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Abstract

Exploring spatial-temporal dependencies from observed
motions is one of the core challenges of human motion pre-
diction. Previous methods mainly focus on dedicated net-
work structures to model the spatial and temporal dependen-
cies. This paper considers a new direction by introducing
a model learning framework with auxiliary tasks. In our
auxiliary tasks, partial body joints’ coordinates are cor-
rupted by either masking or adding noise and the goal is to
recover corrupted coordinates depending on the rest coor-
dinates. To work with auxiliary tasks, we propose a novel
auxiliary-adapted transformer, which can handle incomplete,
corrupted motion data and achieve coordinate recovery via
capturing spatial-temporal dependencies. Through auxil-
iary tasks, the auxiliary-adapted transformer is promoted to
capture more comprehensive spatial-temporal dependencies
among body joints’ coordinates, leading to better feature
learning. Extensive experimental results have shown that
our method outperforms state-of-the-art methods by remark-
able margins of 7.2%, 3.7%, and 9.4% in terms of 3D mean
per joint position error (MPJPE) on the Human3.6M, CMU
Mocap, and 3DPW datasets, respectively. We also demon-
strate that our method is more robust under data missing
cases and noisy data cases. Code is available at https:
//github.com/MediaBrain-SJTU/AuxFormer.

1. Introduction

3D skeleton-based human motion prediction aims to fore-
cast future human motions based on past observations, which
has a wide range of applications, such as human-machine
interaction [23, 21, 62] and autonomous driving [34, 9, 38].
One of the main challenges of this problem is extracting
spatial-temporal dependencies among observed motions to
make feature representations more informative. These depen-
dencies arise due to the complex interactions between differ-
ent joints and the temporal dynamics of motion. Therefore,
developing effective methods to capture these dependencies
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Figure 1: Compared to previous methods with various operation
designs, we propose a new direction: an auxiliary learning frame-
work that incorporates auxiliary tasks, including denoising and
masking prediction. These auxiliary tasks impose additional re-
quirements through recovery, forcing the network to exploit spatial-
temporal dependencies more comprehensively.

is crucial for a more accurate human motion prediction.
Existing methods proposed dedicated network structures

to model the spatial and temporal dependencies. A few meth-
ods use RNN [48, 22] and TCN [11] structures to model
temporal dependencies, but neglect the spatial ones. To learn
spatial dependencies between joints, [47] proposes a GCN
network with learnable weights where nodes are body joints.
Following the GCN design, DMGNN [37] and MSR-GCN
[12] further build multiscale body graphs to model local-
global spatial features. PGBIG [43] additionally proposes
temporal graph convolutions to extract spatial-temporal fea-
tures. SPGSN [36] proposes a graph scattering network to
further model temporal dependencies from multiple graph
spectrum bands. Besides GCN-based methods, transformer
architectures [1, 5] are also used to model pair-wise spatial-
temporal dependencies. The structures of models to capture
spatial-temporal dependencies have been extensively stud-
ied. This raises a natural question: can we enhance spatial-
temporal dependency modeling from other perspectives?

In this paper, besides network structures, we further con-
sider an orthogonal approach: proposing a new auxiliary
model learning framework by adding auxiliary tasks to pro-
mote better learning of spatial-temporal dependencies. The
proposed framework jointly learns the primary motion pre-
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diction task along with additional auxiliary tasks, with shar-
ing the same dependency modeling network. The core idea
of the auxiliary tasks is to corrupt partial observed coordi-
nates and set a goal to recover corrupted coordinates us-
ing correlated normal coordinates according to their spatial-
temporal dependencies. The goals of the auxiliary tasks
are highly correlated with the primary prediction task, as
they both require the network to model spatial-temporal de-
pendencies effectively. Therefore, through the additional
requirements imposed by the auxiliary tasks, the depen-
dency modeling network is forced to learn more effective and
comprehensive spatial-temporal dependencies. Our learn-
ing framework complements existing methods by further
emphasizing the effective learning of the network structure.

To be specific, we introduce two kinds of auxiliary tasks:
a denoising task and a masked feature prediction task. The
denoising task randomly adds noise into joint coordinates
at different timestamps in the input motion, and the aim is
to recover the original input motion. The masked feature
prediction task randomly masks joint coordinates at differ-
ent timestamps, and the goal is to predict the masked joint
positions. Comparing to previous popular methods based on
masking/denoising autoencoding like masked autoencoder
(MAE) [25] and denoising autoencoder (DAE) [56], which
are mainly designed for model pre-training, we treat the de-
noising and masking prediction as auxiliary tasks to aid the
primary fully-supervised motion prediction task and jointly
learn all the tasks together. Moreover, previous methods us-
ing masking/denoising strategies mostly focus on data types
of images [25, 45], videos [16, 53], languages [14, 50, 67]
and point clouds [49, 59], but rarely on motion sequences, es-
pecially human motions. Our work fills this gap and utilizes
the strategies to promote more effective spatial-temporal
dependencies learning in human motion prediction.

To cooperate with auxiliary tasks in the learning frame-
work, the dependency modeling network structure faces two
demands. First, the network has to learn spatial-temporal
dependencies between the corrupted coordinate and the nor-
mal coordinate on a coordinate-wise basis to enable recovery.
Second, the network has to be adaptive to incomplete mo-
tions, caused by the masking prediction task. Thus, we
specifically propose an auxiliary-adapted transformer net-
work to meet both two demands. To model the coordinate-
wise dependency, we consider each coordinate as one individ-
ual feature in our network and use spatial-temporal attention
that models spatial-temporal dependencies between two coor-
dinates’ features. To be adaptive to incomplete data, we add
tokens into the masked coordinates’ feature to inform the net-
work that the data is missing, and incorporate a mask-aware
design into spatial-temporal attention that enables arbitrary
incomplete inputs. Integrating the above learning framework
and network design, we name our method AuxFormer.

We conduct experiments on both short-term and long-

term motion prediction on large-scale datasets: Human3.6M
[28], CMUMocap and 3DPW [57]. Our method significantly
outperforms state-of-the-art methods in terms of mean per
joint position error (MPJPE). We also show our method is
more robust under data missing and noisy cases. The main
contributions of our work are summarized here:
• We propose a new auxiliary learning framework for

human motion prediction to jointly learn the prediction task
with two auxiliary tasks: denoising and masking prediction.
Through auxiliary tasks, the model network is forced to learn
more comprehensive spatial-temporal dependencies.
•We propose an auxiliary-adapted transformer to coop-

erate with the learning framework. The auxiliary-adapted
transformer models coordinate-wise spatial-temporal depen-
dencies and is adaptive to incomplete motion data.
•We conduct experiments to verify that our method sig-

nificantly outperforms existing works by 7.2%/3.7%/9.4%.
We also show our method is more robust under data missing
cases and noisy data cases.

2. Related Work

Human Motion Prediction. Early methods for human mo-
tion prediction captured shallow temporal dynamics using
state prediction [33, 54]. Later, RNN-based models like ERD
[18], Pose-VAE [58], Structural-RNN [30], [22], Res-sup
[48] and AHMR [42] improved temporal dependency mod-
eling. [24, 35] use spatial convolutions and predict whole
sequences without accumulation. More recent approaches
use graph convolutional networks [32, 8, 63, 66, 26, 31] to
represent human poses as graphs and capture spatial depen-
dencies. Researchers build fully-connected graphs [47, 11],
multi-scale graphs [37, 12], and semi-constrained graphs
[41] to encode skeletal connections and prior knowledge.
[52, 43] extend graph convolution to temporal dimension
to model both temporal and spatial dependencies. [36] pro-
poses graph scattering networks to decompose pose features
into richer graph spectrum bands. [10] proposes a multi-task
graph convolutional network for the incomplete observa-
tions cases. EqMotion [64] proposes an equivariant motion
prediction model to achieve motion equivariance and in-
teraction invariance based on graphs. Besides GCN-based
methods, transformer structures [1, 5] also are adapted to
model pairwise spatial-temporal dependencies. Unlike most
previous methods that focus on dedicated network struc-
tures, we adopt a novel strategy by introducing an auxiliary
learning framework to efficiently train a network for better
performance.

Denoising and Masked Autoencoding. Both denoising and
masked autoencoding aim to learn representative features
by reconstructing corrupted data. Denoising autoencoding,
first proposed by [56], makes learned representations ro-
bust to partial corruption. Different corruptions are further
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Figure 2: The learning framework architecture. The framework consists of three tasks: the primary future prediction task (middle branch),
the auxiliary denoising task (upper branch), and the auxiliary masking prediction task (lower branch). These three tasks share the same
dependency modeling network and use different heads.

proposed like gray colorization [70], pixel masking [45],
and channel splitting [71]. Masked autoencoding applies
region masking as a corruption and is a special form of
denoising autoencoding. Motivated by large language pre-
training models like BERT [14] and GPT [50, 51], masked
image prediction methods are proposed for vision model
pre-training with different reconstruction targets like image
pixels [7, 15, 61, 2, 40], discrete tokens [4, 73, 44], and
deep features [3, 60]. [25] presents the masked autoencoder
(MAE) to accelerate model pre-training by masking a high
proportion of input images and developing an asymmetric
encoder-decoder architecture. This idea is used in other
data types such as point clouds [49, 69, 59, 68] and videos
[16, 53, 19]. Our method focuses on motion sequence data
and incorporates masking/denoising as auxiliary tasks to
assist the motion prediction task, different from previous
pre-training methods.
Multi-Task Learning and Auxiliary Learning. Multi-task
learning [72, 6] aims to improve tasks’ performance by shar-
ing information between multiple relevant tasks. Similarly,
auxiliary learning uses multiple auxiliary tasks to assist the
primary task, but it only focuses on improving the perfor-
mance of the primary task. Auxiliary learning has been
used in various tasks like semantic segmentation [65], scene
understanding [39], image and video captioning [27, 20],
speech recognition [55], view synthesis [17], and reinforce-
ment learning [29] based on images, videos, and languages.
However, auxiliary learning has not been extensively applied
in 3D human motion prediction. To the best of our knowl-
edge, this paper is the first to introduce auxiliary learning to
3D human motion prediction.

3. Prediction Framework with Auxiliary Tasks

3.1. Problem Formulation

The 3D skeleton-based human motion task aims to pre-
dict future human motions given past motions. Mathemati-

cally, let Xt = [xt
1,x

t
2, · · ·xt

J ] ∈ RJ×3 denotes the human
pose consisting 3D coordinates of M body joints at times-
tamp t, where xt

j ∈ R3 is the jth joint’s coordinate. Let
X− = [X1,X2, · · · ,XTp ] ∈ RTp×J×3 be the past motion
and X+ = [XTp+1,XTp+2, · · · ,XTp+Tf ] ∈ RTf×J×3 be
the future motion. Tp and Tf are the length of past and future
motions. T = Tp + Tf is the total length of motion. To
facilitate subsequent explanation, we pad the past motion
X− to X ∈ RT×J×3 with zeros on future timestamps. Our
goal is to learn a prediction model Fpred(·) so that the pre-
dicted future motions X̂+ = Fpred(X) are as close to the
ground-truth future motions X+ as possible. To achieve an
accurate prediction, one of the keys is capturing compre-
hensive spatial-temporal dependencies in the input motion.
We are going to capture spatial-temporal dependencies via
learning with auxiliary tasks.

3.2. Framework Architecture

Here we propose the model learning framework with
multiple auxiliary tasks, which is sketched in Figure 2. The
core idea of the framework is to learn the primary prediction
task simultaneously with extra-designed auxiliary tasks that
raise additional requirements to force the model to capture
more comprehensive spatial-temporal dependencies. We
introduce two additional auxiliary tasks: masking prediction
and denoising. To be specific, taking the past human motion
X ∈ RT×J×3 as the input, in the masking prediction task,
each 3D coordinate xt

j in the past motion has a probability of
pm to be masked by setting the value to zeros. The goal of the
masking prediction task is to recover the masked coordinates
from the remaining observed coordinates. In the denoising
task, every 3D coordinate xt

j has a probability of pn to be
noisy by adding a Gaussian noise ϵ ∼ N (0, σ), where σ is
the deviation. The goal of the denoising task is to erase the
noise according to the remaining noiseless coordinates.

To combine the two auxiliary tasks, we propose a joint
learning framework that enables the primary future predic-
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Figure 3: Auxiliary-adapted transformer (AuxFormer) as the dependency modeling network. We take the input of the masked prediction
task as an example. The network first encodes coordinates and adds joint, timestamp, and masking information with token embedding.
Then the network iteratively employs observed-only and full spatial-temporal attention to update the observed and whole motion features,
respectively. Both observed-only and full spatial-temporal attention mechanisms use the same mask-aware spatial-temporal attention
mechanism, which incorporates spatial and temporal attention for spatial and temporal dependency modeling.

tion task and the two auxiliary tasks to be learned simulta-
neously in an end-to-end manner. All three tasks share the
same dependency modeling network but use different predic-
tion heads. Mathematically, the mask of masking prediction
task MM ∈ RT×J is defined as

MM(t, j) =

{
1 if t ≤ Tp and xt

j is unmasked,

0 otherwise.

Here we treat the future coordinates also be the "masked"
coordinates since it is unknown. Similarly, we also define
the mask of normal prediction task MP and the mask of
denoising task MD:

MP(t, j) = MD(t, j) =

{
1 if t ≤ Tp,

0 otherwise.

Let X, XM and XD be the original input motion, input motion
with masking and input motion with noise, the joint learning
framework is formulated by,

H = F(X,MP), X̂ = Ppred(H),

HM = F(XM,MM), X̂M = Pmask(HM),

HD = F(XD,MD), X̂D = Pdenoise(HD),

(1)

where F(·) denotes the auxiliary-adapted transformer (Aux-
Former) as the dependency modeling network. H, HM,
HD ∈ RT×J×F are motion features of future prediction task,
mask prediction task and denoising task, respectively. F is
the dimension of the coordinate feature. Ppred(·), Pmask(·),
and Pdenoise(·) are three prediction heads, which are simple
linear or MLP functions that map the F -dimensional space to
the 3D coordinate space, and X̂, X̂M, X̂D ∈ RT×J×3 are the
output sequences of the three tasks, which contains predicted
future motions, predicted masked motions and denoised past
motions, respectively.

Note that i) both the masking prediction task and the
denoising task require the network to recover corrupted coor-
dinates using their correlated coordinates according to their
spatial-temporal dependencies. Through the two tasks, the
dependency modeling framework is given extra force to-

ward a more comprehensive spatial-temporal dependency
modeling; ii) the dependency modeling network contains
most of the model parameters and the prediction head is
lightweight. Thus introducing extra auxiliary tasks into the
learning framework only slightly increase the model size; iii)
in the inference time we only perform the primary future pre-
diction task by taking the future timestamps of the future pre-
diction sequence as the predicted output X̂+ = X̂[Tp+1:Tf ].

Compared to [10] that combines motion repairing with
the motion prediction task, our framework has two major
differences. First, [10] aims to predict motions from incom-
plete observations; while we consider the classical setting of
motion prediction. Second, the motion repairing task in [10]
is a necessary, non-splittable part of the model and will be in-
cluded in the inference phase; while our auxiliary tasks serve
as adjunctive, parallel branches to enhance model training
and will not be involved in the inference phase.

3.3. Loss Function

For different tasks, we supervise different parts of the pre-
diction sequences to satisfy the task demands. To be specific,
for the prediction/masking/denoising task, we supervise the
future/masked/past coordinates. Mathematically, assuming
the masking set is M = {(j, t)|M(j, t) = 0}, given the
output sequence X̂, X̂M, X̂D of three tasks, the overall loss
function is formulated by

Lprediction =
1

TfJ

Tf∑
t=Tp+1

J∑
j=1

∥x̂t
j − xt

j∥2,

Lmask =
1

|M|
∑

(j,t)∈M

∥x̂t
M,j − xt

j∥2,

Ldenoise =
1

TpJ

Tp∑
t=1

J∑
j=1

∥x̂t
D,j − xt

j∥2,

L = Lprediction + α1Lmask + α2Ldenoise.

We use the average ℓ2 distance between different targets and
predictions. α1 and α2 are weight hyperparameters.
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4. Auxiliary-Adapted Transformer
This section introduces an auxiliary-adapted transformer

network to implement the dependency modeling network
F(·) in eq.(1). To work with auxiliary tasks, the network de-
sign faces two demands. First, it must learn spatial-temporal
dependencies between corrupted and normal coordinates on
a coordinate-wise basis to enable recovery. Second, the net-
work must be adaptable to incomplete motions caused by
the masking prediction task. To the first demand, we sepa-
rately encode each 3D coordinate into an individual feature
and use spatial-temporal attention to model coordinate-wise
spatial-temporal dependencies. To the second demand, we
add a masked token into the masked coordinate’s feature to
indicate it is masked and incorporate a mask-aware design
into the spatial-temporal attention mechanism that enables
inputs with arbitrary missing positions.

4.1. Overview

Mathematically, given the observed motion of an arbitrary
task X ∈ RT×J×3 and its corresponding mask M ∈ RT×J

as the input, our auxiliary-adapted transformer works as,

E = FCE(X), (2a)
H = FTE(E,M), (2b)

H′ = F (l)
OSTA(H,M), (2c)

H′′ = F (l)
FSTA(H

′,1), (2d)
where E,H,H′,H′′ ∈ RT×J×F are motion features, where
E and H are initial and embedded features, while H′ and
H′′ are updated features. F is the feature dimension and
1 ∈ RT×J is a mask matrix with all one values..

Step (2a) uses a coordinate encoder FCE(·) to obtain the
initial motion features. Step (2b) embeds joint, timestamp,
and masked information into the initial coordinate features
to obtain the embedded coordinate features using a token
embedding function FTE(·). Steps (2c) apply observed-only
spatial-temporal attention F (l)

OSTA(·) to update the observed
coordinate features. Steps (2d) apply full spatial-temporal
attention F (l)

FSTA(·) to update the whole coordinate features.
Step (2c) and (2d) are repeated iteratively L times. The
observed-only and full spatial-temporal attention have the
same mask-aware spatial temporal attention mechanism with
the only difference of the input mask. The whole auxiliary-
adapted transformer network is sketched in Figure 3.

Note that: i) instead of solely using full spatial-temporal
attention, we additionally incorporate observed-only spatial-
temporal attention. The intuition is modeling spatial-
temporal dependencies inner observed coordinates provides
more correlations to improve the ability to infer spatial-
temporal dependencies between observed and masked co-
ordinates; ii) instead of performing observed-only and full
spatial-temporal attention separately for L times, we employ

an iterative approach because interaction with masked co-
ordinate features can also enhance observed features. We
evaluate the effects of these design choices in Section 5.4.

4.2. Structure Details

We now elaborate the details of each step.
Coordinate encoding. Coordinate encoding aims to map
each 3D coordinate to a high-dimensional embedding space
for subsequent feature learning. Here we simply use a linear
layer to implement the coordinate encoder FCE(·).
Token embedding. In token embedding, we encode the
joint, timestamp and masking information. To encode joint
information, we consider dictionary learning to convert the
joint number j into a learnable code wJ,j ∈ RF , which
represents the jth element of the joint embedding dictionary
WJ ∈ RJ×F . Similarly, we convert the timestamp t into
a learnable code wT,t ∈ RF . For the masked or future
coordinates, we add a learnable masked token wM ∈ RF .
Mathematically, the embedded coordinate feature for the jth
joint of the tth timestamp is

ht
j =

{
etj +wT,t +wJ,j if M(t, j) = 1,

wM +wT,t +wJ,j if M(t, j) = 0.

etj is the initial feature of the tth timestamp of the jth joint.
Mask-aware spatial-temporal attention. The mask-aware
spatial-temporal attention is used to model spatial-temporal
dependencies among assigned features based on the input
mask, which implements F (l)

OSTA(·) and F (l)
FSTA(·) in eq.(2c)

and eq.(2d) respectively. As the spatial relationship between
joints and the temporal relation between timestamps have
different patterns, we use spatial and temporal attention
mechanisms to model the spatial and temporal dependencies
separately. Spatial attention considers features of the same
timestamp, while temporal attention considers features of
the same joint.

The spatial attention simultaneously operates features
at different timestamps. For the feature Ht ∈ RJ×D of
tth timestamp, we first compute its spatial attention matrix
As ∈ RJ×J according to the input mask,

As(j1, j2) =

{
1 if M(t, j1) = 1 and M(t, j2) = 1

0 otherwise,

where As(j1, j2) indicates whether performing attention
between joint j1 and j2. Then the spatial attention is

Qt,Kt,Vt = fQKV(H
t),

Ot =
[
Softmax(

QtKt⊤
√
F

) ·As

]
Vt,

Ht ← Ht + FFN(
H

||
i=1

Ot
i),

where fQKV(·) are linear operations, Softmax(·) represents
the softmax function. We use a regular multi-head feed-
forward operation that produces totally H heads {Ot

i} in
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Table 1: Comparisons of short-term prediction on Human3.6M. Results at 80ms, 160ms, 320ms and 400ms in the future are shown.
Bold/underline font represent the best/second best result.

Motion Walking Eating Smoking Discussion
millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms

Res-sup. [48] 29.4 50.8 76.0 81.5 16.8 30.6 56.9 68.7 23.0 42.6 70.1 82.7 32.9 61.2 90.9 96.2
Traj-GCN [47] 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 7.9 16.2 31.9 38.9 12.5 27.4 58.5 71.7
DMGNN [37] 17.3 30.7 54.6 65.2 11.0 21.4 36.2 43.9 9.0 17.6 32.1 40.3 17.3 34.8 61.0 69.8
MSRGCN [12] 12.2 22.7 38.6 45.2 8.4 17.1 33.0 40.4 8.0 16.3 31.3 38.2 12.0 26.8 57.1 69.7

PGBIG [43] 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7
SPGSN [36] 10.1 19.4 34.8 41.5 7.1 14.9 30.5 37.9 6.7 13.8 28.0 34.6 10.4 23.8 53.6 67.1

AuxFormer (Ours) 8.9 16.9 30.1 36.1 6.4 14.0 28.8 35.9 5.7 11.4 22.1 27.9 8.6 18.8 38.8 49.2
Motion Directions Greeting Phoning Posing

millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res-sup. [48] 35.4 57.3 76.3 87.7 34.5 63.4 124.6 142.5 38.0 69.3 115.0 126.7 36.1 69.1 130.5 157.1

Traj-GCN [47] 9.0 19.9 43.4 53.7 18.7 38.7 77.7 93.4 10.2 21.0 42.5 52.3 13.7 29.9 66.6 84.1
DMGNN [37] 13.1 24.6 64.7 81.9 23.3 50.3 107.3 132.1 12.5 25.8 48.1 58.3 15.3 29.3 71.5 96.7
MSRGCN [12] 8.6 19.7 43.3 53.8 16.5 37.0 77.3 93.4 10.1 20.7 41.5 51.3 12.8 29.4 67.0 85.0

PGBIG [43] 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6
SPGSN [36] 7.4 17.2 39.8 50.3 14.6 32.6 70.6 86.4 8.7 18.3 38.7 48.5 10.7 25.3 59.9 76.5

AuxFormer (Ours) 6.8 17.0 40.3 51.6 13.5 31.3 69.2 85.4 7.9 17.3 37.4 47.2 8.8 19.1 39.2 51.0
Motion Purchases Sitting Sittingdown Takingphoto

millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res-sup. [48] 36.3 60.3 86.5 95.9 42.6 81.4 134.7 151.8 47.3 86.0 145.8 168.9 26.1 47.6 81.4 94.7

Traj-GCN [47] 15.6 32.8 65.7 79.3 10.6 21.9 46.3 57.9 16.1 31.1 61.5 75.5 9.9 20.9 45.0 56.6
DMGNN [37] 21.4 38.7 75.7 92.7 11.9 25.1 44.6 50.2 15.0 32.9 77.1 93.0 13.6 29.0 46.0 58.8
MSRGCN [12] 14.8 32.4 66.1 79.6 10.5 22.0 46.3 57.8 16.1 31.6 62.5 76.8 9.9 21.0 44.6 56.3

PGBIG [43] 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3
SPGSN [36] 12.8 28.6 61.0 74.4 9.3 19.4 42.3 53.6 14.2 27.7 56.8 70.7 8.8 18.9 41.5 52.7

AuxFormer (Ours) 11.9 28.0 61.8 76.3 8.7 19.0 42.1 53.3 13.5 27.6 57.7 72.2 8.2 18.4 41.5 53.0
Motion Waiting Walking Dog Walking Together Average

millisecond 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms 80ms 160ms 320ms 400ms
Res-sup. [48] 30.6 57.8 106.2 121.5 64.2 102.1 141.1 164.4 26.8 50.1 80.2 92.2 34.7 62.0 101.1 115.5

Traj-GCN [47] 11.4 24.0 50.1 61.5 23.4 46.2 83.5 96.0 10.5 21.0 38.5 45.2 12.7 26.1 52.3 63.5
DMGNN [37] 12.2 24.2 59.6 77.5 47.1 93.3 160.1 171.2 14.3 26.7 50.1 63.2 17.0 33.6 65.9 79.7
MSRGCN [12] 10.7 23.1 48.3 59.2 20.7 42.9 80.4 93.3 10.6 20.9 37.4 43.9 12.1 25.6 51.6 62.9

PGBIG [43] 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5
SPGSN [36] 9.2 19.8 43.1 54.1 17.8 37.2 71.7 84.9 8.9 18.2 33.8 40.9 10.4 22.3 47.1 58.3

AuxFormer (Ours) 8.2 18.5 41.2 52.2 17.1 36.5 70.4 83.0 7.8 15.9 30.2 37.0 9.5 20.6 43.4 54.1

Table 2: Comparisons of long-term prediction on 7 representative actions on Human3.6M. Results at 560ms and 1000ms in the future are
shown. Bold/underline font represent the best/second best result.

Motion Walking Smoking Discussion Greeting Posing Walking Dog Walking Together Average
millisecond 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms

Res-Sup. [48] 81.7 100.7 94.8 137.4 121.3 161.7 156.3 184.3 165.7 236.8 173.6 202.3 94.5 110.5 129.2 165.0
Traj-GCN [47] 54.1 59.8 50.7 72.6 91.6 121.5 115.4 148.8 114.5 173.0 111.9 148.9 55.0 65.6 81.6 114.3
DMGNN [37] 71.4 85.8 50.9 72.2 81.9 138.3 144.5 170.5 125.5 188.2 183.2 210.2 70.5 86.9 93.6 127.6
MSRGCN [12] 52.7 63.0 49.5 71.6 88.6 117.6 116.3 147.2 116.3 174.3 111.9 148.2 52.9 65.9 81.1 114.2

PGBIG [43] 48.1 56.4 46.5 69.5 87.1 118.2 110.2 143.5 106.1 164.8 104.7 139.8 51.9 64.3 76.9 110.3
SPGSN [36] 46.9 53.6 46.7 68.6 89.7 118.6 111.0 143.2 110.3 165.4 102.4 138.0 49.8 60.9 77.4 109.6

AuxFormer (Ours) 43.8 52.0 42.0 63.0 77.6 102.3 110.5 141.6 91.6 137.1 103.3 133.3 47.3 58.8 75.3 107.0

parallel and use a feedforward function FFN(·) to obtain the
output of spatial attention. || denotes concatenation.

Similarly, temporal attention simultaneously operates
features of different joints. For the jth joint’s feature
Hj ∈ RT×D, we compute its temporal attention matrix
At ∈ RT×T by

At(t1, t2) =

{
1 if M(j, t1) = 1, and M(j, t2) = 1,

0 otherwise.

The temporal attention is
Qj ,Kj ,Vj = fQKV(Hj),

Oj =
[
Softmax(

QjKj
⊤

√
D

) ·At

]
Vj ,

Hj ← Hj + FFN(
H

||
i=1

Oj,i).

Compared to the previous spatial-temporal transformer
structure used in [1], our auxiliary-adapted transformer has
two advantages: adaptability to missing data cases, which
the previous method cannot handle, and modeling of global
spatial-temporal dependencies between arbitrary timestamps,

while previous method only models temporal dependencies
within a time window.

5. Experiment
5.1. Datasets
Human3.6M [28] has 7 subjects performing 15 types of
actions with 22 body joints. The sequences are downsampled
temporally by 2 and converted to 3D coordinates, excluding
global rotation and translation of the pose. Subjects S5
and S11 are reserved for testing and validation, respectively,
while the remaining subjects are used for training.

CMU-MoCap has 8 human action types including 38 body
joints which are also converted to 3D coordinates. The
global rotations and translations of the poses are excluded.
Following [13, 47], we keep 25 joints and divide the training
and testing datasets.

3DPW [57] is a dataset for human pose prediction containing
indoor and outdoor activities. They are represented in the
3D space and each subject has 23 joints. The frame rate of
the motions is 30Hz.
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Table 3: Prediction MPJPEs of methods on CMU Mocap for both short-term and long-term prediction across 7 actions, as well as their
average prediction results all on actions. Bold/underline font represent the best/second best result.

Motion Basketball Basketball Signal Jumping Running
millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Res-sup. [48] 15.45 26.88 43.51 49.23 88.73 20.17 32.98 42.75 44.65 60.57 26.85 48.07 93.50 108.90 162.84 25.76 48.91 88.19 100.80 158.19
DMGNN [37] 15.57 28.72 59.01 73.05 138.62 5.03 9.28 20.21 26.23 52.04 31.97 54.32 96.66 119.92 224.63 17.42 26.82 38.27 40.08 46.40
Traj-GCN [47] 11.68 21.26 40.99 50.78 97.99 3.33 6.25 13.58 17.98 54.00 17.18 32.37 60.12 72.55 127.41 14.53 24.20 37.44 41.10 51.73
MSR-GCN [12] 10.28 18.94 37.68 47.03 86.96 3.03 5.68 12.35 16.26 47.91 14.99 28.66 55.86 69.05 124.79 12.84 20.42 30.58 34.42 48.03
STSGCN [52] 12.56 23.04 41.92 50.33 94.17 4.72 6.69 14.53 17.88 49.52 17.52 31.48 58.74 72.06 127.40 16.70 27.58 36.15 36.42 55.34
PGBIG [43] 9.53 17.53 35.32 44.23 84.14 2.71 4.88 10.77 14.63 50.19 13.93 27.78 55.80 69.01 125.60 12.69 23.18 38.31 42.24 51.71
SPGSN [36] 10.24 18.54 38.22 48.68 89.58 2.91 5.25 11.31 15.01 47.31 14.93 28.16 56.72 71.16 125.20 10.75 16.67 26.07 30.08 52.92

AuxFormer (Ours) 9.35 17.06 35.46 45.50 80.77 2.62 4.79 10.57 14.20 48.19 12.79 25.52 53.37 67.28 124.34 9.98 15.78 25.31 28.81 41.64
Motion Soccer Walking Washing Window Average

millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup. [48] 17.75 31.30 52.55 61.40 107.37 44.35 76.66 126.83 151.43 194.33 22.84 44.71 86.78 104.68 202.73 24.74 44.21 76.30 88.73 139.30
DMGNN [37] 14.86 25.29 52.21 65.42 111.90 9.57 15.53 26.03 30.37 67.01 7.93 14.68 33.34 44.24 82.84 14.07 24.44 45.90 55.45 104.33
Traj-GCN [47] 13.33 24.00 43.77 53.20 108.26 6.62 10.74 17.40 20.35 34.41 5.96 11.62 24.77 31.63 66.85 9.94 18.02 33.55 40.95 81.85
MSR-GCN [12] 10.92 19.50 37.05 46.38 99.32 6.31 10.30 17.64 21.12 39.70 5.49 11.07 25.05 32.51 71.30 8.72 15.83 30.57 38.10 79.01
STSGCN [52] 13.49 25.24 39.87 51.58 109.63 7.18 10.99 17.84 22.61 44.12 6.79 12.10 24.92 36.66 69.48 10.80 18.19 31.18 41.05 81.76
PGBIG [43] 11.09 20.62 39.48 48.72 99.98 6.23 10.34 16.84 19.76 33.92 4.63 9.16 20.87 27.34 65.69 8.20 15.41 30.13 37.27 76.69
SPGSN [36] 10.86 18.99 35.05 45.16 99.51 6.32 10.21 16.34 20.19 34.83 4.86 9.44 21.50 28.37 65.08 8.30 14.80 28.64 36.96 77.82

AuxFormer (Ours) 10.01 18.21 36.31 45.79 95.98 5.76 9.16 15.69 18.80 34.81 4.69 9.39 21.87 28.83 72.90 7.54 13.78 27.95 35.39 76.32

Table 4: The average prediction MPJPEs on 3DPW dataset.
Bold/underline font represent the best/second best result.

Average MPJPE
millisecond 100 200 400 600 800 1000

Res-sup. [48] 102.28 113.24 173.94 191.47 201.39 210.58
CSM [35] 57.83 71.53 124.01 155.16 174.87 187.06

Traj-GCN [47] 16.28 35.62 67.46 90.36 106.79 117.84
DMGNN [37] 17.80 37.11 70.38 94.12 109.67 123.93
HisRep [46] 15.88 35.14 66.82 93.55 107.63 114.75

MSR-GCN [12] 15.70 33.48 65.02 93.81 108.15 116.31
STSGCN [52] 18.32 37.79 67.51 92.75 106.65 112.22
PGBIG [43] 17.66 35.32 67.83 89.60 102.59 109.41
SPGSN [36] 15.39 32.91 64.54 91.62 103.98 111.05

AuxFormer (Ours) 14.21 30.04 58.50 89.45 100.78 107.45

5.2. Model and Experimental Settings

Implementation details. We set the feature dimension F
as 64/96/80 in Human3.6M/CMU Mocap/3DPW dataset.
For the short/long-term motion prediction, the number of
attention layers L is 3/4 in the dependency modeling network.
We use 8 heads in the multi-head attention. We use a mask
ratio of 50% and a noisy ratio of 30%. The loss weight
α1, α2 are both set to 1. The model is trained for 50 epochs
with a batch size of 16. We use the Adam optimizer to train
the model on a single NVIDIA RTX-3090 GPU. We scale
the input motion by 1/100 and rescale the output motion. To
obtain a more generalized evaluation with lower test bias,
we use all the clips in the 5th subject of H3.6M and the test
folder of CMU Mocap, instead of testing on a few samples
like in [22, 35, 37]. For more implementation details, please
refer to the supplementary material.

Evaluation Metrics. We use the Mean Per Joint Position
Error (MPJPE), which calculates the average ℓ2 distance
between predicted joints and target ones at each prediction
timestamp in 3D Euclidean space. Compared to previous
mean angle error (MAE) [37, 48], the MPJPE reflects larger
degrees of freedom of human poses and covers larger ranges
of errors for a clearer comparison.

5.3. Main Results

Short-term prediction. Short-term motion prediction aims
to predict the poses within 400 milliseconds. Table 1 presents

Time (ms) 80 240 400 560 1000

Traj-GCN

SPGSN

AuxFormer
(Ours)

G.T.

Figure 4: Visualization results of different methods on H3.6M.

the MPJPEs of our method and many previous methods on
all actions at multiple prediction timestamps on the H3.6M
dataset. We see that i) our method achieves superior per-
formance at most of the timestamps and very close per-
formance to the best results on other timestamps; ii) our
method achieves significantly lower MPJPEs on average by
8.7%/7.6%/7.9%/7.2% at 80/160/320/400ms.

Besides, Table 3 reports the comparison of our method
and many previous methods on the CMU Mocap dataset.
We show our method achieves more effective prediction and
has a significant improvement by 9.2%/6.9%/3.3%/3.7%
at 80/160/320/400ms. In Table 4, we present the average
MPJPEs across all the test samples at different prediction
timestamps on the 3DPW dataset Compared to the state-of-
the-art methods, our method greatly reduces the MPJPE by
7.7%/8.7%/9.4% at 100/200/400ms.

Long-term prediction. Long-term motion prediction aims
to predict the poses over 400 milliseconds. Table 2 shows
prediction MPJPEs of various methods at 560 and 1000 ms.
Due to the space limit, we show the results of seven repre-
sentative actions and the average results of all actions. More
detailed tables are provided in the supplementary material.
We see that our method achieves a more accurate prediction
on most of the actions and our method has a lower MPJPE
by 2.1%/2.4% at 560/1000ms compared to state-of-the-art
methods. Table 3 and 4 also report the comparison of our
method with previous methods on the CMU Mocap and
3DPW datasets. We see that our method also significantly
outperforms the state-of-the-art method on the CMU Mocap
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Table 5: Ablation study on auxiliary tasks on H3.6M.

Pred Mask Denoise 80ms 160ms 320ms 400ms 560ms 1000ms

✓ 10.2 21.8 45.7 57.0 79.7 110.5
✓ ✓ 9.7 21.0 44.0 54.8 77.7 108.2
✓ ✓ 9.6 20.9 44.2 55.0 76.6 108.1
✓ ✓ ✓ 9.5 20.6 43.4 54.1 75.3 107.0

Table 6: Ablation study on auxiliary tasks on CMU Mocap.

Pred Mask Denoise 80ms 160ms 320ms 400ms 1000ms

✓ 8.57 15.48 30.40 38.35 75.94
✓ ✓ 8.25 14.78 29.13 36.46 74.13
✓ ✓ 8.14 14.57 28.98 36.60 72.95
✓ ✓ ✓ 7.89 14.27 28.36 35.60 71.23

Figure 5: Effect of different masking ratios and noise ratios in the
model training on H3.6M.

and the 3DPW dataset.

Qualitative results. Figure 4 shows an example of the pre-
dicted poses of different methods. We can see our prediction
result is more accurate than two representative baselines,
especially on the motion of two arms.

5.4. Ablation Study and Model Analysis

Effect of auxiliary tasks. We investigate the impact of
two auxiliary tasks in our learning framework: masking
prediction (Mask) and denoising (Denoise). Table 5 and 6
show the results on the H3.6M and CMU Mocap datasets,
respectively. "Pred" denotes the future prediction task. We
observe that i) adding the masking prediction and denoising
tasks individually leads to a significant improvement in the
model performance, demonstrating the effectiveness of these
auxiliary tasks; ii) combining the two auxiliary tasks further
imporves the model’s performance.

Effect of masking & noise ratios. We explore the effect
of different masking ratios and noise ratios during model
training. Figure 5 shows the results. The noise deviation
is set to 50. We see that i) setting masking and noising
ratios that are either too low or too high results in suboptimal
performance, as the auxiliary tasks become either too easy or
too difficult, rendering them unsuitable for model learning;
ii) a moderate masking and noising ratio yielded the best
results, with an appropriate masking ratio range of 0.3 to 0.7
and an appropriate noising ratio range of 0.2 to 0.6.

Ablation on model structure. We explore the effect of de-
signs in our dependency modeling network structure. Table

Table 7: Ablation study on network structure design on H3.6M.

Ablation 80ms 160ms 320ms 400ms AVG

w/o FOSTA(·) 9.7 21.6 46.0 57.3 33.7
Separate attention 9.5 20.7 44.1 55.1 32.4
Iterative attention (Ours) 9.5 20.6 43.4 54.1 31.9

(a) Incomplete data case (b) Noisy data case
Figure 6: Comparison of model performance under missing data
case and noisy data case on H3.6M.

7 shows the results on H3.6M dataset. "w/o FOSTA(·)" de-
notes not use the observed-only spatial-temporal attention.
"Separate attention" denotes repeating FOSTA(·) for L times
followed by FFSTA(·) repeated for L times. We can see
that adding the observed-only spatial-temporal attention and
using an iterative design on both attentions result in more
effective motion prediction.

Robustness analysis under incomplete & noisy data cases.
We evaluate our method’s robustness under two scenarios
that frequently arise in real-world applications: incomplete
and noisy data. For incomplete data, we randomly mask
input motion coordinates during the testing phase, with vari-
ous ratios. To enable the baseline methods to handle missing
values in the input motion, we apply linear interpolation and
extrapolation to fill in the missing values before feeding the
motion sequence into the model. Figure 6 (a) shows the
MPJPE at 400ms of our method and state-of-the-art baseline
methods under different missing data ratios. We see that i)
our method achieves the best prediction performance under
all masking ratios; ii) with the increase of the masking ratio,
the performance gap between our method and baseline meth-
ods widens, showing that our method is more robust with
missing data than previous methods.

In the noisy data cases, we randomly add noises to dif-
ferent ratios of input motion coordinates in the test phase.
Each coordinate’s noise is sampled from Gaussian distri-
bution N (0, 50). Figure 6 (b) shows the comparison of
MPJPE at 400ms under different noisy data ratios. We see
that i) our proposed method achieves the best prediction per-
formance under all noisy data ratios; ii) previous methods
suffer greatly even when the noisy ratio is small, such as 10%
and 20%, while our method’s performance only experiences
a slight drop in these cases and still maintains promising
performance, showing better robustness.
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6. Conclusion

In this work, we propose AuxFormer, a novel auxiliary
model learning framework with an auxiliary-adaptive trans-
former network, to promote more comprehensive spatial-
temporal dependency learning for 3D human motion pre-
diction. The learning framework jointly learns the primary
future prediction task with additional auxiliary tasks. To
cooperate with the learning framework, we further propose
an auxiliary-adapted transformer to model coordinate-wise
spatial-temporal dependencies and be adaptive to missing
data. We evaluate our method on three human motion predic-
tion datasets and show our method achieves state-of-the-art
prediction performance and equips with higher robustness.
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