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Abstract

Garments are important and pervasive in daily life.
However, visual analysis on them for pose estimation is
challenging because it requires recovering the complete
configurations of garments, which is difficult, if not impos-
sible, to annotate in the real world. In this work, we pro-
pose a recording system, GarmentTwin, which can track
garment poses in dynamic settings such as manipulation.
GarmentTwin first collects garment models and RGB-D ma-
nipulation videos from the real world and then replays the
manipulation process using physics-based animation. This
way, we can obtain deformed garments with poses coarsely
aligned with real-world observations. Finally, we adopt
an optimization-based approach to fit the pose with real-
world observations. We verify the fitting results quantita-
tively and qualitatively. With GarmentTwin, we construct
a large-scale dataset named ClothPose, which consists of
30K RGB-D frames from 2400 video clips on 600 garments
of 10 categories. We benchmark two tasks on the proposed
ClothPose: non-rigid reconstruction and pose estimation.
The experiments show that previous baseline methods strug-
gle with highly large non-rigid deformation of manipulated
garments. Therefore, we hope that the recording system and
the dataset can facilitate research on pose estimation tasks
on non-rigid objects. Datasets, models, and codes will be
made publicly available.

1. Introduction

We manipulate garments every day: we fold our T-shirts,
flatten our suits, and perform other tasks that involve inter-
acting with garments. A vision system to reconstruct the
complete configuration of the garment can be beneficial for
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downstream tasks such as object understanding, VR/AR,
and robotic manipulation. The problem of reconstructing
the garment configuration is defined as garment pose esti-
mation in GarmentNets [9]. However, problems arise when
dealing with real-world data. Given that a garment has
a near-infinite degree of freedom, it is extremely hard to
record its pose in the real world. Real-world garments can
easily undergo large non-rigid deformation, making them
hard to annotate. As a result, previous works are limited to
annotate key points [6, 46] or feature lines [4] when using
real-world data. Such simplifications hinder the develop-
ment of research on visual garment understanding. A ques-
tion still haunts the community: Is it really impossible to
measure the garment pose in the real world?

Taking the lessons from capturing poses of rigid or artic-
ulated objects in the real world [18, 33], passive sensors
such as QR-like fiducials or reflective markers are com-
monly used. These markers are particularly effective for
rigid object parts, as they share the same pose transforma-
tion for all the vertices. With such rigid constraints, the
pose of markers in occluded regions can be inferred from
visible regions in observation. However, for deformable ob-
jects such as garments, these rigid constraints do not apply,
making it challenging to infer the pose from visible regions.
Thus, the passive sensors cannot be applied to garments.

As for active sensors, their accuracy is often insufficient
to meet the requirement of having an error range smaller
than the thickness of a garment. A typical garment has a
thickness of 0.05 ∼ 1cm. Therefore, an active measuring
sensor should have an error of at least 1cm to prevent one
side of the garment from penetrating the other. However,
even magnetic sensors, one of the most accurate localiza-
tion techniques available, only have an accuracy of 2.6cm
within a 30cm × 30cm × 30cm region [7]. For a more in-
depth discussion of active sensors, please refer to Sec. 2.

As the sensor technology seems to need a long time to
catch up with the necessary accuracy, we turn to an indi-
rect method to measure garment poses. Instead of directly
measuring the garment pose from a static state, our method
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measures it based on its dynamic movements. We draw in-
spiration from continuum mechanics that the deformation
is influenced only by external forces applied on the object
from a given configuration. Therefore, knowing the initial
pose of garments and the operation to deform it allows us
to determine the pose during the operation. In this way, we
can estimate the garment pose even when it is in large de-
formation, as long as it is tracked and starts from a simple
configuration. Based on the observation, we propose a new
recording setup for garments, named GarmentTwin.

The workflow of GarmentTwin consists of five major
procedures: (1) Model collection: We prepare 3D mod-
els of the real-world garments by scanning. (2) Manip-
ulation recording: In the real world, volunteers manipu-
late the garments from a given initial pose, and the point
cloud sequences of garment movements and the hand poses
are recorded with a multi-view RGB-D camera setup. (3)
Coarse alignment: We replay the manipulation process
with scanned garment models and recorded hand poses in
a simulator [15] with physics-based animation. In this
way, the garment poses can be coarsely aligned with real-
world observations. (4) Fine pose fitting: Finally, we use
an optimization-based approach to fit the coarsely aligned
shape onto the corresponding point cloud sequence from the
real world. (5) Verification: After the process, we verify
the annotation by checking the accuracy at predefined key
points, which is called Grid Layout, and visually inspect
whether the fitted pose is satisfactory. The GarmentTwin
pipeline can effectively fit the garment pose with good ac-
curacy (∼ 0.2cm) and without penetration.

With GarmentTwin, we can collect real-world garment
pose flow during manipulation, which enables us to con-
struct a large-scale real-world garment pose dataset, Cloth-
Pose. ClothPose is built upon a real-world garment reposi-
tory, Garment3D, which includes 600 garments of 10 cat-
egories. We ask volunteers to manipulate the garments with
predefined operations, i.e. folding and randomization. As a
result, we have 30K point cloud sequences with annotated
poses for every frame.

Although we annotate the complete pose and are primar-
ily interested in non-rigid pose estimation tasks (NRPE),
the annotation can also support incomplete tasks such as
non-rigid reconstruction (NRR). Therefore, we benchmark
NRR with different baseline approaches to attract a broader
audience. Specifically, we adopt DynamicFusion [34] and
DeepDeform [6] for NRR task, and GarmentNets [9] for
NRPE task.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to ac-
complish garment pose recording with complex pose
configurations in natural manipulation tasks in the real
world. To achieve this, we propose a novel recording
pipeline GarmentTwin.

• With GarmentTwin, we propose a large-scale real-
world dataset, ClothPose, which includes an asset
dataset, Garment3D, with 600 garments of 10 cate-
gories, and a task dataset with RGB-D sequences of
garments in manipulation. This dataset allows re-
searchers to conduct garment pose research directly in
the real world for the first time.

• We benchmark two relevant non-rigid tasks namely
reconstruction and pose estimation on our ClothPose
dataset with different baselines. We are especially in-
terested in facilitating the research in non-rigid pose
estimation tasks, which are less explored as no proper
benchmark exists before.

2. Related Works
2.1. Sensors for Localization

Researchers have developed many localization technolo-
gies to capture an object’s location in the real world. How-
ever, garment pose estimation presents unique requirements
to the sensors, including:

· Sub-centimeter-level accuracy within a space of
1.5m3, which is a typical workspace for folding.

· Robustness to the occlusion.
· Lightweight pose indicators (i.e. the signal receiver or

the marker) attached to the garment.
· Flexibility to adapt to the garment deformation.
To the best of our knowledge, current localization tech-

nology cannot satisfy all these requirements. The accuracy
requirement alone rules out most of the active sensors. For
example, IMU [14] can provide quite accurate angular in-
formation, but has poor location accuracy, which can drift
away 9m in 20 seconds even after carefully calibration [14].
GPS [16] has decimeter-level accuracy, and cannot be used
indoors or for 3D localization. UWB [61] has an accu-
racy of up to 5cm in indoor environments, but occlusion
can easily influence it. WiFi [23] has only decimeter-level
accuracy. Magnetic sensors’ accuracy worsens as the re-
ceiver gets farther from the magnetic source, with an em-
pirical accuracy of 2.6cm at 29cm [7]. Ultrasonic waves
[22] cannot bypass occlusion. Bragg grating [41] is too ex-
pensive and has limited bending ability. While multi-sensor
fusion may improve accuracy [8], the receiver’s larger size
makes it hard for sensors to attach to garments. Addition-
ally, we are not aware of a multi-sensor fusion solution that
can achieve 3D pose estimation at the sub-centimeter level.
Given the current status of localization sensors, we turn to
indirect solutions to record garment poses.

2.2. Garment Dataset

The current 3D garment dataset can be roughly catego-
rized as either scanned or simulated. Simulated datasets
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Dataset # Garments # Category # Frame Deformation Dynamics Annotation
Synthetic

TailorNet[39] 20 / * * simulated *
Cloth3D[4] 11.3K 4 * * simulated *

Real
VideoFolding[46] - 2 304K large real arm keypoints

DeepFashion3D[62] 563 10 2K mild static feature lines
DeepDeform[6] - 1 ∼6K mild real sparse keypoints

ClothPose 600 10 30K large real per-vertex pose
Table 1. Comparison with other garment-related datasets. (1) “# Garments” column compares the number of garment models provided in
the dataset. VideoFolding and DeepDeform are both 2.5D based, they do not provide complete garment models. (2) “Deformation” means
if the deformations in the dataset are complex. “mild” means the operation on garments will cause gentle deformation. The operations are
usually hanging or swinging. (3) In the “Dynamics” column, “static” means not dynamics, “real” means the dynamics follow real physics,
while “simulated” not. (4) * means it can be synthesized.

[4, 39, 40] often have larger dataset sizes but lack the re-
alistic texture and plausible dynamics since existing simu-
lation techniques cannot fully replicate the garment motion
dynamics [58]. Therefore, we favor the real-world scan-
ning path and are particularly interested in scanned garment
dataset. The BUFF dataset [60] provides very few scans and
sequences, while 3DPW [47] focuses more on human body
pose, though it also provides 18 clothes models. These on-
body datasets cannot separate the garment pose from the
body pose. Later, Deep Fashion3D [62] proposes a garment
model repository that contains 563 garments. Since they
do not provide high-resolution mesh models, and target on-
body reconstruction tasks, the pose varieties are rather lim-
ited. Thus, they cannot be used to support garment pose
estimation and tracking tasks. From the task perspective, a
video dataset proposed by [46] is more relevant. However,
they only have a limited number of garments, and the anno-
tations are only key points of the operator’s arms and hands.
A detailed comparison can be referred to in Table 1.

2.3. Non-rigid Reconstruction

The study of reconstructing general non-rigid objects
with large deformation has a long history [48]. However,
early works [13] had slow offline runtimes and required
slow and simple motion. A milestone work is DynamicFu-
sion [34], which is the first approach to achieve non-rigid re-
construction in real-time. Since DynamicFusion, many fol-
lowing works have been proposed [21, 42, 43] that improve
tracking quality [21], enable the topology changes [42, 43],
or consider additional information like geometry, albedo,
and motion [17]. Deepdeform [6] proposed a new learning-
based sparse-to-dense reconstruction approach that showed
good performance on the accompanying dataset. Recently,
Xu et al. [51] integrates both tactile and visual perception
for non-rigid object reconstruction. While the typical non-
rigid reconstruction (NRR) task aims to reconstruct only the
visible surface, there is also another line of works targeting
4D holistic object reconstruction [12, 11, 26, 35, 36, 37, 27].

These methods can reconstruct deformable objects, usually
the human body, with complete mesh. However, since they
do not seek to fit the mesh into a configuration space. Thus,
they cannot obtain the object pose.

Non-rigid Pose Estimation Rigid pose estimation has
been widely studied in the computer vision community
[28, 29, 52]. In contrast, non-rigid pose estimation can
be regarded as a form of template-driven reconstruction,
whether the template can be either explicit [30] or implicit
[9]. This area has been extensively researched in the human
body modeling community. However, although the human
body is non-rigid, its deformation is typically mild, and it
can be considered an articulated object [10, 54, 56, 31, 55].
More recently, on-body clothes reconstruction [40, 60, 32,
45, 57, 59, 5, 19] has received increasing attention. How-
ever, due to the constraints of the human body, on-body
clothes cannot have highly non-rigid deformations. Yang
et al. [57] propose to reconstruct the garment model from
a single image with the aid of human body pose estimation
along with the garment parameters. Yu et al. [59] also pro-
pose a simulate-and-fit pipeline like ours, however since the
garment deformation is caused by body motion, only cloth-
body collision is considered in the pipeline. Such strat-
egy cannot be applied to off-body garment manipulation,
where cloth-cloth collision is much more severe. Besides,
the mass-spring system used in [59] cannot handle the cloth-
cloth collision during physics-based simulation without ad-
ditional constraints, such as [50], which was not considered
in [59]. Recently, Xue et al. [53] proposed a simulated sys-
tem for non-rigid garment manipulation data collection. It
also presents a 4D non-rigid pose estimation method.

Compared to the NRR task, the NRPE task presents
unique challenges, as it involves handling the unseen parts
of the surface and seeks the correspondence in configura-
tion space. GarmentNets [9] was recently proposed to es-
timate garment pose from the in-grasping configuration. In
this work, we benchmark it using our proposed ClothPose
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on different manipulation tasks (Sec. 4).

3. GarmentTwin
3.1. Garment3D: A Large-scale Real-World Gar-

ment Repository

We purchased 600 real-world garments. The following
will describe how to categorize them, and scan them into
3D models.
Repository Statistics. We follow the categorization as in
[62], and also have 10 categories. We report the basic statis-
tics of the asset dataset in Table 2. The data samples are
presented in the supplementary materials.

Category # Object # Vertex # Triangle
Long-sleeve coat 171 408K 814K
Short-sleeve coat 75 317K 632K
None-sleeve coat 10 171K 340K

Long trousers 49 381K 759K
Short trousers 35 166K 330K

Long-sleeve dress 52 607K 1210K
Short-sleeve dress 46 565K 1127K
None-sleeve dress 31 390K 776K

Long skirt 55 415K 827K
Short skirt 76 189K 375K

Table 2. The statistics of each garment category. “# Vertex” and
“# Triangle” are the average numbers of vertices and triangles in
the category respectively.

Scanning. To scan each garment, we place it on a man-
nequin until it reaches static equilibrium. The pose in this
state is defined as the rest pose. We then use an Einscan pro
2x 2020 3D scanner to scan the clothes model. As shown
in Fig. 2, to reduce post-processing procedures, the man-
nequin is made of reflective black material, which is hard
to be scanned by the structural light-based scanner, so that
the scanning result will be the garment alone. The scan-
ning process typically takes between 20 and 60 minutes,
depending on the garment size. After scanning, we use sur-
face reconstruction, hole filling, and texture fusion to fix the
models’ surfaces and textures.
Grid Layout. We define a layout of sparse keypoint on each
garment for each category, called Grid Layout. The layout
serves two purposes: to aid in the scanning process, particu-
larly for textureless garments, and to serve as a verification
checkpoint for pose annotation accuracy. We give an ex-
ample in Fig. 2. The definition of the grid layout for each
category can be referred to in the supplementary materials.

3.2. Real-World Recording Setup

After acquiring the garments, our next step is to manipu-
late and record them in the real world. The entire recording

https://www.einscan.com/handheld-3d-scanner/einscan-pro-2x/

setup is illustrated in Fig. 1.
Hardware Setup. We use four Azure Kinect cameras to
capture RGB-D sequences of the garment manipulation pro-
cess. Each camera streams images at a sampling rate of 30
FPS, with a resolution of 640×480 for both RGB and depth
streams. These cameras are setup with hardware synchro-
nization.
Calibration. To calibrate multi-cameras, we design a
multi-facet checkerboard. We register the point cloud from
the other cameras to a reference camera using [38], and then
use the transformed pose as initialization to calibrate the
multi-camera with the Multical library [3]. Using this ap-
proach, we achieve a calibration error of ∼ 5mm. After
calibration, we fuse point clouds from each depth camera
into an integral scene to obtain an almost complete outer
observation of the garment state.
Manipulation. We conduct two different manipulation
tasks on garments, namely folding and randomization. They
both start from the same initialization process.

Initialization: For both manipulation tasks, we assume
that the garments are initially laid on a flat surface in a sim-
ple configuration, as shown in Fig. 1. It is not a strict pose
requirement, as long as the garment is flattened and aligned
in a similar direction within the same category. We give
examples in the supplementary materials.

Folding: In this task, the operator is asked to complete
the garment folding process. Though different people may
have different preferences when folding clothes, we ask the
operator to follow specific procedures. For example, fold-
ing a long-sleeve coat takes three steps: (1) The opera-
tor grasps the left cuff and places it on the waistline. (2)
He/She grasps the right cuff and places it on the waistline.
(3) He/She grasps the neckline with two hands and places it
on the waistline. For the procedures of the remaining cate-
gories, please refer to the supplementary materials.

Randomization: In this task, the operator can manipu-
late the garment into any configuration they want with one
move, such as picking-and-placing, pushing. The resulting
garment configurations will be less regular than those in the
folding process.
Recording. During manipulation, we cover the table and
the surroundings with green sheets to facilitate the segmen-
tation of the garment being manipulated from the back-
ground. We also attach Aruco markers on both hands of
the operator to obtain the hand wrist pose by solving a PnP
problem [24]. We then project the multi-view RGB-D im-
ages to an RGB-D point cloud scene, with the foreground
filtered out, and annotate when the hands are performing
grasping and releasing.

3.3. Coarse Alignment in Simulation

After obtaining the cleaned scene point clouds and hand
poses, we use the scene point clouds as a reference and re-
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6 DoF

(a) (b) (c)

Azure Kinect DK

Calibration Box

① ②

③

④

Figure 1. (a). Hardware recording setup. 1-4 are Azure Kinect cameras. A table covered with a green sheet is sited in the middle, and the
multi-facet checkerboard box is placed on the table. (b-c) Segmentation of foreground garment, and multi-camera fusion for scene point
cloud.

Figure 2. Left: The scanning setup includes the mannequin and
the scanner. Right: The top is the scanned rest pose model and the
bottom is the grid layout. The marker is scaled up for display, the
actual size can be viewed in Left.

play the hand poses to manipulate the corresponding gar-
ment model in the simulator to align it. The process is illus-
trated in Fig. 3.
Physics-based Animation. We first simulate the garment
dynamics with XPBD-based techniques [44] in RFUniverse
[15] to deform the garment model. Then, we load the
scanned garment model into RFUniverse along with the
clean scene point clouds. We adjust the global orientation
to align with the scene point clouds which is one-time effort
for a sequence. Next, we place virtual hands in the scene
based on the recorded poses. When the hand grasps the
garment, it pins garment vertices within a distance of 1cm,
causing them to move along with the hand, and drive the
garment deformation accordingly. To note, since we only

annotate the hand wrist pose, the fingers will not move. The
hand model loaded is only used for calculating the near-
est vertices. When the hand releases the garment, the at-
tachment between the garment model and hand model is
removed, causing the vertices to fall down due to gravity.

Although the cloth simulation is not perfect, it replicates
the essence of the process, which is sufficient for our final
refinement optimization.

3.4. Fine Pose Fitting

We define the garment mesh model in rest pose as
Mrest = (V rest, Erest), where V rest represents the ver-
tex locations and Erest the edges between vertices. The
coarsely aligned garment mesh models are Mcoarse

t =
(V coarse

t , Ecoarse
t ), t means the frame index and starts from

0. To note, Ecoarse
t will not change throughout the manipu-

lation process, and it is also the same with Erest, thus they
naturally correspond to each other. The fused point clouds
from depth cameras are denoted as Pt.

Since after calibration, the depth camera errors are
within 1cm, we consider the fused point clouds Pt can be
regarded as almost complete and accurate for outer obser-
vations. To fully utilize the point clouds, we adopt a three-
stage strategy to refine the garment mesh Mcoarse

t to the
point cloud Pt.
Stage 1: Non-rigid ICP. In the first stage, we first apply
a non-rigid iterative closest point (ICP) algorithm from [1]
between Mcoarse

t and Pt. This non-rigid ICP process tries
to match the vertices in each Mcoarse

t to the correspond-
ing Pt, and to deform the vertices to the matched points
as close as possible. However, the result from this algo-
rithm may contain severe self-intersections and large defor-
mations. We denote the mesh model result from this step as
Ms1

t .
Stage 2: Resolving Interpenetration & Natural Defor-
mation. To eliminate these artifacts, we add two terms to
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（a） （b） （c）

（d） （e） （f） （g）

Figure 3. Coarse Annotation in Simulation. (a). We load the garment mesh model (color/texture are removed to make the alignment
clearer), and scene point clouds (in Green) into RFUniverse. (b). We adjust the global orientation of the garment to align with the point
cloud from initialization stage. (c). When a grasping state is activated for a hand, it will pin the nearest points on the garment to the hand
(g) to drive the deformation. (d)-(f) Continuing a folding process according to the hand wrist poses and states.

Input

CD

Output

Input

CD

Output

0.290.890.1410.08

0.160.13 0. 39 0.990.24 0.300.05 0.38

0.44 0.92 0.10

Figure 4. Qualitative results of garment pose annotation. Input: input point clouds. To note, some point clouds may seem posit in a simple
configuration (e.g. the fourth trousers in the first row), they may have already folded once. Output: Fitted results after GarmentTwin
pipeline. CD: The Chamfer distance between the output mesh and the input point cloud.

control the interpenetration and deformation. Denote the re-
sult mesh in this stage as Ms2

t , an energy function Es2 is
defined as follow:
Es2(Ms2

t ,Ms1
t ,Mrest) =EL2

(Ms2
t ,Ms1

t )

+ λ1Epene(Ms2
t )

+ λ2Ereg(Ms2
t ,Mrest).

(1)
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Es2 is composed of three terms. EL2 is the L2 loss
between the result mesh Ms2

t and the result of the non-
rigid ICP algorithm [1] Ms1

t . Epene is a barrier function
term borrowed from [25] to prevent self-intersections by
penalizing primitive pairs (i.e. vertex-vertex, vertex-edge
pairs) of which the distances are below a certain threshold
d̂ = 0.0005. Additionally, as in [25], floating-point con-
tinuous collision detection (CCD) is also applied to avoid
self-intersections by clamping the step size. It can dynami-
cally detect the potential primitive pairs to collide between
optimization steps. Finally, Ereg is an as-rigid-as-possible
(ARAP) [20] regularization term, it can regulate the de-
formation to a natural state. We optimize this objective
function with the Projective Newton method. The result is
now intersection-free without large deformation. However,
it still does not perfectly fit the point cloud. To solve this
problem, stage 3 is introduced.
Stage 3: Fitting To Point Cloud. To perfectly fit the point
cloud, we add a Chamfer Distance term to the optimization
function. Denote the result mesh in this stage as Ms3

t , the
optimization function Es3 is as follow:

Es3(Ms3
t ,Pt,Mrest) =λ3Echamf (Ms2

t ,Pt)

+ λ4Epene(Ms3
t )

+ λ5Ereg(Ms3
t ,Mrest).

(2)

In Es3, Echamf is the Chamfer Distance [2] between the
mesh to be optimized Ms2

t and the point cloud Pt, Ereg and
Epene are the same as in Es2. We also optimize this func-
tion with the Projective Newton method. Since the result
of non-convex optimization is sensitive to the initialization,
we choose Ms3

t−1 to be the initial value of stage 2, Ms2
t to

be the initial value of stage 3. Specifically, Ms3
−1 here is

defined as Mrest if frame index t starts from 0.
Implementation Details. In implementation, we set λ1 =
1e7, λ2 = 1, λ3 = 3, λ4 = 1e7, λ5 = 1. The Projective
Newton optimization for both stages will iterate up to 100
times, or it can end earlier if the L2 norm of the search
direction is less than 0.0005. The optimization can be done
in 5 seconds per frame.

3.5. Annotation Verification

Admittedly, though we can fit the accurate point cloud
with a reasonably low energy, we still cannot guarantee
pose in the occluded part is right, as they cannot be ob-
served in the point clouds. We still need to verify the op-
timization results. To verify the optimization results, we
conduct it in both quantitative and qualitative ways: (1) For
the visible part, we check the errors at the predefined layout
points. The average corresponding distance is 2.3mm. (2)
For the invisible part, we ask the annotator to check if the
fit between the garment mesh and the point cloud is visually
pleasant. To note, with the Echamf , we can also manually

select the corresponding pairs before optimization, which
can further improve the accuracy of garment fitting. We il-
lustrate samples after optimization in Fig. 4.

3.6. ClothPose Dataset Statistics

Since the depth cameras can work at 30 FPS, the volun-
teers can manipulate the garment at a natural speed. They
usually finish the folding task in 5 seconds and the random-
ization task in 2 seconds. After cleaning, we filter out the
consecutive frames with minor deformation, which happens
when the volunteers change the operation (e.g. in the dura-
tion of after placing the left cuff and transiting to grasp the
right cuff).

We manipulated each garment once for the folding task
and collected 600 videos in total, which contain 18K
frames. For the randomization task, we randomly manipu-
lated the garment three times, resulting in 1800 video clips
in total, which contain 12K frames. We select 1/5 garments
(item number is rounded up to the nearest integer) from each
category as unseen and the corresponding frames as the test
set for evaluating the learning algorithms.

4. Experiments

Though we are mostly interested in garment pose estima-
tion tasks, to broader usage of this dataset, we also bench-
mark the dataset with non-rigid reconstruction tasks. Addi-
tionally, we conduct ablative study on the simulation-fitting
process. More discussion on how to process the scanned
garment model, physics engine choices for simulation can
be referred to supplementary materials.

4.1. Metrics

Metrics for Non-rigid Reconstruction, NRR task. We
follow the metrics in [6] and report the deformation error
(Def-err) and geometry error (Geo-err) in centimeters.

Metrics for Non-rigid Pose Estimation, NRPE task. We
put it in a category-level setting, as currently, the only base-
line approach GarmentNets [9] does. We adopt two met-
rics, namely Chamfer Distance(Dchamf ) and Correspon-
dence Distance (Dcorr). Dchamf calculates Chamfer dis-
tance in centimeters between the reconstructed mesh points
and the ground-truth mesh points. This metric can evalu-
ate the quality of surface reconstruction. Dcorr calculates
the L2 distance in centimeters between the reconstructed
mesh vertices and the ground-truth mesh vertices. To note,
since Dcorr requires one-to-one mapping between the ver-
tices (i.e. configuration space), for GarmentNets, we cal-
culate this based on the NOCS [49] coordinates (i.e. each
point on the predicted mesh will find the closest point on
the ground-truth mesh in NOCS).
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4.2. Results

Results on Non-rigid Reconstruction. We adopt Dynam-
icFusion [34] and DeepDeform [6] as the baseline for the
NRR task. As shown in Table 3.

Method Def-err ↓ Geo-err ↓
DynamicFusion [34] 8.43 1.37

DeepDeform [6] 4.89 0.66
Table 3. Results on NRR task with the baseline of DynamicFusion
and DeepDeform. Such methods are category-agnostic, thus we
calculate the accuracy from the whole dataset. ↓ means the lower
the better.
Results on Non-rigid Pose Estimation. Finally, we adopt
GarmentNets [9] as the baseline for the category-level
NRPE tasks on garments, as it is currently the only learning-
based approach for category-level pose estimation. As
shown in Table 4, and demonstrated in Fig. 5, we can ob-
serve failure cases when taking GarmentNets for pose esti-
mation. For example, the overall translation and scale er-
rors, the structure incompleteness, and the correspondence
errors.

Input GarmentNetsOurs Overlap

Figure 5. Input: input point clouds. Ours: Fitted results after
GarmentTwin pipeline. GarmentNets: Predicted results of Gar-
mentNets. Overlap: We put all these into one scene so that we can
check the quality of the fitting and GarmentNets estimation. The
viewpoint might be different. More results with GarmentNets are
given in supplementary materials, and the overlap column is better
viewed in 3D mode, which will also presented in the supplemen-
tary video.

The reason why GarmentNets fail to achieve good per-
formance on our dataset is due to its design for reconstruct-
ing garment pose from static observations. In the original
work [9], the dataset used to train GarmentNets consists of
similar poses, where the garments are grasped by one hand
and hanging in the air. However, our dataset focuses on
the garment poses with manipulation dynamics. Data sam-
ples for a specific configuration such as “being grasped and
hanging in the air” occupy only a small portion of the over-
all manipulation sequence. Thus, ClothPose have a much
wider variety of poses than GarmentNets dataset (we will
provide a visual comparison in the supplementary material).

In such scenarios, we have observed that GarmentNets can-
not effectively capture the pose changes. Thus, we believe
that non-rigid pose estimation for garments is a more chal-
lenging and less explored area of research. We hope that our
benchmark will encourage more research in this direction.

Category Dchamf ↓ Dcorr ↓
Long-sleeve coat 1.54 5.27
Short-sleeve coat 1.62 6.44
None-sleeve coat 1.58 5.69

Long trousers 1.27 4.38
Short trousers 1.42 4.59

Long-sleeve dress 1.66 5.73
Short-sleeve dress 1.63 5.44
None-sleeve dress 1.75 6.21

Long skirt 1.94 6.99
Short skirt 1.82 6.91

Table 4. Results on NRPE of GarmentNets on each category of
ClothPose. ↓ means the lower the better.

4.3. Ablative Study on Simulation-Fitting Process

We carry out the ablative study on simulation-fitting pro-
cess with a long trousers folding sequence. As shown in Fig.
6, without mesh produced by the coarse alignment process
(“w/o coarse”), directly optimizing from rest pose can make
the Chamfer distance fail to match the points between gar-
ment mesh and point cloud, and thus the shape can be very
different from the observation. Without ARAP term (“w/o
reg term”), it can make the Hessian matrix in penetration
term fails to keep semi-definite. For this part, readers can
refer to IPC paper [25]. Thus, it cannot finish the sequence
due to the numeric error for later frames. Without penetra-
tion term (“w/o penetration term”), it can easily penetrate
among layers. The dark area is the penetrated area. The
Chamfer distances for the “w/o coarse”, “w/o reg term”,
“w/o penetration” and “full” is 1.26, N/A (since it encoun-
ters a numeric error in the end), 0.48, 0.23 and 0.16 respec-
tively.

Input w/o coarse w/o reg term 
(ARAP)

w/o 
penetration 

term
full

Numeric 
Error

（1）

（2）

（3）

Figure 6. Ablative study on pose fitting process. (1) and (2) are
frame #1 and #5, (3) is frame #25 in the selected sequence.
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4.4. Limitation

We think there are two major limitations: 1. It requires
a garment mesh model, which requires a whole scanning
setup, and it is troublesome. 2. The pose alignment and
fitting process takes a few seconds. Ideally, if it can run
in real-time, the method can be used for wider scenarios.
Such limitations are also the improvement directions we are
particularly interested in.

5. Conclusion and Future Works
In this work, we propose a novel pipeline, Garment-

Twin to record real-world data of garment pose based on
its dynamic movements. With the recording pipeline Gar-
mentTwin, we take the first step towards constructing a
real-world large-scale dataset for garment pose estimation.
Using the dataset ClothPose, we benchmark two relevant
tasks with multiple baselines. We hope the proposal of this
benchmark can encourage more attention to this challeng-
ing and exciting direction. Besides, since our recorded gar-
ments are in manipulation, we are interested in applying
them to robotic applications.
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[22] AR Jiménez and F Seco. Ultrasonic localization methods
for accurate positioning. Instituto de Automatica Industrial,
Madrid, 2005. 2

[23] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin
Katti. Spotfi: Decimeter level localization using wifi. In
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, pages 269–282, 2015. 2

[24] Vincent Lepetit, Francesc Moreno-Noguer, and P Fua. Epnp:
Efficient perspective-n-point camera pose estimation. Int. J.
Comput. Vis, 81(2):155–166, 2009. 4

[25] Minchen Li, Zachary Ferguson, Teseo Schneider, Timo-
thy R Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu
Jiang, and Danny M Kaufman. Incremental potential con-
tact: intersection-and inversion-free, large-deformation dy-
namics. ACM Trans. Graph., 39(4):49, 2020. 7, 8

[26] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng,
and Matthias Nießner. 4dcomplete: Non-rigid motion es-
timation beyond the observable surface. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12706–12716, 2021. 3

[27] Wenbin Lin, Chengwei Zheng, Jun-Hai Yong, and Feng
Xu. Occlusionfusion: Occlusion-aware motion estimation
for real-time dynamic 3d reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1736–1745, 2022. 3

[28] Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Qiao-
jun Yu, Yang Han, and Cewu Lu. Akb-48: A real-world
articulated object knowledge base. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14809–14818, 2022. 3

[29] Liu Liu, Han Xue, Wenqiang Xu, Haoyuan Fu, and Cewu
Lu. Toward real-world category-level articulation pose esti-
mation. IEEE Transactions on Image Processing, 31:1072–
1083, 2022. 3

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 3

[31] Jun Lv, Wenqiang Xu, Lixin Yang, Sucheng Qian,
Chongzhao Mao, and Cewu Lu. Handtailor: Towards
high-precision monocular 3d hand recovery. arXiv preprint
arXiv:2102.09244, 2021. 3

[32] Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and
Michael J Black. Scale: Modeling clothed humans with a
surface codec of articulated local elements. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16082–16093, 2021. 3

[33] Roberto Martı́n-Martı́n, Clemens Eppner, and Oliver Brock.
The rbo dataset of articulated objects and interactions. The
International Journal of Robotics Research, 38(9):1013–
1019, 2019. 1

[34] Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 343–352,
2015. 2, 3, 8

[35] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 5379–
5389, 2019. 3
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