
CL-MVSNet: Unsupervised Multi-view Stereo with
Dual-level Contrastive Learning

Kaiqiang Xiong 1 Rui Peng 1 Zhe Zhang 1 Tianxing Feng 1

Jianbo Jiao 4 Feng Gao 5 Ronggang Wang �,1,2,3

1School of Electronic and Computer Engineering, Peking University
2Peng Cheng Laboratory 3Migu Culture Technology Co., Ltd

4School of Computer Science, University of Birmingham 5School of Arts, Peking University
xiongkaiqiang@stu.pku.edu.cn rgwang@pkusz.edu.cn

https://KaiqiangXiong.github.io/CL-MVSNet/

Abstract

Unsupervised Multi-View Stereo (MVS) methods have
achieved promising progress recently. However, previous
methods primarily depend on the photometric consistency
assumption, which may suffer from two limitations: indis-
tinguishable regions and view-dependent effects, e.g., low-
textured areas and reflections. To address these issues, in
this paper, we propose a new dual-level contrastive learn-
ing approach, named CL-MVSNet. Specifically, our model
integrates two contrastive branches into an unsupervised
MVS framework to construct additional supervisory sig-
nals. On the one hand, we present an image-level con-
trastive branch to guide the model to acquire more con-
text awareness, thus leading to more complete depth esti-
mation in indistinguishable regions. On the other hand, we
exploit a scene-level contrastive branch to boost the rep-
resentation ability, improving robustness to view-dependent
effects. Moreover, to recover more accurate 3D geometry,
we introduce an L0.5 photometric consistency loss, which
encourages the model to focus more on accurate points
while mitigating the gradient penalty of undesirable ones.
Extensive experiments on DTU and Tanks&Temples bench-
marks demonstrate that our approach achieves state-of-the-
art performance among all end-to-end unsupervised MVS
frameworks and outperforms its supervised counterpart by
a considerable margin without fine-tuning.

1. Introduction
Multi-View Stereo (MVS) is a critical task in various

applications, including robotics, self-driving, and VR/AR.
The goal of MVS is to estimate a dense 3D reconstruction
from multiple images captured from different views. Tradi-
tionally, it has been approached by computing dense corre-
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Figure 1. Qualitative comparison of reconstruction quality
with the SOTA method [5] on scan29 of DTU [1]. Our method
performs better on repetitive patterns.

spondences between images, often based on hand-crafted
similarity metrics and engineered regularizations [4, 33].
Recently, a surge of learning-based methods [7, 49–51]
have been developed to advance the effectiveness of MVS,
showing promising results in MVS benchmarks [1, 19].
However, most of them are supervised methods [3, 9, 27].
These methods heavily rely on large-scale ground-truth 3D
training data, which are expensive to acquire.

To tackle this problem, unsupervised MVS methods
[5, 17, 41] have attempted to train MVS networks without
annotations. Existing methods mainly depend on the hy-
pothesis of photometric consistency, which states that the
appearance of a point in 3D space is invariant across dif-
ferent views. However, this hypothesis may be ineffective
owing to indistinguishable regions and view-dependent ef-
fects, e.g., low texture, repetitive patterns, and reflections.
Recently, the state-of-the-art (SOTA) method RC-MVSNet
[5] adopts a rendering consistency network to address the
ambiguity caused by view-dependent photometric effects
and occlusions. While achieving promising results, this ap-
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proach may suffer from significant performance degrada-
tion in indistinguishable regions, as shown in Fig. 1. To ad-
dress the absence of valid supervisory signals, we propose
to leverage contrastive learning to boost the robustness and
generalizability of unsupervised MVS in various scenarios.

Contrastive learning is a widely used paradigm in un-
supervised learning to construct additional supervisory sig-
nals. With the success of contrastive learning in images,
[41, 53] have extended its application to unsupervised MVS
with color fluctuation augmentations or part segmentations.
However, there are still many remaining unresolved issues,
e.g., occlusions and low-textured surfaces. And the poten-
tial of incorporating contrastive learning into MVS remains
largely under-explored. Moreover, recent studies [2, 55]
showed that hard positive samples are of benefit to boost the
contrastive learning. Inspired by this, we propose a dual-
level contrastive learning approach, named CL-MVSNet,
where image-level and scene-level contrastive learning are
integrated into an unsupervised MVS framework.

To resolve ambiguity from indistinguishable regions, we
introduce an image-level contrastive learning strategy to
encourage the model to be more context-aware. Specifi-
cally, for an image-level contrastive sample, all pixels in
the source images are masked with independent and iden-
tically distributed Bernoulli probability, simulating the case
that local photometric consistency fails. Following that, we
maximize the similarity between the depth estimations of
the regular sample and the image-level contrastive sample.
The intuition is that the augmented images contain the same
context information as the original ones, which can also be
utilized to estimate complete depth maps as hard positive
samples. In this way, the network is encouraged to exploit
more contextual information instead of relying only on pho-
tometric consistency over small regions.

In addition, we propose a scene-level contrastive learn-
ing branch to alleviate the view-dependent photometric ef-
fects. Due to severe occlusions, reflections, and illumina-
tion changes, source images with few overlaps are often in-
feasible to use in unsupervised MVS. However, from the
perspective of contrastive learning, a scene-level contrastive
sample containing randomly selected source images can be
considered a natural hard positive sample. These hard sam-
ples are expected to produce the same 3D representation
as the regular samples, as they are captured from identi-
cal scenes. Therefore, we enforce contrastive consistency
between the scene-level contrastive branch and the regular
branch, encouraging the model to learn more powerful 3D
cost volume regularization for robust depth estimation.

Furthermore, we propose an L0.5 photometric consis-
tency loss to support the training of the CL-MVSNet. In an
MVS system, after depth estimation, most points with un-
desirable depth predictions will be filtered out before depth
fusion. Besides, these points often locate in occluded ar-

eas or useless backgrounds where photometric consistency
enforcement may mislead the model. To this end, instead
of using vanilla photometric consistency loss based on L1
or L2 norm, we propose to use the L0.5 norm, which has
larger gradients with regard to smaller errors. In this way,
the model increases the penalty of accurate points, resulting
in more accurate survival points.

In conclusion, our main contributions are:

• We present an image-level contrastive consistency
loss, which encourages the model to be more context-
aware and recover more complete reconstruction in in-
distinguishable regions.

• We propose a scene-level contrastive consistency loss,
which boosts the representation ability to promote ro-
bustness to view-dependent effects.

• We propose an L0.5 photometric consistency loss to
further advance the contrastive learning framework,
which enables the model to focus on accurate points,
resulting in more accurate reconstruction.

• Experiments on DTU [1] and Tanks&Temples [19]
benchmarks show that our method outperforms state-
of-the-art end-to-end unsupervised models and sur-
passes its supervised counterpart.

2. Related Work
Supervised MVS. With the development of deep learn-
ing technique and large-scale 3D datasets, supervised MVS
has achieved significant progresses in recent years [23–
25, 29, 35–37, 39, 44, 45, 48–51, 54]. MVSNet [50] pro-
poses a popular MVS pipeline, which can be summarized as
four steps: feature extraction, cost aggregation, cost volume
regularization, and depth regression. Recent works make
efforts to relieve the huge memory and computation cost, by
introducing a multi-stage architecture [7, 13, 27, 49], RNN
[51] and some other methods [35, 37]. However, all the
above approaches depend on labeled training data, which
are expensive to obtain in practice.

End-to-end Unsupervised and Multi-stage Self-
supervised MVS. Following [5], we categorize current
multi-view stereo methods trained without any annotations
into two dominant groups: the end-to-end unsupervised
MVS and the multi-stage self-supervised MVS. The end-
to-end unsupervised MVS methods [5, 8, 15, 17, 21, 41]
primarily rely on the hypothesis of photometric consistency.
Concretely, Unsup-MVSNet proposes the first end-to-end
unsupervised MVS framework. It enforces photometric
consistency between the reconstructed images and the
reference image. In addition, it utilizes structured similarity

3770



L0.5
Photometric 
Consistency

Scene-level 
Contrastive 
Consistency

Image-level 
Contrastive 
Consistency

(b) Image-level Contrastive Branch

(a) Regular Branch

(c) Scene-level Contrastive Branch

Differentiable
Homography

Feature
Extraction

3D Unet
Regularization

Z z z z z z

Z z z z z z

Reference

Reference

Figure 2. The framework of CL-MVSNet. The framework consists of: (a) a Regular Branch with a regular sample similar to CasMVSNet
[13], (b) an Image-level Contrastive Branch with the image-level contrastive sample , (c) a Scene-level Contrastive Branch with the scene-
level contrastive sample. To pull positive pairs close, we enforce contrastive consistency between the regular branch and two contrastive
branches, with the confidence mask estimated from the regular branch. Moreover, our proposed L0.5 photometric consistency is enforced
between the reconstructed images and the input reference image on the regular branch for more accurate reconstruction.

loss and depth smoothness loss to further improve the per-
formance. However, photometric consistency is ineffective
in many challenging areas. Thus, recent researchers have
attempted to incorporate pretext tasks into training to find
reliable supervisory signals, e.g., normal-depth consistency
[15], semantic consistency [41], and rendering consistency
[5]. However, there is still a performance gap between
unsupervised methods and supervised SOTA methods.

While multi-stage self-supervised methods [10, 30, 42,
47] aim to obtain reliable pseudo-labels by filtering and pro-
cessing inferred depth maps, which are used to supervise
model training in subsequent stages. However, these meth-
ods cannot be trained in an end-to-end manner since they
command complex pre-processing and fine-tuning. Addi-
tionally, the generated pseudo-labels require extra storage
space, and iterative self-training can take significant time.

Contrastive Learning. Contrastive learning [6, 12, 14, 28]
is a popular paradigm in unsupervised learning that encour-
ages the model to be invariant to multiple transformations
of a single sample. Specifically, contrastive learning pulls
positive sample pairs close while pushing negative sample
pairs away. This approach has achieved remarkable suc-
cess in narrowing the performance gap between unsuper-
vised and supervised models. Recently, hard positive sam-
ples have been confirmed to be beneficial for boosting con-
trastive learning [2, 55]. For this purpose, some studies
have explored pixel- [40], image- [14], and object-level [20]
contrastive learning. Most image-level contrastive learning
methods rely on well-designed augmentation procedures.

However, pixel- and object-level supervision provides a
way to directly define positive and negative samples. In this
work, we propose to leverage a dual-level contrastive learn-
ing strategy to boost the unsupervised MVS, which includes
image-level and scene-level contrastive learning.

3. Method
In this section, the main contributions of CL-MVSNet

will be elaborated. We firstly depict the unsupervised back-
bone (in Sec. 3.1), then we describe the proposed image-
level contrastive consistency (in Sec. 3.2), the scene-level
contrastive consistency (in Sec. 3.3), and the L0.5 pho-
tometric consistency (in Sec. 3.4). Finally, we introduce
the overall loss function during training (in Sec. 3.5). An
overview of our architecture is shown in Fig. 2. Note that
CL-MVSNet is a general framework suitable for arbitrary
learning-based MVS. And we take the representative Cas-
MVSNet [13] as our backbone in this work.

3.1. Unsupervised Multi-view Stereo

To begin with, we adopt the same view-selection strat-
egy as CasMVSNet [13] to construct a regular sample. For
a given regular sample comprised of 1 reference image I1,
N − 1 source images {Ii}Ni=2 and their camera parameters
{Ki, Ti}Ni=1, our goal is to estimate the corresponding depth
map with the backbone network. Specifically, the backbone
consists of four steps: feature extraction, cost volume con-
struction, cost volume regularization, and depth regression.

During feature extraction, images {Ii}Ni=1 are fed into a
shared Feature Pyramid Network [22] to generate 2D pixel-
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wise features {Fi}Ni=1 at three stages with incremental res-
olutions. At the coarsest stage, with initial depth hypothesis
{dmin, . . . , dmax}, 3D feature volumes {Vi}Ni=1 are built
from features {Fi}Ni=1 via differentiable homography.

As for cost volume aggregation, we adopt group-wise
correlation metric following [27, 35, 45, 54]. We divide
the N feature volumes {Vi}Ni=1 of NC channels into NG

groups, then construct the raw cost volume C as below:

C =
1

(N − 1)NC/NG

N−1∑
i=2

⟨V g
1 , V

g
i ⟩

NG
g=1. (1)

Then the raw cost volume C undergoes a regular 3D U-
Net and a softmax, resulting in a probability volume Pv . Fi-
nally, the depth map D is obtained by weighted sum:

D =

dmax∑
d=dmin

d× Pv(d). (2)

In a coarse-to-fine fashion, the coarse depth map D1

is used to generate the depth hypothesis of the next stage.
With features {F 2

i , F
3
i }Ni=1 at the larger resolution, finer

depth maps {D2, D3} will be estimated iteratively.

Depth estimation with Confidence Mask. During the
depth estimation, there is a byproduct probability volume
Pv , measuring the pixel-wise confidence of the depth hy-
pothesis. Then a probability map Pm can be acquired by
taking the probability sum over the four nearest depth hy-
potheses with regard to depth estimation [50]. We gener-
ate a binary confidence mask Mc that indicates whether the
model is confident about the pixel-wise depth estimation:

Mc = Pm > γ, (3)

where the γ is set to 0.95 in our implementation. The depth
estimation DR from the regular branch and the confidence
mask Mc will be used to regularize the outputs of the two
proposed contrastive branches (in Sec. 3.2 and Sec. 3.3).

Vanilla Photometric Consistency Loss. Previous unsuper-
vised MVS methods [5, 8, 10, 15, 17, 30, 41, 42, 47] use a
photometric consistency loss to train an unsupervised MVS
network without any ground truth depth, as shown in Fig. 3.

Specifically, given a reference image I1, a source image
Ii, associated intrinsic K, relative transformation T , and
an inferred depth map DR, the source image Ii is warped
to reconstruct reference image Îi. For a specific pixel p in
reconstructed reference image Îi, its coordinate p′ in source
image Ii can be calculated via inverse warping:

p′ = KT (DR(p) ·K−1p). (4)

Reference Image

Source Images

Infered Depth Map

Reconstructed Images

Warping

Reference Image

Photometric Consistency

···

···

Figure 3. Photometric consistency. The source images are
warped to reconstruct the reference image with the inferred depth
map on the reference view. Then consistency is enforced between
the reconstructed images and the reference image.

Then the reconstructed image Îi can be obtained via dif-
ferentiable bilinear sampling Îi(p) = Ii(p

′).
Along with the inverse warping process, a binary valid

mask Mi is generated, indicating valid pixels in the recon-
structed image Îi. In previous unsupervised MVS meth-
ods, all source images {Ii}Ni=2 are warped to the reference
view according to the inferred reference depth DR, then the
vanilla photometric consistency loss can be computed as:

LPC =
N∑
i=2

∥(Îi−I1)⊙Mi∥θ+∥(∇Îi−∇I1)⊙Mi∥θ

∥Mi∥1
, (5)

where ∇ refers to the gradient operator, ⊙ is element-wise
product, θ=1 or 2, which denotes the L1 or L2 norm.

3.2. Image-level Contrastive Consistency

As mentioned before, the local photometric consistency
fails to offer valid supervisory signals in indistinguish-
able regions, e.g., areas with low texture or repetitive pat-
terns. To overcome this problem, [11] explicitly intro-
duces a patch-wise photometric consistency loss to enhance
the matching robustness. However, the model may suffer
notable performance degradation for inappropriate hand-
crafted patch size, e.g., the large patch may lead to the
loss of accuracy in rich-textured areas. In this work, we
propose an alternative to implicitly encourage the model to
be context-aware by introducing an image-level contrastive
branch. The image-level contrastive sample and image-
level contrastive consistency loss will be elaborated on next.

Image-level Contrastive Sample. The image-level con-
trastive sample is generated by applying transformation on
a given regular sample {Ii}Ni=1 artificially. For a source im-
age Ii with the size of H × W × C, we set an occlusion
rate α to construct a binary pixel-wise mask with the size of
H × W . Concretely, any element in the mask will draw a
value of 1 according to the given occlusion rate α:

Mo(i,j) ∼ B(α), (6)
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(a)

(b)

Figure 4. Image-level contrastive sample. (a) a source image of
the regular sample. (b) a source image of the image-level con-
trastive sample. A Bernoulli-distributed binary mask is used to
simulate the failure case of local photometric consistency in (b).

where B denotes the Bernoulli distribution, the occlu-
sion mask is denoted as Mo. Then Mo is used to mask
the image Ii as shown in Fig. 4. Simply processing all
source images in this way, an image-level contrastive sam-
ple {I1, I ′2, I ′3, . . . , I ′N} is generated. Then the hard positive
sample will be fed to the net to obtain the depth estimation
DIC . To ensure training stability, we employ a curriculum
learning strategy to gradually increase the occlusion rate α,
which grows from 0 to 0.1 in our implementation.

Image-level Contrastive Consistency Loss. To enforce
consistency between the regular branch and the image-level
contrastive branch, we compute the image-level contrastive
consistency loss LICC as:

LICC =
∥(DR −DIC)⊙Mc∥1

∥Mc∥1
, (7)

where DR and DIC denote the inferred depth of the regular
branch and the image-level contrastive branch respectively.

3.3. Scene-level Contrastive Consistency

To the best of our knowledge, all unsupervised MVS
methods including our regular sample apply photometric
and geometric priors for view selection following MVSNet
[50]. Specifically, images with more overlaps with the ref-
erence image will get higher scores, and the N − 1 images
with the highest scores will be selected as source images
in the regular sample. Note that some supervised methods
[4, 34] randomly select source views to improve the robust-
ness. Due to severe view-dependent effects and occlusions
where local photometric consistency fails (in Fig. 5), di-
rectly using this strategy in the regular branch of unsuper-
vised MVS will lead to worse performance. However, from
a contrastive learning perspective, these images can be used
to construct hard positive samples. Below, we will intro-

SourceView1 Source View2

Source View3

Reference View

Source View4

B

A 𝑨!

Figure 5. View-dependent effects and occlusions. From source
view4, point A is occluded and only point A′ is visible along the
line of sight. Besides, The appearance of the identical region B
differs in different views due to variations in illumination, camera
exposure, and reflections.

duce how to generate the scene-level contrastive sample and
enforce the scene-level contrastive consistency in detail.

Scene-level Contrastive Sample. For a given reference
image I1, the scene-level contrastive sample can be con-
structed by combining the reference image I1with N − 1
randomly selected image {I ′′i }Ni=2 of the same scene. After-
ward, a depth map DSC will be inferred for the contrastive
sample. It is worth noting that the cost volume built with
the scene-level contrastive sample represents the identical
3D scene as the regular ones. Thus, the network is supposed
to gain the same depth estimation from the scene-level con-
trastive sample as the regular ones.

Scene-level Contrastive Consistency Loss. Then a scene-
level contrastive consistency loss LSCC will be applied on
the scene-level contrastive branch. The loss is used to pull
the scene-level contrastive sample closer to the regular sam-
ple, improving the robustness to view-dependent effects:

LSCC =
∥(DR −DSC)⊙Mc∥1

∥Mc∥1
, (8)

where DR and DSC refer to the depth map from the regular
branch and the scene-level contrastive branch respectively.

3.4. L0.5 Photometric Consistency

In the generic pipeline of MVS, a depth filtering process
is applied before depth fusion, in order to mask out most
undesirable points, as shown in Fig. 6. For clarity, we divide
the points in the inferred depth map into three categories:

• accurate point: the pixel with accurate prediction,
which will survive the depth filtering and contribute
to the final reconstruction.

• ordinary point: the pixel close to the accurate point,
which will be filtered out.
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Reference Image Infered Depth Map

Geometric Filtering Mask Filtered Depth Map

Figure 6. Depth filtering. Most points with inaccurate depth will
be filtered out before depth fusion. It can be observed that these
points usually locate in occluded regions or useless backgrounds,
where photometric consistency fails.

• terrible point: the pixel with pretty erroneous predic-
tion, most of which locate in useless backgrounds or
occluded areas and will be filtered out. Moreover, the
photometric consistency enforced on these points may
mislead the model.

In the MVS system, an ideal depth map is supposed to
contain more accurate points. Moreover, a loss function
that imposes more constraints on accurate points will be
desirable due to this observation. We perform an analy-
sis of the L1-norm and L2-norm, which are broadly used
in vanilla photometric consistency loss (Eq. (5)). We first
write their expressions and gradient formulas:

l1(e) = ∥e∥1 = (

n∑
i=1

ei),
∂l1(e)

∂ei
= 1,

l2(e) = ∥e∥2 = (

n∑
i=1

e2i )
1
2 ,

∂l2(e)

∂ei
= k1 · ei,

(9)

where e = |x− x′|, denotes the distance between the recon-
structed image and original image at a specific pixel during

photometric consistency enforcement; k1 = (
n∑

i=1

e2i )
− 1

2 ,

which can be considered as a constant for a specific ei.
During training, the parameters of the network are up-

dated in a back-propagation manner, using gradients com-
puted with respect to the loss function. According to
Eq. (9), we can draw a conclusion the L1 norm is a fair norm
that treats all points equally, aiming to obtain depth maps
with low mean absolute error; while the L2 norm concen-
trates more on the pixels with larger error, to reduce the out-
liers, i.e., terrible points. However, these two norms cannot
focus on accurate points directly. Therefore, we propose a
photometric consistency loss based on the L0.5 norm. The

(a) (b)

Figure 7. Comparison of different norms. (a) Different norm-
based losses about e. (b) The gradient of different norm-based
losses with regard to e. The horizontal axis e denotes the pixel-
wise distance of image reconstruction with the estimated reference
image depth. The L2 norm aims to reduce outliers, the L1 norm
treats all points equally, while the L0.5 norm concentrates more
on accurate points.

L0.5 norm and its gradient formula can be expressed as:

l0.5(e) = ∥e∥ 1
2
= (

n∑
i=1

e
1
2
i )

2,
∂l0.5(e)

∂ei
= k2 · e

− 1
2

i , (10)

in which k2 =
n∑

i=1

e
1
2
i . And the comparison of different

norms can be seen in Fig. 7 more intuitively.
Unlike L1-norm or L2-norm, the L0.5-norm pays more

attention to accurate points. Owing to its gradient prop-
erty, applying this norm to the photometric consistency
loss can make accurate points more accurate, turn ordinary
points into accurate points, and pay less attention to terri-
ble points. According to the above analyses, we propose the
L0.5 photometric consistency loss as:

L0.5PC=
N∑
i=2

∥(Îi−I1)⊙Mi∥ 1
2
+∥(∇Îi−∇I1)⊙Mi∥ 1

2

∥Mi∥1
. (11)

3.5. Overall Loss

The overall loss function of our proposed framework is
constructed as follows:

L =λ1L0.5PC + λ2LICC + λ3LSCC+

λ4LSSIM + λ5LSmooth. (12)

LSSIM [38] and LSmooth [26] denote structure similar-
ity loss and depth smooth loss respectively, which are used
broadly in previous unsupervised MVS methods. The bal-
ancing weights are empirically set as λ1 = 0.8, λ3=0.01,
λ4= 0.2, λ5= 0.0067, and the weight for image-level con-
trastive consistency is initialized with λ2= 0.01 and doubles
every two epochs. Note that the color fluctuation augmen-
tation used by [5, 41, 42] is also applied in the image-level
contrastive branch.
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4. Experiment
4.1. Datasets

DTU Dataset [1] is a popular indoor benchmark compris-
ing 79 training scans and 22 testing scans, all taken under
7 different lighting conditions. The DTU dataset provides
3D point clouds captured by structured-light sensors, with
each view consisting of an image and its calibrated cam-
era parameters. Following common practices, we perform
training on the provided training dataset, while evaluation
is conducted on the designated evaluation dataset.

Tanks&Temples [19] is a large-scale dataset collected
under realistic lighting conditions, consisting of an interme-
diate subset and an advanced subset. The intermediate sub-
set includes 8 scenes, and the advanced subset includes 6
scenes. All scenes vary in terms of scale, surface reflection,
and exposure conditions. These two subsets are widely used
to verify the generalization performance of MVS methods.

4.2. Implementation Details

Training. Our CL-MVSNet is trained on the DTU train-
ing set for 16 epochs in an end-to-end unsupervised learn-
ing manner. Following previous methods, the input image
number N is set to 5, and images are resized and cropped to
512 × 640. Our backbone is similar to CasMVSNet with 3
stages, and the depth hypotheses for each stage are 48, 32,
and 8 respectively. We adopt Adam [18] to optimize our
model with an initial learning rate 0.0005, which is decayed
by 2 after 10, 12, and 14 epochs. The network is imple-
mented in Pytorch and trained on 8 NVIDIA Tesla V100s.

Testing. On the DTU testing set, the input image num-
ber N is set to 5 as [5, 10], and the resolution is 1184 ×
1600 following [13, 30, 47, 49, 50]. The inferred depth
maps are filtered with photometric and geometric consis-
tencies and then fused to a point cloud following [5]. On
Tanks&Temples, the input image number N is set to 7,
and the resolution is 1024 × 1920 or 768 × 576. Note
that our model trained on DTU is directly used to test on
Tanks&Temples without finetuning on BlendedMVS [52]
as [10, 41] or training on Tanks&Temples training set as
[47]. The inferred depth maps are filtered with photomet-
ric and geometric consistencies and then fused to a point
cloud with the same strategy as [5]. The number of depth
hypotheses in the coarsest stage is set to 64, and the corre-
sponding depth interval is set to 3 times as the interval of
[50]. And only the regular branch works for testing. More
details can be found in the supplementary material.

4.3. Benchmark Results on DTU

We compare the depth map evaluation results on the
DTU evaluation set as shown in Tab. 1. Then we compare

Table 1. Depth map evaluation results in terms of accuracy on
DTU evaluation set(higher is better). CL-MVSNet acquires the
best depth estimation. All thresholds are given in millimeters.

Method ≤ 2 ↑ ≤ 4 ↑ ≤ 8 ↑
MVSNet [50] 0.704 0.778 0.815
Unsup MVSNet [17] 0.317 0.384 0.402
M3VSNet [15] 0.603 0.769 0.857
JDACS-MS [41] 0.553 0.705 0.786
RC-MVSNet [5] 0.730 0.795 0.863

CL-MVSNet(Ours) 0.757 0.829 0.868

Table 2. Quantitative results on DTU evaluation set. Best results
in each category are in bold.

Method Acc.↓ Comp.↓ Overall↓

Supervised

SurfaceNet [16] 0.450 1.040 0.745
MVSNet [50] 0.396 0.527 0.462
CasMVSNet [13] 0.325 0.385 0.355
PatchmacthNet [35] 0.427 0.277 0.352
CVP-MVSNet [49] 0.296 0.406 0.351
UCS-Net [7] 0.338 0.349 0.344

Multi-stage
Self-supervised

Self-sup CVP [47] 0.308 0.418 0.363
U-MVSNet [42] 0.354 0.3535 0.3537
KD-MVS [10] 0.359 0.295 0.327

End-to-end
Unsupervised

Unsup MVSNet [17] 0.881 1.073 0.977
MVS2 [8] 0.760 0.515 0.637
M3VSNet [15] 0.636 0.531 0.583
DS-MVSNet [21] 0.374 0.347 0.361
JDACS-MS [41] 0.398 0.318 0.358
RC-MVSNet [5] 0.396 0.295 0.345
CL-MVSNet(Ours) 0.375 0.283 0.329

the quantitative reconstruction results on DTU as shown in
Tab. 2, our CL-MVSNet architecture achieves the best com-
pleteness and overall score among all end-to-end unsuper-
vised methods. It is worth noting that CL-MVSNet also out-
performs its supervised counterpart CasMVSNet [13]. The
qualitative results of the depth estimation shown in Fig. 8
and the 3D point cloud reconstruction shown in Fig. 9 also
verify the advantages of our model.

4.4. Benchmark Results on Tanks&Temples

In line with existing methods, we test our method on
the Tanks&Temples benchmark to verify the generalization
ability. The quantitative results on Tanks&Temples are re-
ported in Tab. 3. Our method achieves SOTA performance
among all existing end-to-end unsupervised MVS methods.
Our method also surpasses the supervised counterpart Cas-
MVSNet [13]. The qualitative reconstruction results are vi-
sualized in Fig. 10. Fig. 11 shows a qualitative comparison
of reconstruction quality with other methods. The perfor-
mance on Tanks&Temples shows the generalizability and
robustness of our model.

3775



RC-MVSNet Ground truthCasMVSNet CL-MVSNet(Ours)Reference Image

Sc
an

 7
7

Sc
an

 1

Figure 8. Inferred depth map comparison on DTU [1]. Compared with the SOTA unsupervised method [5] and the supervised counterpart
[13], CL-MVSNet gains more accurate depth maps.
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Figure 9. Comparison of reconstructed results on scan48 of DTU benchmark [1]. CL-MVSNet reconstructs more complete results
than the SOTA unsupervised method [5] and the supervised counterpart [13].

Table 3. Quantitative results of F-score on Tanks&Temples benchmark.
Intermediate Advance

Method Mean↑ Fam.↑ Fra.↑ Hor.↑ Lig.↑ M60↑ Pan.↑ Pla.↑ Tra.↑ Mean↑ Aud.↑ Bal.↑ Cou.↑ Mus.↑ Pal.↑ Tem.↑

Traditional

COLMAP [31, 32] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
ACMM [44] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
ACMP [46] 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25 37.44 30.12 34.68 44.58 50.64 27.20 37.43
ACMMP [43] 59.38 70.93 55.39 51.80 63.83 55.94 59.47 59.51 58.20 37.84 30.05 35.36 44.51 50.95 27.43 38.73

Supervised

MVSNet [50] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -
PatchmatchNet [35] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
CVP-MVSNet [49] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
UCS-Net [7] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -
CasMVSNet [13] 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56 31.12 19.81 38.46 29.10 43.87 27.36 28.11

Multi-stage
Self-supervised

Self-sup CVP [47] 46.71 64.95 38.79 24.98 49.73 52.57 51.53 50.66 40.45 - - - - - - -
U-MVSNet [42] 57.15 76.49 60.04 49.20 55.52 55.33 51.22 56.77 52.63 - - - - - - -
KD-MVS [10] 64.14 80.42 67.42 54.02 64.52 64.18 61.60 62.37 58.59 37.96 27.24 44.10 35.47 49.16 34.68 37.11

End-to-end
Unsupervised

MVS2 [8] 37.21 47.74 21.55 19.50 44.54 44.86 46.32 43.38 29.72 - - - - - - -
M3VSNet [15] 37.67 47.74 24.38 18.74 44.42 43.45 44.95 47.39 30.31 - - - - - - -
JDACS-MS [41] 45.48 66.62 38.25 36.11 46.12 46.66 45.25 47.69 37.16 - - - - - - -
DS-MVSNet [21] 54.76 74.99 59.78 42.15 53.66 53.52 52.57 55.38 46.03 - - - - - - -
RC-MVSNet [5] 55.04 75.26 53.50 45.52 53.49 54.85 52.30 56.06 49.37 30.82 21.72 37.22 28.62 37.37 27.88 32.09
CL-MVSNet(Ours) 59.39 76.35 62.37 49.93 60.02 57.44 59.97 56.74 52.28 37.03 28.07 43.55 37.47 50.86 31.45 30.78

4.5. Ablation Study

We perform an ablation study to confirm the effective-
ness of each part in our model under different configu-
rations as shown in Tab. 4. Applying the image-level
contrastive consistency loss to the model leads the model

to be more context-aware for indistinguishable regions,
which enhances the robustness and generalizability. Be-
sides, the model combined with the scene-level contrastive
consistency loss tends to perform better in areas of view-
dependent effects, thus gaining more accurate and complete
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Figure 10. Qualitative results on Tanks&Temples [19].
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Figure 11. Qualitative comparison of reconstruction quality on
Tanks&Temples benchmark [19]. Darker regions contain larger
errors. CL-MVSNet yields better performance than the SOTA un-
supervised methods [5, 41] and the supervised counterpart [13].

reconstruction results. Moreover, L0.5 photometric consis-
tency loss further advances the CL-MVSNet, which guides
to model to focus on accurate points, resulting in an im-
provement in the accuracy of the model. More ablation
studies are included in Supplementary Materials.

4.6. Efficiency Comparison to SOTA Multi-stage
Self-supervised Method

As aforementioned, multi-stage self-supervised methods
cannot be trained end-to-end. Specifically, KD-MVS [10]
takes several training rounds for distillation, needs complex
pre-training and pre-processing before each round, uses ad-
ditional dataset [52] for pseudo label generation, and re-
quires extra storage space to save the pseudo labels. With-
out the above limitations, our method adopts the same back-
bone as theirs, but converges and achieves competitive re-
sults in just 16 epochs, with a training time of only 10 hours
per epoch on one single NVIDIA Tesla V100.

5. Conclusion and Limitation

Conclusion. We have presented an effective unsupervised
approach for Multi-View Stereo, termed as CL-MVSNet,
which leverages dual-level contrastive learning to handle

Table 4. Ablation study of different components of our pro-
posed CL-MVSNet on DTU [1].

LPC LDA [41] LICC LSCC L0.5PC Acc.↓ Comp.↓ Overall↓

✓ ✓ 0.422 0.334 0.378
✓ ✓ 0.403 0.315 0.359
✓ ✓ ✓ 0.392 0.286 0.339

✓ ✓ ✓ 0.375 0.283 0.329

the issues of indistinguishable regions and view-dependent
effects. For indistinguishable regions, we propose an
image-level contrastive branch to encourage the model
to take more contextual information into account. For
view-dependent effects, a scene-level contrastive branch is
adopted to boost the robustness. Besides, we explore an
L0.5 photometric consistency loss to emphasize the penalty
of accurate points, resulting in more accurate reconstruc-
tion. We experimentally demonstrate that CL-MVSNet out-
performs all SOTA end-to-end unsupervised MVS meth-
ods and the supervised counterpart on the DTU [1] and
Tanks&Temples [19] benchmarks.
Limitation. Our model has addressed the limitations of in-
distinguishable regions and view-dependent effects, but the
accurate depth estimation in object edge areas remains a
challenge. It is worth noting that this is a common prob-
lem in unsupervised MVS methods. To mitigate this issue,
we adopt an edge-aware depth smoothness loss proposed
in [17], which is based on the assumption that the gradient
maps of the input reference image and the inferred depth
map should be similar. However, this simple assumption
may be invalid in many cases. For instance, there may be
significant color gradient changes within the same object.
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