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Abstract

For video models to be transferred and applied seam-
lessly across video tasks in varied environments, Video Un-
supervised Domain Adaptation (VUDA) has been intro-
duced to improve the robustness and transferability of video
models. However, current VUDA methods rely on a vast
amount of high-quality unlabeled target data, which may
not be available in real-world cases. We thus consider
a more realistic Few-Shot Video-based Domain Adapta-
tion (FSVDA) scenario where we adapt video models with
only a few target video samples. While a few methods
have touched upon Few-Shot Domain Adaptation (FSDA)
in images and in FSVDA, they rely primarily on spatial
augmentation for target domain expansion with alignment
performed statistically at the instance level. However,
videos contain more knowledge in terms of rich tempo-
ral and semantic information, which should be fully con-
sidered while augmenting target domains and perform-
ing alignment in FSVDA. We propose a novel SSA2lign
to address FSVDA at the snippet level, where the target
domain is expanded through a simple snippet-level aug-
mentation followed by the attentive alignment of snippets
both semantically and statistically, where semantic align-
ment of snippets is conducted through multiple perspec-
tives. Empirical results demonstrate state-of-the-art per-
formance of SSA2lign across multiple cross-domain ac-
tion recognition benchmarks. Code will be provided at:
https://github.com/xuyu0010/SSA2lign.

1. Introduction
Video Unsupervised Domain Adaptation (VUDA) [4, 7,

51, 46, 53] aims to improve the generalizability and robust-
ness of video models by transferring knowledge to new do-
mains, and is widely applied in scenarios where massive
labeled videos are unavailable. Current VUDA methods
assume that sufficient target data are accessible which en-
ables domain alignment by minimizing cross-domain distri-
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bution discrepancies and obtaining domain invariant repre-
sentations [4, 7, 54]. However, this assumption may not be
feasible in real-world applications such as in smart hospitals
and security surveillance where video models are leveraged
for anomaly behavior recognition [35, 32], and are expected
to be functional at all times even across different environ-
ments. It is more practical to obtain a few labeled videos
during the early stage of model deployment to improve the
transferred models’ performances in the new (target) envi-
ronment. A Few-Shot Video Domain Adaptation (FSVDA)
task is hence formulated to enable knowledge learned from
labeled source video to be transferred to the target video
domain given only very limited labeled target videos.

With only several target domain samples, FSVDA is
more challenging than VUDA, since aligning distributions
with limited samples is harder. A few research have
touched on the image-based Few-Shot Domain Adaptation
(FSDA) [27, 45, 49, 11] by domain alignment, e.g., mo-
ment matching or adversarial training, between a spatial-
augmented target domain and a filtered target-similar source
domain. More recently, there have been a few early research
on FSVDA [12, 13] which extends the above strategies to
videos by viewing each video sample as a whole and ob-
taining frame-based video features.

However, there are two major shortcomings when the
image-based FSDA is applied to video domains. Firstly, ap-
plying frame-level spatial augmentation towards individual
video frames ignores and undermines temporal correlation
across sequential frames, and we find that such augmenta-
tion would result in only minor or even negative effects on
FSVDA performance. Secondly, the effectiveness of do-
main alignment methods is built upon sufficient source do-
main and target domain data that depicts the distribution
discrepancy, which is not available in FSVDA. Even worse,
statistical estimation of video data distribution is less accu-
rate due to the complicated temporal structure of video data.
In this paper, we aim to overcome these two challenges by
designing more effective target domain augmentation and
semantic alignment in the spatial-temporal domain.

To this end, we propose to address the FSVDA task
by a Snippet-attentive Semantic-statistical Alignment with
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Stochastic Sampling Augmentation (SSA2lign). Instead of
aligning features of whole video samples at the video level
or frame level [12, 13], we align source and target video fea-
tures at the snippet level. Snippets are formed from a lim-
ited series of adjacent sequential frames, thus they contain
both spatial and short-term temporal information. Lever-
aging snippet features for FSVDA brings two unique ad-
vantages: i) a larger amount of target domain samples could
be obtained via spatial-temporal augmentations on snippets,
obtaining more diverse features across the temporal dimen-
sion; ii) additional alignment of the diverse but highly cor-
related snippet features of each video could further improve
the discriminability of the corresponding videos, which
has been proven to benefit the effectiveness of video do-
main adaptation [6, 59, 21, 53]. SSA2lign is therefore pro-
posed. It firstly augments the source and target domain data
by a simple yet effective stochastic sampling process that
makes full use of the abundance of snippet information and
then performs semantic alignment from three perspectives:
alignment based on semantic information within each snip-
pet, cross-snippets of each video, and across snippet-level
data distribution. Our method is demonstrated to be very
effective for the FSVDA problem, surpassing state-of-the-
art methods by large margins on two VUDA benchmarks.

In summary, our contributions are threefold. (i) We pro-
pose a novel SSA2lign to address FSVDA at the snippet
level by both statistical and semantic alignments that are
achieved from three perspectives. (ii) We propose to aug-
ment target domain data and the snippet-level alignments
by a simple yet effective stochastic sampling of snippets for
more robust video domain alignment. (iii) Extensive exper-
iments show the efficacy of SSA2lign, achieving a remark-
able average improvement of 13.1% and 4.2% over current
state-of-the-art FSDA/FSVDA methods on two large-scale
cross-domain action recognition benchmarks.

2. Related Work
(Video) Unsupervised Domain Adaptation ((V)UDA).
Current UDA and VUDA methods aim to transfer knowl-
edge from the source to the target domain given that both
domains contain sufficient data, improving the transferabil-
ity and robustness of models [50, 57]. They could be gen-
erally divided into four categories: a) reconstruction-based
methods [14, 56], where domain-invariant features are ob-
tained by encoders trained with data-reconstruction objec-
tives; b) adversarial-based methods [4, 51, 7], where feature
generators obtain domain-invariant features leveraging do-
main discriminators, trained jointly in an adversarial man-
ner [17, 10]; c) semantic-based methods [58, 53], which ex-
ploit the shared semantics across domains such that domain-
invariant features are obtained; and d) discrepancy-based
methods [33, 62], which mitigate domain shifts by apply-
ing metric learning, minimizing metrics such as MMD [25]

and CORAL [36]. With the introduction of cross-domain
video datasets such as Daily-DA [54] and Sports-DA [54],
there has been a significant increase in research interest for
VUDA [29, 5]. Despite the gain in video model robustness
thanks to VUDA methods, they all assume that sufficient
target data are accessible, which may not be feasible in real-
world cases where a large amount of superior unlabeled tar-
get data are not available. A more related VUDA method
concerns SAVA [7] which also utilizes the clips to design
a self-supervised learning task (clip order prediction), but
the adaptation is still performed with the video-level fea-
ture. We differ from SAVA [7] where our alignment is per-
formed at the snippet level considering three different per-
spectives: within each snippet, cross-snippets of each video,
and across snippet-level data distribution, therefore leading
to better performances in FSVDA.
Few-Shot (Video) Domain Adaptation (FS(V)DA). It is
more practical to obtain a few labeled target data to aid
video models to adapt. There have been a few research that
explores image-based FSDA. Among them, FADA [27] is
adversarial-based and augments the domain discriminator
to classify 4 types of source-target pairs. d-SNE [49] learns
a latent space through SNE [16] with large-margin nearest
neighborhood [9], and utilizes spatial augmentations to cre-
ate sibling target samples. AcroFOD [11] explores FSDA
for object detection by applying multi-level spatial aug-
mentation and filtering target-irrelevant source data. There
are also works as in [63, 38, 37, 60] that combine domain
adaptation (DA) with few-shot learning (FSL), yet we differ
them in the assumption of similar target and source classes
and only limited target data accessible, which is more real-
istic. More recently, there have been a few early research
on FSVDA, including PASTN [12] that constructs pairwise
adversarial networks performed across source-target video
pairs, while PTC [13] further leverages optical flow fea-
tures. Both PASTN and PTC obtain video features from
a frame-based video model. Despite some advances made
in FS(V)DA, the above methods have not tackled FSVDA
effectively by leveraging the rich temporal information as
well as semantic information embedded within videos. We
propose to engage in FSVDA by augmenting and attentively
aligning snippet-level features which contain temporal in-
formation via both semantic and statistical alignments.

3. Proposed Method
For Few-Shot Video Domain Adaptation, we are given a

labeled source domain DS = {(VS,i, yS,i)}NS
i=1 with suffi-

cient NS i.i.d. source videos across C classes, characterized
by a probability distribution of pS . We are also given a la-
beled target domainDT = {(VT,j , yT,j)}NT

j=1 with a limited
number of NT ≪ NS i.i.d. target videos across the same C
classes, where each video class only contains k target video
samples (corresponding to the k-shot Video Domain Adap-
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tation task), thus NT = k × C. DT is characterized by a
probability distribution of pT .

Owing to the absence of sufficient target data and the
lack of target information, FSVDA is more challenging than
VUDA. Current VUDA methods [4, 51] that are primarily
moment matching-based are ineffective without target in-
formation for domain alignment. FSVDA should be tack-
led by leveraging the temporal information of videos fully
for more temporally diverse features while aligning with the
embedded semantic information to improve video discrim-
inability for effective video domain adaptation. We propose
SSA2lign, a novel method to transfer knowledge from the
source domain to the target domain with only limited la-
beled target data by obtaining, augmenting, and aligning
snippet features attentively. We start by introducing how
snippet features are obtained and augmented through the
Stochastic Sampling Augmentation (SSA), followed by a
detailed illustration of the proposed SSA2lign.

3.1. Snippet Features with the Stochastic Sampling
Augmentation

The key to effective target domain expansion and do-
main alignment in FSVDA is to obtain and augment fea-
tures with temporal information such that the augmented
features are diverse temporally. While various spatial aug-
mentation methods (e.g., color jittering, flipping, cropping)
have been adopted in supervised action recognition thanks
to their capability in improving the robustness of video
models, and in prior FSDA for expanding the target domain
DT , they are performed at the frame-level across randomly
selected individual frames. Meanwhile, the temporal infor-
mation corresponds to the correlation of sequential frames
and would be undermined by spatial augmentation since se-
quential frames may not be equally augmented. Augmenta-
tions for FSVDA must be performed above the frame level.

Snippets are formed from a limited series of adjacent
sequential frames and have been utilized in multiple su-
pervised action recognition methods (e.g., TSN [44] and
STPN [48]) thanks to their ability in including both spatial
and short-term temporal information. Therefore, we align
source and target video features at the snippet level. Math-
ematically, given a target video V = [f1, f2, ..., fn] that
contains n frames, we denote the i-th frame as f i. We de-
note the length of a snippet s to be m, then video V would
contain n − m + 1 snippets in total. We define a snippet
sj = [f j , f j+1, ..., f j+m−1] as the snippet starting from
the j-th frame. While given only NT = k×C target videos,
there are NT×(n−m+1) target snippets, which can greatly
expands the target domain for domain alignment while pre-
serving essential temporal information.

While the target domain is largely expanded, utilizing
all snippets for alignment is computationally inefficient (a
10-second 30-fps video contains more than 290 8-frame

snippets). Moreover, snippets that are obtained adjacently
would differ over only ONE frame, resulting in high redun-
dancy in temporal information. To ensure that diverse tem-
poral information is utilized, we adopt a simple Stochastic
Sampling Augmentation (SSA) over the snippets. Formally,
during training we sample r > 1 snippets sab stochastically
per target video per mini-batch, where a ∈ [1, n −m + 1]
denotes the starting frame of the snippet and b ∈ [1, r] de-
notes the b-th snippet sampled. SSA further ensures that the
sampled snippets are diverse from two perspectives. Firstly,
SSA samples snippets with a minimum of m̂ difference be-
tween the starting frame of any two snippets from the same
target video, that is ∀bx ∈ [1, r], by ∈ [1, r] with bx ̸= by ,
we set |ax − ay| ⩾ m̂. Secondly, since there are more
source videos than target videos during training, it is likely
that the same target video would be encountered across dif-
ferent mini-batches. SSA ensures that different snippets are
sampled each time the same target video is included in a
mini-batch across the same training epoch.

The SSA is also applied to the source videos to obtain
source snippets. However, since there are sufficient source
videos, it is more reasonable and efficient to exploit source
knowledge with different source videos rather than the dif-
ferent snippets of a source video that would contain redun-
dant source knowledge. Therefore, we only sample r = 1
snippet stochastically per source video via SSA.

Another crucial step towards transferring source knowl-
edge to the target domain is to obtain rigorous snippet fea-
tures that include both spatial and temporal information. We
resort to the Transformer-based TimeSFormer [2] which ex-
tracts spatial and temporal features with separate space-time
attention blocks based on self-attention [41]. While various
Transformer-based video models achieve competitive per-
formances on action recognition, TimeSFormer possesses
the least amount of parameters, requiring only 60% param-
eters of Swin [24] and only 40% parameters of ViViT [1].
The feature of snippet sab is fb = Time(sab ) where Time
denotes the TimeSFormer.

3.2. Snippet-attentive Semantic-statistical Align-
ment with SSA

With the absence of sufficient target data, conventional
VUDA methods that are primarily moment matching-based
would not be fully effective since target data distribution is
unknown. Alternatively, we tackle FSVDA at the snippet
level by aligning the embedded semantic information from
three perspectives: aligning based on the semantic informa-
tion within each snippet, cross-snippets of each video, and
across snippet-level data distribution. Statistical alignment
is also adopted for more stable domain alignment, while
both alignments attend to the more impactful snippets.

Following the above strategy, we propose the Snippet-
attentive Semantic-statistical Alignment (SSAlign), with
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Figure 1. Pipeline of SSA2lign. Source and target snippets are first obtained through the Stochastic Sampling Augmentation, whose
features are obtained through the shared feature extractor. SSA2lign then aligns the source and target domains at the snippet level with
the Semantic-statistical Alignment, while weighing the impact of different target snippets through snippet attention, whose weight is built
based on the output prediction of target snippets, obtained from a shared classifier with source snippets. The blue and orange lines imply
the data flow for source and target videos respectively.

the input obtained through SSA introduced in Sec. 3.1,
forming the SSA2lign. The overall pipeline of SSA2lign
is presented in Fig. 1. We obtain the augmented source and
target snippets through SSA whose features are extracted by
applying TimeSFormer. We denote a source snippet from
the i-th source video as sS,i and its feature as fS,i, while the
l-th target snippet (l ∈ [1, r]) from the j-th target video as
sT,jl and its feature as fT,jl. The superscript of the snip-
pet expression is omitted for clarity. Domain alignment is
achieved by performing both the Semantic Snippet Align-
ment and the Statistical Snippet Alignment. The snippet at-
tention is applied to the augmented target snippets to weigh
the snippets dynamically. The TimeSFormer feature extrac-
tor Time is shared across source and target domains while
a shared classifier H outputs a prediction o for the source
and target snippets, optimized through a cross-entropy loss:

Lpred =
1

NS

∑NS

i=1
lce(oS,i, yS,i)

+
1

NT × r

∑NT

j=1

∑r

l=1
lce(oT,jl, yT,j),

(1)

where oS,i = σ(H(fS,i)) and oT,jl = σ(H(fT,jl)) are the
output predictions of snippet features fS,i and fT,jl, while σ
denotes the SoftMax function.
Semantic Snippet Alignment. The purpose of applying
semantic alignment at the snippet level is to match the em-
bedded semantic information (e.g., each individual feature
or characteristic over a set of features) across source and
target domains. Since both domains share the same TimeS-
Former feature extractor, this implies that for each indi-
vidual snippet feature, those of the same class should be
close together across both domains. However, it is compu-
tationally expensive to compute the distances between each
source and target snippet features given their large quantity.
Inspired by the Prototypical Network [34, 23] designed for
few-shot learning [65, 43], we resort to a more efficient so-
lution where semantic alignment across each snippet is per-

formed by minimizing the distance between source snippet
features and target prototypes. The target prototypes are ob-
tained for each individual class Cx as the mean feature of
all target snippet features classified as Cx, formulated as:

Prx =
1

nT,x

∑
∀sT,jl∈Cx

fT,jl, (2)

where nT,x is the number of target snippets classified as
class Cx. For stable and effective alignment, the snippet
features for computing the target prototypes are obtained
after e training epochs. Target prototypes are subsequently
updated per epoch by their exponential moving average as:

Prx ← λPPrx + (1− λP )Pr′x, (3)

where Prx and Pr′x denote the target prototype of class
Cx computed at the current and previous epochs. Align-
ing source snippet features towards target prototypes is thus
achieved by minimizing the Euclidean distances between
them and denoted as the prototype alignment loss as:

Lproto =
1

NS

∑C

x=1

∑nS,x

i=1

√
(fS,i − Prx)2. (4)

nS,x is the number of source snippets classified as class Cx.
Besides the capability of obtaining temporally diverse

features via SSA, leveraging snippet features for FSVDA
is also more advantageous due to the inclusion of addi-
tional semantic information that exists across the diverse
but highly correlated snippet features obtained from the
same video, which should also be aligned. However, since
we aim to exploit more source information with different
source videos, the source cross-snippet semantic informa-
tion cannot be directly obtained. Alternatively, the cross-
temporal hypothesis introduced in [53] provides a thorough
description of the cross-snippet semantic information for
the source videos. Therefore, the equivalence of aligning
the cross-snippet semantic information across source and
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target domains is to align the cross-snippet semantic infor-
mation of the target domain to the cross-temporal hypoth-
esis, that is the snippet features over the snippets obtained
from the same target video through SSA must be consistent.
Meanwhile, aligning the cross-temporal hypothesis would
also drive target videos to be discriminative, while previous
studies [6, 59, 21, 53] have proven that improving discrim-
inability can benefit the effectiveness of domain adaptation.

Formally, the cross-snippet consistency is achieved by
minimizing the Kullback–Leibler (KL) divergence of the
predictions of target snippets corresponding to the same tar-
get video. It is computed between each snippet against the
key snippet of each target video, which is identified such
that it is classified correctly and is certain in its prediction
(i.e., low prediction entropy). In cases where no snippets are
classified correctly, the snippet with the lowest prediction
entropy is identified as the key snippet. The cross-snippet
consistency loss is computed as:

Lcross =
1

NT (r−1)

NT∑
j=1

r∑
l=1,l ̸=k

KL(log(oT,jy)∥ log(oT,jl)), (5)

where KL(p∥q) denotes the KL-divergence while y denotes
y-th snippet corresponding to the target video VT,j identi-
fied as the key snippet.

Aligning semantically via matching the characteristics
over differed snippet features could be further performed
across the snippet-level data distribution. Since source
snippets for training are obtained stochastically at each
training epoch, semantic information embedded across the
source snippet-level data distribution changes continuously,
and would therefore be ineffective for the target snippet-
level data distribution to be directly aligned. Alternatively,
snippet features that are highly discriminative would im-
ply effective domain adaptation since it has been proven
that improving discriminability benefits domain adapta-
tion [6, 59, 21, 53]. We thus aim to drive the feature extrac-
tor towards obtaining snippet features that are distributed
more discriminatively. Specifically, results in model ro-
bustness [61] suggest that the discriminability of features
can be improved if the feature extractor behaves linearly
in-between training samples. The linear in-between behav-
ior can be complied by employing the interpolation consis-
tency training (ICT) technique [42] across both source and
target snippets, which encourages the linearly interpolated
features to produce a linearly interpolated prediction. For-
mally, given a pair of snippet features f∗, f∗′ , and their cor-
responding output predictions o∗, o∗′ , the ICT is conducted
with the following process and optimization loss:

f̃ = λvf∗ + (1− λv)f∗′ .

õ = λvo∗ + (1− λv)o∗′ .

LICT (∗, ∗′) = lce(σ(H(f̃)), õ),

(6)

Algorithm 1 Training with SSA2lign for FSVDA
Input: DS = {(VS,i, yS,i)}

NS
i=1, DT = {(VT,j , yT,j)}

NT
i=1, NT ≪ NS .

1: while Training do
2: Obtain r target snippets sT,jl from VT,j and one source snippet sS,i from

VS,i via SSA.
3: Obtain features fS,i, fT,jl, predictions oS,i, oT,jl.
4: Compute prediction loss as Eq. 1.
5: Obtain snippet attention as Eq. 9 and normalize. Update fT,jl to f ′T,jl.
6: if epoch > e then
7: Obtain target prototypes Prx as Eq. 2.-3.
8: Compute prototype alignment loss as Eq. 4.
9: end if

10: Compute cross-snippet consistency loss as Eq. 5.
11: Compute snippet distribution loss as Eq. 6-7.
12: Compute and optimize overall loss as Eq. 8.
13: end while
Output: Trained feature extractor Time and classifier H .

where λv ∈ Beta(αv, αv) is the weight assigned to fT,j1l1

sampled from a Beta distribution with αv as the parame-
ter. We refer to previous works [22, 55] and set αv = 0.3.
f̃ and õ are the linearly interpolated features and the inter-
polated output predictions. In practice, we drive snippets
to comply with the linear in-between behaviour by forming
a single stochastic snippet pair for every snippet, forming
(NT×r+NS) snippet pairs. Aligning the snippet-level data
distribution with the linear in-between behavior is achieved
by optimizing the snippet distribution loss as:

Lsn−dist =
1

NT×r+NS

∑
∗,∗′∈{i∪jl} LICT (∗, ∗′). (7)

It is possible that a snippet pair will include two snippets
from the same target video. In such case, the correspond-
ing LICT across the snippet pair can be viewed as a low-
ordered cross-snippet consistency loss. This implies that
optimizing Lcross and Lsn−dist share the common goal of
improving feature discriminability for more effective video
domain adaptation.
Statistical Snippet Alignment. To improve the stability
of snippet-level alignment, we adopt a statistical alignment
strategy apart from the aforementioned semantic alignment
strategies. The statistical alignment is performed by mini-
mizing the snippet-level distribution discrepanciesLsn−stat

formulated as metrics such as MMD [25], CORAL [36],
and MDD [62]. Compared to the adversarial-based adapta-
tion strategy more commonly used in prior VUDA tasks [4,
51, 7], minimizing discrepancies does not require additional
network structures (e.g., domain classifiers), thus is more
stable. The MDD [62] metric is empirically selected. The
overall optimization loss function for FSVDA is therefore:

L = Lpred + λsem(Lproto + Lcross + Lsn−dist) + λstatLsn−stat,

(8)
where λsem and λstat are the tradeoff hyper-parameters for
the semantic and statistical snippet alignment losses.
Snippet Attention. With multiple snippets leveraged per
target video for both semantic and statistical snippet align-
ments, it is unreasonable to leverage each snippet equally
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Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.86 32.58 31.11 44.58 57.08 45.83 36.50 30.00 34.50 61.66 58.90 75.72 45.53 91.66 91.07 76.37 77.74 87.77 85.12 84.95
TSF w/ T - 39.57 39.49 39.41 61.67 62.92 62.50 41.50 38.75 36.50 77.79 80.28 83.59 55.33 92.48 93.42 78.95 79.05 88.02 87.00 86.49
TRX CVPR-21 31.42 31.42 31.03 42.08 49.17 44.00 31.25 30.00 26.75 69.10 73.10 65.52 43.74 87.07 86.49 76.95 73.47 83.13 83.76 81.81
STRM CVPR-22 33.83 32.35 32.89 43.33 50.83 44.417 30.75 29.50 28.25 72.14 74.62 68.97 45.16 91.54 90.01 78.58 75.16 86.90 84.63 84.47
HyRSM CVPR-22 38.09 35.38 33.75 45.83 54.58 48.17 33.75 31.50 29.50 75.17 76.14 70.34 47.68 92.71 90.72 79.53 76.68 87.05 84.88 85.26
DANN ICML-15 37.47 39.72 38.56 65.42 61.67 55.83 43.75 41.25 42.00 73.66 79.17 83.17 55.14 93.06 92.13 79.21 81.32 85.53 88.63 86.65
MK-MMD ICML-15 35.30 42.75 35.61 64.17 63.33 56.67 44.00 41.75 36.50 76.69 81.93 79.86 54.88 92.60 93.42 80.74 77.84 84.76 88.12 86.25
MDD ICML-19 42.51 42.28 42.90 64.58 64.17 57.92 45.00 39.50 37.75 75.17 81.52 84.28 56.47 93.18 93.07 78.47 79.105 86.70 87.72 86.37
SAVA ECCV-20 39.18 41.66 41.74 63.33 63.33 60.00 42.75 41.50 39.25 77.52 81.24 80.69 56.02 93.30 91.54 79.26 80.47 87.61 87.51 86.62
ACAN TNNLS-22 43.83 43.76 43.68 65.42 66.67 66.25 45.75 43.00 40.75 82.48 84.97 84.41 59.25 95.77 96.71 80.16 80.26 88.33 88.58 88.30
FADA NeurIPS-17 39.10 42.13 32.35 46.25 58.75 47.50 37.25 30.75 35.25 77.24 81.10 77.52 50.43 93.66 93.66 76.95 78.32 88.74 86.09 86.23
d-SNE CVPR-19 41.58 44.07 38.01 67.08 65.42 61.67 44.50 43.25 41.00 78.76 82.76 83.45 57.63 95.42 94.83 81.11 82.32 89.76 83.51 87.82
SSA2lign - 52.13 52.21 51.75 78.33 75.42 74.58 47.75 46.75 48.25 84.69 86.48 89.66 65.67 98.59 98.24 87.26 88.11 92.97 93.02 93.03

Table 1. Results for 10-shot (k = 10) FSVDA on Daily-DA and Sports-DA. Note that TSF is trained with only source data, while TSF w/T
is trained with both source data and k target videos. Same for subsequent tables.

Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.86 32.58 31.11 44.58 57.08 45.83 36.50 30.00 34.50 61.66 58.90 75.72 45.53 91.66 91.07 76.37 77.74 87.77 85.12 84.95
TSF w/ T - 40.19 40.03 37.08 60.04 60.04 52.96 34.75 36.00 33.25 79.45 66.21 69.10 50.76 91.89 93.30 78.74 78.32 87.97 86.80 86.17
TRX CVPR-21 32.79 30.26 28.99 39.43 47.45 40.35 29.00 27.75 24.75 69.55 63.03 55.88 40.77 86.53 86.96 76.34 70.95 81.83 80.41 80.50
STRM CVPR-22 35.32 32.51 30.98 40.15 47.49 39.30 27.25 26.25 26.50 72.49 62.58 57.78 41.55 91.00 90.02 77.84 73.49 86.38 82.14 83.48
HyRSM CVPR-22 39.07 35.09 31.06 42.74 52.10 43.74 31.00 29.25 28.00 75.65 63.89 58.60 44.18 92.17 90.77 79.12 75.27 86.25 81.71 84.22
DANN ICML-15 40.50 38.79 36.39 60.83 58.75 52.92 41.75 38.50 39.75 74.35 66.76 69.66 51.58 92.25 93.07 78.42 75.63 85.12 82.16 84.44
MK-MMD ICML-15 38.87 43.91 34.60 58.33 57.08 54.58 42.25 35.00 35.50 75.31 68.14 69.38 51.08 92.01 93.18 78.74 75.00 84.51 83.49 84.49
MDD ICML-19 41.89 42.67 38.40 61.25 62.50 55.42 43.25 40.00 38.50 75.72 68.55 70.90 53.25 92.72 92.60 79.11 79.79 86.54 83.59 85.72
SAVA ECCV-20 40.96 37.24 38.25 60.00 62.92 55.83 40.75 38.75 35.25 77.79 67.45 68.97 52.01 92.48 92.83 78.05 76.21 83.13 81.70 84.07
ACAN TNNLS-22 44.45 44.30 41.35 63.33 63.33 56.25 39.00 40.25 37.50 80.55 70.90 73.79 54.58 95.18 96.59 79.95 79.53 88.18 88.38 87.97
FADA NeurIPS-17 40.75 41.58 30.07 43.03 55.53 41.06 33.00 27.00 32.50 77.79 67.19 64.74 46.19 93.01 93.86 76.04 76.17 87.50 83.38 84.99
d-SNE CVPR-19 41.99 44.16 35.74 64.93 63.37 56.94 41.25 41.75 39.75 79.45 72.53 73.30 54.60 94.99 94.73 80.98 81.77 89.37 81.75 87.27
SSA2lign - 52.37 51.98 47.40 76.67 72.92 70.42 47.00 46.25 47.50 86.76 79.31 81.79 63.36 97.06 97.89 84.05 86.21 91.18 90.21 91.10

Table 2. Results for 5-shot (k = 5) FSVDA on Daily-DA and Sports-DA.

Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.86 32.58 31.11 44.58 57.08 45.83 36.50 30.00 34.50 61.66 58.90 75.72 45.53 91.66 91.07 76.37 77.74 87.77 85.12 84.95
TSF w/ T - 37.94 34.14 33.05 51.25 58.75 46.67 37.75 34.50 35.25 74.07 60.41 63.72 47.29 91.17 92.83 75.37 76.58 86.60 85.37 84.65
TRX CVPR-21 24.68 23.33 25.06 32.05 43.34 30.23 28.00 27.50 23.25 66.19 52.09 49.38 35.42 84.90 86.30 71.85 69.97 80.82 79.78 78.94
STRM CVPR-22 28.04 24.18 26.92 33.85 45.02 30.04 25.75 26.00 25.00 69.14 52.13 50.49 36.38 89.64 89.18 73.72 72.50 85.68 81.63 82.06
HyRSM CVPR-22 30.94 27.14 26.97 35.67 48.42 34.36 30.00 28.75 26.50 71.71 52.93 50.58 38.66 90.68 90.24 74.73 73.27 84.71 81.05 82.45
DANN ICML-15 30.57 28.63 34.06 53.75 51.67 42.08 39.75 37.25 33.00 73.66 52.97 64.28 45.14 91.64 91.42 72.90 76.90 84.71 82.55 83.35
MK-MMD ICML-15 29.40 32.51 31.96 54.58 55.42 44.17 38.50 37.00 33.75 72.00 56.00 63.04 45.69 90.72 91.07 74.68 74.21 85.83 84.05 83.43
MDD ICML-19 31.65 33.59 34.52 54.17 56.67 47.08 42.25 38.50 34.75 70.62 56.14 59.45 46.62 91.42 92.72 74.37 74.90 82.82 82.93 83.19
SAVA ECCV-20 31.03 33.44 32.97 50.83 58.33 42.92 40.50 39.75 37.75 72.14 55.72 62.07 46.45 89.31 92.83 73.21 73.84 81.75 80.38 81.89
ACAN TNNLS-22 38.64 35.61 35.30 55.00 61.67 46.67 38.25 38.75 35.75 76.28 59.31 62.62 48.65 93.75 96.24 75.37 77.05 85.66 87.11 85.86
FADA NeurIPS-17 33.88 34.14 25.57 35.52 53.23 31.26 32.50 27.00 32.75 73.86 57.15 57.91 41.23 91.35 93.13 71.83 75.04 86.75 82.51 83.44
d-SNE CVPR-19 36.26 37.86 32.13 59.20 60.91 50.01 40.50 41.00 38.50 76.29 64.30 62.93 49.99 93.90 94.49 76.44 77.11 87.86 81.05 85.14
SSA2lign - 44.83 46.78 45.31 68.75 70.83 62.08 46.75 46.50 45.00 79.72 65.79 71.59 57.83 96.59 97.42 80.05 80.95 88.94 89.76 88.95

Table 3. Results for 3-shot (k = 3) FSVDA on Daily-DA and Sports-DA.

since it is intuitive that the importance of each target snippet
is uneven. We thus propose a snippet attention to weigh the
impact of different target snippets on the domain alignment
dynamically. Intuitively, a snippet whose output prediction
is the most accurate, i.e., whose classification is closest to
its given ground truth, should be focused during alignment.
A simple yet effective expression of how accurate the snip-
pet’s output prediction is would be the inverse of the cross-
entropy loss. The snippet attention weights are therefore
built upon the inverse of the cross-entropy loss of the snip-
pet, along with a residual connection for more stable opti-
mization, expressed as:

wjl = 1 +
1

lce(oT,jl, yj,T )
. (9)

The snippet attention weights are subsequently normalized
across the r snippets corresponding to the same target video,
expressed as wjl = wjl/

1
r

∑r
l′=1 wjl′ . The normalized

snippet attention weight wjl is then applied to the target
snippet features, forming the weighted target snippet fea-
tures by f ′T,jl = wjlfT,jl, which are then aligned with the
source domain through the semantic and statistical snippet
alignments by replacing the features fT,jl with f ′T,jl.
SSA2lign. Finally, we sum up our proposed SSA2lign in
Algorithm 1. The snippet features, SSA, and snippet at-
tention are leveraged only during training. During testing,
target video representations are obtained by uniform sam-
pling across the target testing videos, while the video fea-
tures and their output predictions are obtained by directly
applying the trained feature extractor and classifier to the
uniformly sampled target video representations.

4. Experiments
In this section, we evaluate our proposed SSA2lign

across two challenging cross-domain action recognition
benchmarks: Daily-DA and Sports-DA [54], which cover
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a wide range of cross-domain scenarios. We present supe-
rior results on both benchmarks. Further, ablation studies
and analysis of SSA2lign are also presented to justify the
design of SSA2lign. Code is provided in the appendix.

4.1. Experimental Settings

Daily-DA is a challenging dataset that has been lever-
aged in prior VUDA works [54, 53, 55]. It covers both
normal and low-illumination videos and is constructed
from four datasets: ARID (A) [52], HMDB51 (H) [20],
Moments-in-Time (M) [26], and Kinetics-600 (KD) [3].
HMDB51, Moments-in-Time, and Kinetics-600 are widely
used for action recognition benchmarking, while ARID is a
recent dark dataset, with videos shot under adverse illumi-
nation. Daily-DA contains 18,949 videos from 8 classes,
with 12 cross-domain action recognition tasks. Sports-
DA is a large-scale cross-domain video dataset, built from
UCF101 (U), Sports-1M (S) [18], and Kinetics-600 (KS),
with 40,718 videos from 23 action classes, and includes
6 cross-domain action recognition tasks. Refer to prior
FSDA/FSVDA works [12, 13, 11], we evaluate SSA2lign
on both benchmarks with k = (3, 5, 10) target videos per
action class (i.e., 3-shot, 5-shot and 10-shot VDA tasks).

For a fair comparison, all methods examined and ex-
periments conducted in this section adopt the TimeS-
Former [64] as the feature extractor, pre-trained on
Kinetics-400 [19]. All experiments are implemented with
the PyTorch [30] library. We set the length of snippets and
the number of snippets per target video via SSA empirically
as m = 8, r = 3. Hyper-parameters λsem, λstat and λP

are empirically set to 1.0, 1.0, and 0.6 and are fixed. More
specifications on benchmark details and network implemen-
tation are provided in the appendix.

4.2. Overall Results and Comparisons

We compare SSA2lign with state-of-the-art FSDA ap-
proaches, and prevailing UDA/VUDA and few-shot action
recognition (FSAR) approaches. These methods include:
FADA [27], d-SNE [49] designed for image-based FSDA;
DANN [10], MK-MMD [25], MDD [62], SAVA [7] and
ACAN [51], designed for UDA/VUDA; and TRX [31],
STRM [39], and HyRSM [47] proposed for FSAR. To adapt
the FSAR approaches for FSVDA, the source domain is
used for meta-training and the target domain is used for the
meta-testing, while target labels are available for optimizing
the cross-entropy loss to adapt UDA/VUDA approaches for
FSVDA. We also report the results of the source-only model
(denoted as TSF) by applying the model trained with only
source data directly to the target data; and the source with
few-shot target model (denoted as TSF w/ T) by optimizing
only the prediction loss Lpred for training. We report the
top-1 accuracy on the target domains, averaged on 5 differ-
ent settings of available target data randomly selected and

each with 5 runs (25 runs in total). Tables 1-3 show com-
parison of SSA2lign against the above methods.

Results in Tables 1-3 show that the novel SSA2lign
achieves the state-of-the-art results on all 18 cross-domain
action recognition tasks across both cross-domain bench-
marks, outperforming prior UDA/VUDA, FSDA or FSAR
approaches by noticeable margins. Notably, SSA2lign out-
performs all prior FSDA approaches originally designed for
image-based FSDA (i.e., FADA and d-SNE) consistently on
all tasks, by a relative average of 13% over the second-best
performances on Daily-DA (across 3 k-shot settings and 12
tasks), and a relative average of 4.2% on Sports-DA (across
3 k-shot settings and 6 tasks). The consistent improve-
ments justify empirically the effectiveness of augmenting
and aligning both semantic information and statistical dis-
tribution at the snippet level for FSVDA.

It is also observed that prior FSDA and UDA/VUDA
methods could not perform well on FSVDA tasks. No-
tably, even when k = 10 target videos are available per
class, all but one of the evaluated FSDA and UDA/VUDA
approaches result in performances inferior to that trained
with only Lpred without any adaptation (i.e., TSF w/ T).
Prior FSDA approaches do not incorporate temporal fea-
tures and their related semantic information, which are cru-
cial for tackling FSVDA, while UDA/VUDA methods are
not effective when target information is not fully available.
Negative improvements are more severe when k decreases.
It is also noted that at small k values (e.g., k = 3), the
performance of TSF w/ T could be inferior to that trained
without target data (i.e., TSF). This suggests that the few
target data could be outliers of the target domain, whose
distribution differs greatly from the other target data, result-
ing in a severe negative impact. Prior FSAR approaches
could not tackle FSVDA as well, producing even poorer re-
sults than all UDA/VUDA approaches examined. This can
be caused by domain shift that exists between data for the
meta-training and meta-testing. Feature extractors trained
via meta-training on the source domain could not be simply
applied to the meta-testing phase on the target domain.

4.3. Ablation Studies, Analysis, and Discussion

To gain a comprehensive understanding of SSA2lign and
justify its design, we perform extensive ablation studies
as in Tables 4-5. The ablation studies explore the effects
brought by its components, namely the semantic and sta-
tistical alignments, the SSA, and the snippet attention. It
further validates the alignment details by assessing against
5 variants: SSA2lign-CORAL and SSA2lign-MMD formu-
lateLsn−stat as CORAL [36] and MDD [62]; SSA2lign-FC
computes Lcross over all r × (r − 1) snippet pairs for the
same target video; SSA2lign-SP minimizes the distance be-
tween target snippet features and source class prototypes for
Lproto; SSAlign (w/ spatial aug.) augments target domain
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Methods Components Daily-DA Sports-DA
k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

SSA Sn-Attn Lproto Lcross Lsn−dist Lsn−stat H→A M→A KD→A H→A M→A KD→A H→A M→A KD→A U→S KS→S U→S KS→S U→S KS→S
Avg.

TSF w/ T 39.57 39.49 39.41 40.19 40.03 37.08 37.94 34.14 33.05 78.95 79.05 78.74 78.32 75.37 76.58 53.86
✓ 41.66 41.97 42.05 42.82 42.28 38.25 38.79 36.39 35.22 81.05 81.21 80.79 80.42 75.89 77.21 55.73

SSA2lign

✓ ✓ ✓ ✓ ✓ 45.62 46.32 45.70 46.47 45.69 41.74 39.17 40.96 39.49 84.32 85.47 81.05 83.58 77.26 77.37 58.68
✓ ✓ ✓ ✓ 51.05 51.13 50.43 50.97 50.73 46.39 43.59 45.85 44.22 86.58 87.37 83.21 85.63 79.32 80.37 62.46
✓ ✓ ✓ 49.88 49.81 49.73 50.35 49.26 45.07 42.19 44.53 42.90 85.58 86.74 82.74 84.74 78.69 79.47 61.45
✓ ✓ ✓ 50.19 50.50 49.65 50.27 49.88 45.77 42.66 45.15 43.06 85.84 87.05 82.58 85.05 78.95 79.58 61.75
✓ ✓ ✓ 48.18 48.57 46.86 47.56 48.09 43.29 40.64 42.51 41.97 84.68 85.95 81.95 83.74 77.74 78.63 60.03
✓ ✓ ✓ ✓ ✓ 51.36 51.44 50.89 51.82 51.43 46.55 43.90 46.00 44.92 86.68 87.63 83.63 85.69 79.69 80.42 62.80
✓ ✓ ✓ ✓ ✓ ✓ 52.13 52.21 51.75 52.37 51.98 47.40 44.83 46.78 45.31 87.26 88.11 84.05 86.21 80.05 80.95 63.43

Table 4. Ablation studies of the components of SSA2lign on 5 cross-domain tasks over Daily-DA and Sports-DA.

Methods
Daily-DA Sports-DA

k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

H→A M→A KD→A H→A M→A KD→A H→A M→A KD→A U→S KS→S U→S KS→S U→S KS→S
Avg. ∆ Avg. GFLOPS ∆ GFLOPS

SSA2lign-CORAL 51.90 51.98 51.51 51.98 51.58 47.09 44.52 46.39 45.07 87.05 87.84 83.90 86.00 79.90 80.68 63.16 -0.27 1302 -8
SSA2lign-MMD 51.67 51.90 51.28 51.98 51.51 47.01 44.52 46.32 44.84 87.05 87.84 83.84 85.90 79.79 80.63 63.07 -0.36 1312 +2
SSA2lign-FC 52.83 52.91 52.37 52.99 52.36 47.56 45.30 47.25 45.31 87.16 88.26 84.53 86.69 79.79 81.26 63.78 +0.35 1472 +162
SSA2lign-SP 50.97 51.20 50.97 51.28 51.27 46.47 43.82 45.62 44.69 86.90 87.42 83.37 85.74 79.26 80.47 62.63 -0.80 1390 +80
SSAlign (w/ spatial aug.) 45.38 46.70 45.23 45.77 45.84 41.12 39.63 40.26 38.64 83.53 85.63 80.58 83.37 76.95 77.74 58.43 -5.00 1325 +15
SSA2lign 52.13 52.21 51.75 52.37 51.98 47.40 44.83 46.78 45.31 87.26 88.11 84.05 86.21 80.05 80.95 63.43 - 1310 -

Table 5. Ablation studies of the alignment details of SSA2lign on 5 cross-domain tasks over Daily-DA and Sports-DA.

Figure 2. Sensitivity of hyper-parameters on U→S task.

through random spatial augmentation across the frames of
r snippets. The ablation studies are conducted on 5 tasks
over Daily-DA and Sports-DA. If SSA is not applied, we
sample r snippets sequentially from the 1st frame of each
target video and remain unchanged during training.
Semantic Alignment. As shown in Table 4, with only
snippet-level semantic alignment (whether in full or any one
of the three perspectives), the performance still surpasses all
previous FSDA and UDA/VUDA methods compared. This
conforms to our motivation that applying semantic align-
ment could tackle FSVDA more effectively. Moreover,
statistical alignment and snippet attention further improve
SSA2lign, but only by a marginal degree.
Superiority of SSA. Notably, a significant performance
drop is observed when SSA is not applied, which proves the
importance of expanding target domain data through SSA
for subsequent alignment. The importance of SSA is further
verified when we apply SSA for training with augmented

Methods
Sports-DA

k = 10 k = 5 k = 3

U→S KS→S U→S KS→S U→S KS→S
Avg.

ACAN+MixUp 80.63 80.89 80.42 79.79 75.95 77.37 79.18
ACAN+RandAugment 78.68 79.84 78.26 80.05 75.74 76.58 78.19
ACAN+TrivialAugment 81.53 81.05 80.53 80.68 76.84 77.63 79.71
ACAN+MixUp+TrivialAugment 82.16 81.95 81.21 81.58 78.05 78.32 80.55
SSA2lign 87.26 88.11 84.05 86.21 80.05 80.95 84.44

Table 6. Compare with ACAN with up-to-date augmentations.

snippets but without adaptation which shows a noticeable
gain compared to the original TSF w/ T. Further, the sig-
nificantly inferior performance of SSAlign (w/ spatial aug.)
as shown in Table 5 conforms with the motivation of SSA,
which aims for more effective target video domain augmen-
tation while spatial augmentation may undermine temporal
correlation across sequential frames.

While the success of SSA2lign is built upon augment-
ing target videos with SSA, there have been more com-
plex augmentation practices introduced for images, such as
MixUp [61], RandAugment [8], and TrivialAugment [28].
To further prove the efficacy of SSA for FSVDA, we
compare SSA2lign against a competitive VUDA method
ACAN [51] with the aforementioned up-to-date augmen-
tation practices applied to the target domain on Sports-DA,
as shown in Table 6. Note that TimeSFormer [64] is lever-
aged in ACAN as the feature extractor for fair comparison.
Results in Table 6 show that while there are improvements
by applying augmentations to the target domain, SSA2lign
with simple augmentation still outperforms multiple aug-
mentations due to its snippet-level alignment, which further
validates the superiority of SSA.
Alignment Methods. Table 5 shows that while formulating
Lsn−stat as MDD [62] brings the best performance, select-
ing other metrics brings negligible impact. Further, com-
puting Lcross with all target snippet pairs only brings trivial
performance gain at a cost of significant computation over-
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Figure 3. t-SNE visualizations of target features from (a) TSF w/T, (b) HyRSM, (c) MDD, (d) SSA2lign. Colors denote classes.

head (12% computation increase for 0.54% gain). Further,
matching target snippet features to source class prototypes
for Lproto results in a performance drop with more compu-
tation. The inferior performance could be due to outliers
in the source domain which could affect source class proto-
types, bringing in source noise that should not be aligned.
Hyper-parameter Sensitivity. We focus on studying the
sensitivity of λsem and λstat which control the strength of
the semantic and statistical snippet alignment losses, λP

which relates to the update of target prototypes and r the
number of snippets per target video. Without loss of gener-
ality, we fix λstat = 1.0 and study the ratio λsem :λstat in
the range of 0.1 to 1.5. λP is in the range of 0 to 1 which
corresponds to using only the initial prototypes or the up-
dated prototypes, and r is in the range of 1 to 9. As shown
in Fig. 2, SSA2lign is robust to ratio λsem : λstat and λP ,
falling within a margin of 0.683%, with the best results ob-
tained at the current default where λsem : λstat = 1.0 and
λP = 0.6. SSA2lign is also robust to r when r ⩾ 3, i.e.,
when there are multiple snippets obtained via SSA per tar-
get video. r = 3 is selected as significant computation over-
head would occur for r > 3 with marginal gain. Notably,
SSA2lign cannot perform when r < 3, especially when
r = 1 where the Lcross does not work and the target do-
main is not expanded.
Feature Visualization. We further understand the charac-
teristics of SSA2lign by plotting the t-SNE embeddings [40]
of target features with class information from the model
trained without adaptation (TSF w/T), HyRSM, MDD,
ACAN and SSA2lign for U→S with k = 10 in Fig. 3.
It is observed that target features from SSA2lign are more
clustered and discriminable, corresponding to better perfor-
mance. Such observation intuitively proves that video do-
main adaptation can be improved when feature extractors
possess stronger discriminability. However, SSA2lign is not
designed to deal explicitly with classes that could be similar
spatially or temporally, thus certain features observe lower
discriminability, which denotes future work.
Limitations in Choice of Datasets. The datasets Sports-
DA and Daily-DA [54] are leveraged as our benchmarks as
they have been commonly used in the VUDA community in

prior VUDA works [53, 54, 55]. However, it is noted that
benchmarks that have been used for action recognition with
stronger temporal reasoning assessment and fine-grained
action classes (such as Something-Something V2 [15]) are
not included in any current cross-domain video datasets as
there is few datasets that offer overlapped fine-grained ac-
tion classes. The current results show that the FSVDA is
still a challenging task in our proposed benchmarks, we
believe that exploring how to adapt models from coarse-
category datasets to fine-grained datasets (SSv2) denotes
future exploration.

5. Conclusion
In this work, we propose a novel SSA2lign to tackle the

challenging yet realistic Few-Shot Video Domain Adapta-
tion (FSVDA), where only limited labeled target data are
available. Without sufficient target data, SSA2lign tack-
les FSVDA at the snippet level via a simple SSA augmen-
tation and performing the semantic and statistical align-
ments attentively, where the semantic alignment is further
achieved from three perspectives based on semantic in-
formation within and across snippets. Extensive exper-
iments and detailed ablation studies across cross-domain
action recognition benchmarks validate the superiority of
SSA2lign in addressing FSVDA.
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