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Abstract

Parameter Efficient Tuning (PET) has gained attention
for reducing the number of parameters while maintaining
performance and providing better hardware resource sav-
ings, but few studies investigate dense prediction tasks and
interaction between modalities. In this paper, we do an in-
vestigation of efficient tuning problems on referring image
segmentation. We propose a novel adapter called Bridger
to facilitate cross-modal information exchange and inject
task-specific information into the pre-trained model. We
also design a lightweight decoder for image segmentation.
Our approach achieves comparable or superior performance
with only 1.61% to 3.38% backbone parameter updates, eval-
uated on challenging benchmarks. The code is available at
https://github.com/kkakkkka/ETRIS.

1. Introduction

Referring image segmentation (RIS) aims to predict a
mask for the target object described by a given natural lan-
guage sentence based on the input image and text. This task
is distinct from semantic segmentation, which assigns each
pixel in an image with a label from a fixed word set. Instead,
RIS needs to recognize the objects indicated by the language
expression, which is of greater complexity due to its arbitrary
context length and involving an open-world vocabulary such
as object names, attributes, positions, etc.

Recent studies [43, 12, 11] have shown the effectiveness
of fine-tuning general-purpose pre-trained models for visual
grounding. However, these approaches have a separate copy
of fine-tuned model parameters for each dataset, making it
expensive to deploy models across multiple scenarios. This
issue is particularly significant for large-scale pre-trained
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Figure 1: Previous method vs. our method. (a) The conven-
tional method pre-trains visual language models on datasets
with image-text pairs using self-supervised learning and fine-
tunes them on downstream tasks. (b) We propose Bridger,
an Adapter-like module that incorporates inductive biases
and task-specific information into the pre-trained model.

models, which now consist of hundreds of millions to tril-
lions of parameters [31, 50, 5].

Therefore, we ask an essential question: can the model
maintain a competitive performance with pre-trained back-
bone network parameters fixed?. Various parameter-efficient
training methods [16, 20, 15, 4, 9, 50] have been proposed to
achieve a balance between parameter efficiency and perfor-
mance. However, most of the existing methods are limited to
either single-modal tasks [16, 20, 9] or simple classification
tasks [15, 4, 50] with few studies focusing on dense predic-
tion tasks and the interaction between different modalities,
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which limits their generality.
We aim to adapt pre-trained vision-language models for

referring image segmentation with comparable performance
to full fine-tuning, but in a more parameter-efficient way, as
demonstrated in Figure 1. This approach improves adapt-
ability and eliminates the parameter inefficiencies and pro-
hibitive expenses associated with previous methods that re-
quire creating separate copies of fine-tuned backbone model
parameters for each dataset. In detail, firstly, we introduce an
additional network named Bridger that does not require pre-
training and can be seamlessly integrated into the original
architecture of the pre-trained model, where we introduce
vision-specific inductive biases and facilitate interaction be-
tween the dual encoder. There are two tailored modules for
Bridger: (i) a spatial prior module for capturing the local se-
mantics (spatial prior) from feature maps of the intermediate
layer and (ii) a cross-modal attention module that enables
information exchange between the two modalities. Secondly,
we designed a lightweight task-specific decoder for referring
image segmentation to make further alignment on visual
and linguistic features. Under this framework, the backbone
network can be any general-propose (dual-encoder) model
that is pre-trained on vision-language datasets, and we adopt
CLIP [40], a pre-trained image-text alignment model, as our
vision and language encoders. As a result, utilizing ViT [13]
and ResNet [19] as the visual backbone and updating only
1.61% to 3.38% parameters, our framework achieves com-
parable or even better performance than previous methods
which employ the same backbone for full-finetuning. Our
main contributions are as follows:
• We propose to do an in-depth investigation of the

parameter-efficient tuning problem on the dense predic-
tion tasks. To the best of our knowledge, this is the first
empirical study to date that considers this problem.

• We design a novel Bridger that can be seamlessly inte-
grated into any pre-trained dual-encoder vision-language
models to enhance and interact with their intermediate
features. It incorporates vision-specific inductive biases
and task-specific information and can be integrated with
prompts, adapter, and their variants.

• We also propose a lightweight decoder for referring image
segmentation to further align visual and linguistic features.

• Extensive experiments and analyses demonstrate the effec-
tiveness of the proposed approach, where it achieves com-
parable performance compared to existing full fine-tuning
methods while updating only 1.61% to 3.38% parameters.1

2. Related work

This work aims to design an efficient tuning approach to
referring image segmentation built upon pre-trained vision-

1Note that we do not count the parameters of the task-specific decoder since
it is required by all the baselines for the segmentation prediction.

language models. In this section, we summarize previous
literature and discuss the relations and differences.
Vision-Language Models (VLMs) target exploring a unified
representation for vision and language modalities to tackle
vision-and-language tasks. They can be generally divided
into two types of workflow: single-stream and dual-stream.
The former includes [6, 33, 38, 8, 10, 30], which use a fu-
sion module to interact the visual and textual embeddings;
The latter consists of studies, e.g., [40, 25, 31], which use
contrastive learning to align the vision and language embed-
dings. Our work focus on the efficient tuning of dual-stream
model due to their expansibility and the necessity of aligning
features when transferring the models to downstream tasks.
Parameter-efficient Tuning (PET) aims to reduce the num-
ber of trainable parameters of a pre-trained model when
transferring it to the downstream tasks. Compared with fine-
tuning that retrains the whole model on a specific task, PET
can make tuning a large model feasible when deploying it
to each user considering the recent proliferation in model
sizes. Recent PET methods can be divided into three types:
(i) updating newly added parameters to the model or input
like Adapter [20], Prefix-tuning [34] and Prompt tuning [50];
(ii) sparsely updating a small number of parameters of the
model like Bit-Fit [49] and Diff Pruning [16]; (iii) low-rank
factorization for the weights to be updated like LoRA [21],
Compacter [27] and Consolidator [17]. Adapters balance
performance and extensibility in computer vision and nat-
ural language processing. Nonetheless, most current work
focuses on classification and generation tasks, neglecting
dense prediction tasks like segmentation and special design
for multi-modal tasks. Our method addresses this gap by
designing a multi-modal adapter-like module that enhances
feature interaction between the two encoders of the pre-
trained vision language model, which facilitates efficient
transfer to downstream tasks.
Referring Image Segmentation (RIS) aims to segment the
target objects referred by natural language descriptions by un-
derstanding the given images and expressions. Early works
can be tracked back to those CNN-LSTM-based approaches,
e.g., RRN [32] and RMI [36]. They used CNN and LSTM
to extract visual and linguistic features, respectively. These
features are concatenated to obtain cross-modal features,
which are then fed into an FCN to perform the segmentation.
With the rapid development of Transformer, many works
have begun to explore the powerful representation of the
attention mechanism. Simply concatenating features from
different modalities, MDETR [26] achieves great perfor-
mance on different VL-tasks by feeding the fusion features
into the Transformer encoder and decoder. VLT [12] has
designed a query generation module to augment global con-
text information, thereby enriching linguistic expressions
and enhancing robustness. Taking advantage of the strong
image-text alignment ability of CLIP [40], CRIS [43] fo-
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Figure 2: Given an image and a language sentence, our model extracts multiple image features f1
v , ..., f

N
v from different stages

of an image encoder, and word-level features ft and sentence-level features fs from a language encoder. The Bridger enables
cross-modal interactions at each encoder stage. The Hierarchical Alignment Module fuses hierarchical features with global
textual representations to obtain fusion features Fv . The Global Alignment Module combines sentence-level information with
fine-grained visual features to produce the representation Fc. Finally, the Projector generates the mask prediction using Fc.

cus on sentence-pixel alignment to leverage multi-modal
corresponding information. To better make use of language-
related object location information for visual-linguistic in-
teraction, PCAN [2] focuses on position-aware contrastive
alignment to enhance the alignment of multi-modal features.
Our method focuses on fusing and aligning features from
different modalities using a parameter-efficient approach that
leverages pre-trained vision-language models. It achieves
competitive performance and scalability compared to meth-
ods using the same backbone network, while avoiding mod-
ification of the backbone network’s weight. This reduces
the number of parameters to be updated and provides better
hardware resource savings.

3. Methodology
In this section, we present the proposed parameter-

efficient approach for referring image segmentation. As
illustrated in Figure 2, our framework contains four com-
ponents, i.e., a frozen vision-language backbone (§3.1), a
tunable Bridger (§3.2), a task-specific decoder (§3.3), and
the learning objective (§3.4). We aim to utilize the power-
ful pre-trained backbone as the image and text encoders for
the downstream task while refraining from modifying its
substantial quantity of original parameters.

3.1. Image & Text Feature Extraction

Given an image and a text, we extract their features
through the image encoder and text encoder, respectively:
Image Encoder. For an input image I ∈ RH×W×3, we
extract visual features from layers of the image encoder. In

detail, for CNN (e.g., ResNet [19]), we exploit the visual fea-
tures from the last N−1 stages defined as F i

v, i ∈ {2, ..., N};
For vision Transformer [13] (ViT), we evenly split the trans-
former encoders of ViT into N blocks, each containing L/N
encoder layers. We employ the outputs of the last N − 1
blocks to make feature interaction. The multi-level visual
features from different blocks in ViT or different stages in
ResNet will be utilized in our framework as the input of the
Bridger and decoder for multi-modal feature alignments.
Text Encoder. For an input referring expression T , a Trans-
former [42] modified by [40] is used to extract text fea-
tures. Similar to Image Encoder, we evenly split the trans-
former encoders into N blocks and extract F i

t ∈ RL×C , i ∈
{2, ..., N} from different blocks of Transformer, where C
is the feature dimension, and L is the length of the expres-
sion. The Transformer is applied to a lower-cased byte pair
encoding representation of the text, and the text sequence is
bracketed with the [SOS] and [EOS] tokens. The activa-
tion of the last layer of the Transformer at the [EOS] token
is further processed to generate the global textual representa-
tion Fs ∈ RC′

, where C ′ is the feature dimension.
Since the backbone image encoder and text encoder nor-

mally take the majority of the parameters, we freeze them
during the tuning procedure in our approach.

3.2. Image & Text Feature Interaction

While the features from the image and text encoders do
not “see” each other during the pre-training process, re-
ferring image segmentation requires intensive multi-modal
interaction to understand the image and text features jointly.
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Therefore, we propose a novel vision-and-language inter-
action module (i.e., Bridger) to process the intermediate
features from the image and text encoders. By doing so, the
model can learn to fully use the extracted image and text
features to enhance the multi-modal interaction.

Briefly, given multiple visual features F i
v, i ∈ {2, ..., N}

and linguistic features F i
t ∈ RL×C , i ∈ {2, ..., N}, we

firstly adjust the shape of visual and linguistic features via
Zoom Layer (ZL). This process can be formalized:

F̂ i
v = ZLin(F

i
v)

F̂ i
t = Linear(F i

t )
(1)

where the ZLin means the zoom-in operation of the Zoom
layer. Afterward, we fuse the features through Interactor
(ITA). This process can be mathematically expressed as

f̂ i
v = ITA(f̂ i−1

v + F̂ i
v, f̂

i−1
t + F̂ i

t )

f̂ i
t = ITA(f̂ i−1

t + F̂ i
t , f̂

i−1
v + F̂ i

v)
(2)

Finally, we recover the dimension through the zoom layer
and linear projection and make a residual connection to the
original feature of the next stage (blocks) of the backbone.
This process can be expressed mathematically as

f i
v = ZLout(f̂

i
v)

f i
t = Linear(f̂ i

t )

F i+1
v = F i+1

v + f i
v

F i+1
t = F i+1

t + f i
t

(3)

where the ZLout means the zoom-out operation of the Zoom
layer. Next, we describe their architecture in detail:
Zoom Layer (ZL). With the features extracted from the
image and text encoders, we design a module to make di-
mensional changes on visual and linguistic features with
consideration to the time complexity and spatial priority.
For ViT, the plain design of the architecture suffers inferior
performance as a result of lacking vision-specific inductive
biases. Recent studies [44, 18] show that convolutions can
help transformer to capture the local spatial contexts of im-
ages. Therefore, we reshape the feature from middle layers
from ViT from RD×C to RH×W×C and use convolution to
compose the Zoom layer. Moreover, for ResNet, the feature
map from the first two stages can be large when the resolu-
tion of the input increases, which will make the length too
long to process when using it as the input of the attention
algorithm. Therefore, we adopt stride-2 2x2 convolution to
reduce the size of feature maps. To unify dimensions and
enlarge smaller feature maps, we use stride-2 2x2 deconvo-
lution to enrich information. In short, when extracting the
feature from the middle layers of the backbone, we use the
Zoom layer to resize the feature map from the visual encoder.

The process can be formalized as

F̂ i
v =

{
Conv

(
F i
v

)
, hi >= h′, wi >= w′

DeConv
(
F i
v

)
, hi < h′, wi < w′ (4)

where the h′, w′ are one of the feature map’s height and
width from the visual backbone. With F̂ i

v , we make interac-
tive operations between feature maps of different modalities.
After that, before adding the features back to the backbone,
we utilize the Zoom layer to make zoom-out operations,
which is the reverse process of zoom-in.
Interactor (ITA). With the features processed by the zoom
layer, we design a module to make the interaction of modal
information between the visual encoder and text encoder,
which enhances the features in the middle of the pre-trained
backbone while fixing the original parameters. Specifically,
the Interactor is based on an attention mechanism and feed-
forward network. For each feature from different modalities,
we employ the original modality feature as a query and
obtain the keys and values from the other modality. The
interaction can be formalized as

f̂ i
v = FMHSA(f̂

i−1
v + F̂ i

v)

f̂ i
t = FMHSA(f̂

i−1
t + F̂ i

t )

f̂ i
v, f̂

i
t = FMHCA(f̂

i
v, f̂

i
t ),FMHCA(f̂

i
t , f̂

i
v)

f̂ i
v, f̂

i
t = FFN(f̂ i

v),FFN(f̂ i
t )

(5)

3.3. Task-specific Decoder

Hierarchical Alignment Module. Given multiple visual fea-
tures F i

v, i ∈ {2, ..., N} from different stages and the global
textual representation Fs, we obtain the fusion of multi-
modal feature by convolution and cross-attention mechanism.
For hierarchical fusion features, we simply concatenate and
use a 1 × 1 convolution layer to aggregate them:

f i
m = Conv(F i

v)

f i
m = FMHCA(f

i
m, Fs)

Fm = Conv
([
f2
m, ..., fN

m

]) (6)

where [, ] is the concatenation operation, and the convolution
is adopted to unify the dimension of features from differ-
ent stages. Finally, we concatenate a 2D spatial coordinate
feature Fcoord ∈ R

H
16×

W
16×C with Fm and use a 3 × 3 con-

volution to fuse them. The visual feature Fv ∈ R
H
16×

W
16×C

is then calculated:

Fv = Conv ([Fm, Fcoord]) (7)

The 2D spatial domain of Fv is flattened into a sequence,
forming the visual feature Fv, which is then used in the
subsequent process.
Global Alignment Module. With multi-modal features
gained from hierarchical alignment, we combine ample tex-
tual information corresponding to visual features by using
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the attention model of the Transformer. Taking the multi-
modal features Fv and the sentence-level feature Fs as in-
put, we firstly add the fixed sine spatial positional encoding
to Fv and Fs respectively. Subsequently, a sequence of
evolved multi-modal features Fc is generated by self and
cross-attention module to capture global contextual informa-
tion:

fc = FMHSA(Fv)

fc = FMHCA(fc, Fs)

Fc = FFN(fc)

(8)

where the evolved multi-modal features Fc are finally uti-
lized for the segmentation task.
Projector. To obtain mask prediction on each pixel accord-
ing to the corresponding semantic information, we use a
Projector to make transformation on cross-modal feature Fc

and sentence-level feature Fs as Equation 9.

F ′
c = UpSample (Fc)

Zc = Conv (F ′
c)

Zt = Linear (Fs)

(9)

where UpSample denotes 4× upsampling, and convolution
and linear projection are used to transform Fc and Fs into
Zc ∈ RN×D, N = H

4 × W
4 and Zt ∈ RC , C = K ×K ×

D + 1. We split and reshape Zt into weights ∈ RD×K×K

and bias ∈ RD, where K denotes the kernel size of the con-
volution layer. This enables it to function as a Conv2D layer,
which is utilized to convert the cross-modal representation
Zc into the ultimate mask prediction.

3.4. Training Objective

Considering the suboptimality of CLIP [40]’s pre-training
strategy for referring image segmentation due to its reliance
on aligning the textual representation with the image-level
representation, we utilize a text-to-pixel contrastive loss [43]
as our training objective, which is employed to optimize
the relationship between two modalities. The objective of
this contrastive loss is to ensure that Zt is similar to its
corresponding Zc, while being dissimilar to other irrelevant
Zc. The text-to-pixel contrastive loss can be formulated as
follows:

Lcon (Zt, Zc) =
1

|P ∪ N |
∑

i∈P∪N
Li

con

(
Zt, Z

i
c

)
(10)

where P and N denote the class of 1 and 0 in the ground
truth and Li

con is defined as:

Li
con

(
Zt, Z

i
c

)
=

{
− log

(
σ
(
Zt · Zi

c

))
, i ∈ P

− log
(
1− σ

(
Zt · Zi

c

))
, i ∈ N

(11)
where σ is the sigmoid function. The segmentation result
is obtained by reshaping σ

(
ZtŻc

)
into H

4 × W
4 and then

upsampling it back to the original image size.

4. Experiments Setting

4.1. Datasets

In order to assess the efficacy of each component of our
method, we have conducted comprehensive experiments on
three benchmarks datasets:
• RefCOCO [28] is a widely employed benchmark dataset

for referring image segmentation. It comprises 19,994
images annotated with 142,210 referring expressions
for 50,000 objects, which have been sourced from the
MSCOCO [35] dataset through a two-player game. The
dataset is divided into four subsets, consisting of 120,624
train, 10,834 validation, 5,657 test A, and 5,095 test B
samples, respectively. The average length of the expres-
sions is 3.6 words, and each image contains a minimum of
two objects.

• RefCOCO+ [28] dataset consists of 141,564 referring
expressions associated with 49,856 objects in 19,992 im-
ages. The dataset is divided into four subsets: 120,624
train, 10,758 validation, 5,726 test A, and 4,889 test B
samples. Notably, the RefCOCO+ dataset has been con-
structed to be more challenging than the RefCOCO dataset
by excluding certain types of absolute-location words.

• G-Ref [48] comprises 104,560 referring expressions asso-
ciated with 54,822 objects in 26,711 images. In contrast to
the two datasets described above, the expressions in G-Ref
were collected from Amazon Mechanical Turk and had an
average length of 8.4 words, which includes more words
about locations and appearances. We present results for
both the Google and UMD partitioning for G-Ref.

4.2. Implementation Details

We initiate the text and image encoder with CLIP [40],
and respectively adopt ResNet-50 [19], ResNet-101 [19],
ViT-B [42] as the image encoder for all ablation studies. We
opted for CLIP because our work aims to better transfer
model state from the source dataset/scenario to the target
dataset/scenario via model tuning. For CLIP model, the dis-
crepancy between model states is higher than those of GLIP
and MDETR in dense prediction scenarios, which is more
challenging for our Bridger design. We resize input images
to 416× 416, following the setting of CRIS [43]. To accom-
modate the extra [SOS] and [EOS] tokens, RefCOCO and
RefCOCO+ input sentences are limited to 17 words, while
G-Ref supports up to 22 words. Our Transformer Decoder
has three layers, each with 8 heads and a feed-forward hid-
den dimension of 512. The Projector uses a kernel size of
3 for the last convolution layer composed of Zt. We train
the network for 50 epochs using the Adam optimizer with
a learning rate of λ = 0.0001. The learning rate of Bridger
is set to λ = 0.001 for ViT and λ = 0.0001 for ResNet.
We decrease the learning rate by 0.1 at the 35th epoch and
train the model with a batch size of 32 on 2 NVIDIA A100
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Method Backbone Param. RefCOCO RefCOCO+ G-Ref
val test A test B val testA testB val (u) test (u) val (g)

PCAN [2] ResNet-50 25.56 M 69.51 71.64 64.18 58.25 63.68 48.89 59.98 60.80 57.49
CRIS [43] ResNet-50 40.42 M 69.52 72.72 64.70 61.39 67.10 52.48 59.87 60.36 −
ETRIS (Ours) ResNet-50 1.68 M 70.39 73.11 66.38 60.47 67.11 50.73 59.71 59.95 57.22
RMI [36] DeepLab ResNet-101 61.00 M 45.18 45.69 45.57 29.86 30.48 29.50 − − −
RRN [32] DeepLab ResNet-101 61.00 M 55.33 57.26 53.95 39.75 42.15 36.11 − − 36.45
MAttNet [47] MaskRCNN ResNet-101 27.57 M 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 −
CMSA [46] DeepLab ResNet-101 61.00 M 58.32 60.61 55.09 43.76 47.60 37.89 − − 39.98
CAC [7] DeepLab ResNet-101 61.00 M 58.90 61.77 53.81 − − − 46.37 46.95 44.32
STEP[3] DeepLab ResNet-101 61.00 M 60.04 63.46 57.97 48.19 52.33 40.41 − − 46.40
BRINet [22] DeepLab ResNet-101 61.00 M 61.35 63.37 59.57 48.57 52.87 42.13 − − 48.04
CMPC [23] DeepLab ResNet-101 61.00 M 61.36 64.53 59.64 49.56 53.44 43.23 − − −
LSCM [24] DeepLab ResNet-101 61.00 M 61.47 64.99 59.55 49.34 53.12 43.50 − − −
CMPC+ [37] DeepLab ResNet-101 61.00 M 62.47 65.08 60.82 50.25 54.04 43.47 − − 49.89
EFN [14] Wide ResNet-101 126.89 M 62.76 65.69 59.67 51.50 55.24 43.01 − − −
BUSNet [45] DeepLab ResNet-101 61.00 M 63.27 66.41 61.39 51.76 56.87 44.13 − − −
CGAN [39] DeepLab ResNet-101 61.00 M 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 −
CRIS [43] CLIP ResNet-101 57.31 M 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 −
ETRIS (Ours) CLIP ResNet-101 1.94 M 71.06 74.11 66.66 62.23 68.51 52.79 60.28 60.42 57.86
ReSTR [29] ViT-B-16 86.19 M 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - 54.48
ETRIS (Ours) ViT-B-16 1.39 M 70.51 73.51 66.63 60.10 66.89 50.17 59.82 59.91 57.88

Table 1: Comparison with SOTA method using ResNet and ViT as backbone on the oIoU metric on RIS datasets. Param.: The
trainable parameters of the backbone model. u: The UMD partition. g: The Google partition. The best results are in bold.

with 40 GPU VRAM. At inference, the predicted results
are upsampled to the original image size and binarized at
a threshold of 0.35, producing the final result without any
additional post-processing.

To evaluate the effectiveness of our model, we use two
metrics commonly used in previous works: Intersection
over Union (IoU) and Precision@X. IoU calculates the
overlap between the predicted segmentation mask and the
ground truth, while Precision@X measures the percent-
age of test images with an IoU score above a threshold
X ∈ 0.5, 0.6, 0.7, 0.8, 0.9. This metric assesses the model’s
ability to accurately localize objects.

5. Experiments Results

5.1. Main Results

We compare our proposed method with existing RIS
methods on the same datasets, reporting the oIoU results
in Table 1. To ensure a fair comparison, we categorize
these methods based on their visual backbone and report
their tunable parameters. Our approach achieves competi-
tive performance on all tasks compared to existing methods
using the same backbone, validating the effectiveness of our
parameter-efficient approach. Our approach’s effectiveness
is further amplified with increasing model scale, as observed
in our experiments. This parameter-efficient approach is
beneficial not only because of the strong representation abil-
ities of pre-trained models but also due to their ability to
reduce the risk of overfitting by constraining the number
of parameters that require fine-tuning for downstream tasks.
The Bridger plays a crucial role in early feature fusion be-

tween modalities. Additionally, our method’s ability to inject
vision-specific inductive biases into the pre-trained back-
bone reduces the performance gap between ViT-based and
ResNet-based approaches. This finding also suggests the low
intrinsic dimension of pre-trained models for fine-tuning [1].

Table 2 compares our method with other parameter-
efficient methods using oIoU metrics on RefCOCO’s val-test
split. To ensure a rigorous and equitable comparison, we
standardized the reduction factor to 4 to minimize any poten-
tial confounding effects arising from differences in this pa-
rameter. For CoOp, we set the number of learnable tokens to
8 following [50]. For Conv Adapter, we applied the original
method of inserting the adapter into the visual encoder. For
Adapter and Compactor, we inserted adapters into both en-
coders. For LoRA, we incorporated LoRA into the encoders
following the primary approach. Our approach achieves a
3.33% improvement in oIoU compared to the method of
freezing the weights of the backbone. Furthermore, our
method shows an oIoU improvement of 1.60% ∼ 3.19%
over other parameter-efficient methods while using a compa-
rable amount of fine-tuned parameters.

To highlight the differences between the previous and
new task decoders, and their respective number of tuned
parameters, we present the parameter counts in Table 3.
These counts were calculated using their open-source code.
For “+”, we only calculated the parts of the model with
known structures, as some modules are not open source. Our
method has fewer total tunable parameters, ranging from
only 10.75% to 20.15% compared to other methods.
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(a) “Person on left yellow boots” (e) “guy in band hat”(b) “Light gray board” (c) “dude with tongue poking out” (d) “Guy looking at girl stuff”

Input
Images&
Sentences

w/o 
Bridger

w/ 
Bridger

Seg Mask

Seg Mask

Figure 3: Visualization of the generated feature maps by the input images and the sentences describing objects in the images
(first row). Feature maps produced by our framework w Bridger (third row) contain more fine-grained features with rich edges
and textures than those generated by our framework w/o Bridger (second row), which is of great help for dense prediction.
The fourth row demonstrates the final mask prediction of our framework w Bridger. Figure best viewed in color.

Method Trainable Parameters oIoU(%)Backbone Prompt Head
Full-Tuning 120.74 M 0.00 K 23.98 M 70.47
Fix Backbone 0.00 M 0.00 K 23.98 M 67.73
Adapter [20] 2.39 M 0.00 K 23.98 M 69.46
Conv Adapter [41] 1.20 M 0.00 K 23.98 M 69.33
Compacter [27] 0.19 M 0.00 K 23.98 M 69.11
CoOp [50] 0.00 M 4.10 K 23.98 M 67.87
LoRA [21] 0.03 M 0.00 K 23.98 M 68.84
ETRIS (Ours) 1.94 M 0.00 K 23.98 M 71.06

Table 2: Comparison with previous parameter efficient tun-
ing method using Resnet101 as backbone on the oIoU(%)
metric on test-val-split of RefCOCO dataset.

5.2. Qualitative Analysis

Figure 3 demonstrates that our method with Bridger gen-
erates more detailed features with distinct edges and textures,
which is superior to the model without Bridger. Bridger as-
sists the model in better understanding the semantic informa-
tion from the sentence and making more accurate positional

Method Tunable Param. (Backbone) Tunable Param. (Decoder) Tunable Param. (Total)
PCAN [2] 25.56 M (6.57%) − 150.21+ M (17.08%)
CRIS [43] 40.42 M (4.16%) 42.88 M (50.92%) 146.85 M (17.47%)
ETRIS (Ours) 1.68 M 23.98 M 25.66 M
BRINet [22] 61.00 M (3.18%) 190.68 M (12.58%) 251.68 M (10.30%)
LSCM [24] 61.00 M (3.18%) 80.85 M (29.66%) 141.85 M (18.27%)
CMPC+ [37] 61.00 M (3.18%) 67.66 M (35.44%) 128.66 M (20.15%)
EFN [14] 126.89 M (1.53%) 96.36 M (24.89%) 232.78 M (11.13%)
CRIS [43] 57.31 M (3.39%) 40.66 M (58.98%) 161.25 M (16.07%)
ETRIS (Ours) 1.94 M 23.98 M 25.92 M
ReSTR [29] 86.19 M (1.61%) − 200.63+ M (12.65%)
ETRIS (Ours) 1.39 M 23.98 M 25.37 M

Table 3: Comparison of parameters with existing methods,
where the percentages denote the ratio of the number of
tunable parameters of our method to other methods.

predictions. In case (a), the feature map generated without
Bridger is inadequate in accurately pinpointing the loca-
tion of the boot, causing the model to focus on the person’s
head. Similarly, in case (b), the model fails to comprehend
the location description, resulting in inaccurate predictions.
Our model with Bridger generates features that capture fine-
grained details and better integrate visual and textual infor-
mation, as demonstrated in cases (c), (d), and (e).
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5.3. Ablation Study

We establish the efficacy of our proposed approach by
performing ablation studies on crucial modules. Further
information on Bridger’s hidden dimension employed can
be found in Appendix ??.
Effect of Bridger’s number and position. We studied the
effect of the number and position of Bridger using ResNet101
as our backbone and set the scope of fusion as [2,n], [2, n/2],
[n/2, n], where n is the layer number of the encoder. The
scope of influence of fusion features is defined as the range
in which such features have an effect. For example, when
fusion is performed at the first stage, the fusion features
that occur at the end of the first stage will have an influence
that extends to the second to nth stages of the pre-trained
backbone. Table 4 shows the results of different numbers of
Bridgers under different scopes on RefCOCO’s val-test split.
The results indicate that Bridger scope expansion improves
performance, while the number of Bridgers has little impact.

Scopes Number Params oIoU(%)
2 → n 1 0.43M 70.96
n/2 → n 1 0.29M 70.18
n → n 1 1.22M 69.65
2 → n 2 0.72M 70.75
n/2 → n 2 1.51M 70.53
2 → n 3 1.94M 71.06

Table 4: Ablation study of the Bridger’s number and scopes.

Effect of ZL’s component. We conducted experiments with
various components of the Zoom Layer to analyze the opti-
mal way for the zoom operation. Table 5 shows that using
convolutional and deconvolutional layers for zoom-in and
out operations yielded the best balance between performance
and parameters. These results demonstrate that by utilizing
convolution-based operations, we can adjust the size of the
feature map to facilitate upcoming attention operations and
augment the local information of the feature map.
Effect of Bridger, Hierarchical Alignment Module (HA)
and Global Alignment Module (GA). We evaluated the
necessity of the proposed modules by separately removing
them and reporting the oIoU results on the val-test split of
RefCOCO. From Table 6, it can be observed that the per-
formance decreased by 3.33% in the absence of Bridger,
12.36% in the absence of HA and 8.85% in the absence of
GA, which demonstrate the effectiveness of Bridger and veri-

Zoom Layer (x) Params oIoU(%) Pr@0.5 Pr@0.7 Pr@0.9
(a) Linear 5.77 M 70.94 82.89 72.18 17.89
(b) Conv&Interpolate 1.45 M 70.08 81.17 68.07 15.95
(c) MLP 1.68 M 70.62 82.36 71.05 17.70
(d) Conv&Deconv 1.94 M 71.06 83.43 72.68 17.40

Table 5: Ablation study of the Component of Zoom Layer.

HA GA Bridger oIoU(%) Pr@0.5 Pr@0.7 Pr@0.9
✓ ✓ 58.70 69.53 45.52 4.33

✓ ✓ 67.73 79.62 68.47 15.41
✓ ✓ 62.21 71.51 53.41 11.16
✓ ✓ ✓ 71.06 83.43 72.68 17.40

Table 6: Ablation study of Hierarchical Alignment Module
Global, Alignment Module, and Bridge.

fies the ability of the proposed module to improve alignment.

6. Discussion
Our method can be beneficial to other tasks such as seman-

tic segmentation or classification due to the model’s ability to
facilitate early modal fusion and multi-scale feature aggrega-
tion. To achieve this, we propose three transformations: (1)
Semantic Segmentation by considering the category name as
the text, (2) Object Detection by incorporating an FPN net-
work, and (3) Classification by making minor modifications
to the decoder. More details can be seen in Appendix ??.

7. Conclusion
In this paper, we propose a parameter-efficient tuning

framework for referring image segmentation. In detail, for
injecting vision-specific inductive biases and task-specific
information into the pre-trained model while keeping its
original parameters fixed, we proposed Bridger to make an
interaction between the vision and language encoders. Af-
terward, we design a lightweight decoder to make further
hierarchical and global alignment on visual and linguistic fea-
tures by combining convolution and attention mechanisms.
Our model achieves competitive performance compared to
full fine-tuning on three benchmark datasets with the same
backbone. Larger pre-trained models improve performance,
as shown by comparisons with different visual backbones.
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