size of 219, corresponding to
11.49M parameters including the MLP).

Finally, we compare the average PSNR across the NeRF
synthetic dataset [16] and the corresponding model size for
HollowNeRF and several recent works. Figure 9 shows
that HollowNeRF achieves the best cost-accuracy trade-
off among all tested methods. In particular, HollowNeRF
with a hashgrid size of 217 achieves an average PSNR of
32.53dB with only a mode size of 14.0MB.

5. Discussion

The compression gains of HollowNeRF require the 3D
scene being sparse, i.e. mostly filled with either empty or
occluded space, which holds for typical 3D scenes. Hollow-
NeRF can still operate when this assumption does not hold,
such as for scenes containing smoke, fire, clouds, but its
performance will regress to the baseline without pruning.

The current version of HollowNeRF, like its predecessor
Instant-NGP, faces challenges in modeling objects with re-
flective surfaces. In future works, we plan to extend the con-
cept of HollowNeRF to the frameworks [8, 34, 21, 28, 14]
with better support for reflective surfaces.

6. Conclusions

In this paper, we present HollowNeRF, a novel hashgrid-
based NeRF technique that achieves superior rendering
quality than state-of-the-art solutions like instant-NGP
while using only a fraction of the parameters. HollowNeRF
mitigates hash collisions by a simple feature pruning mech-
anism. Unlike existing methods that rely on explicit sur-
face geometries for feature pruning, HollowNeRF learns a
3D saliency grid to guide feature compression during train-
ing, and employs an ADMM pruner to enforce a sparse
feature domain. Our experiments demonstrate that Hollow-
NeRF achieves a better balance between cost and accuracy
than state-of-the-art solutions, making a solid step towards
lightweight and ubiquitous NeRF applications.
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