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Abstract

With the surge in attention to Egocentric Hand-Object
Interaction (Ego-HOI), large-scale datasets such as Ego4D
and EPIC-KITCHENS have been proposed. However, most
current research is built on resources derived from third-
person video action recognition. This inherent domain gap
between first- and third-person action videos, which have
not been adequately addressed before, makes current Ego-
HOI suboptimal. This paper rethinks and proposes a new
framework as an infrastructure to advance Ego-HOI recog-
nition by Probing, Curation and Adaption (EgoPCA). We
contribute comprehensive pre-train sets, balanced test sets
and a new baseline, which are complete with a training-
finetuning strategy. With our new framework, we not only
achieve state-of-the-art performance on Ego-HOI bench-
marks but also build several new and effective mechanisms
and settings to advance further research. We believe our
data and the findings will pave a new way for Ego-HOI
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understanding. Code and data are available at https:
//mvig-rhos.com/ego_pca.

1. Introduction

Understanding Egocentric Hand-Object Interaction
(Ego-HOI) is a fundamental task for computer vision and
embodied AI. To promote HOI learning, many egocentric
video datasets [17, 7, 24, 16, 44] have been released, which
contributed to recent advances in this direction. Recently,
deep learning based methods [50, 12, 4], especially Trans-
formers and visual-language models [11, 1, 2, 51] have
achieved high performances on these benchmarks.

Though significant progress has been made, challenges
remain. With few better choices available, current studies
on Ego-HOI typically adopt existing tools and settings of
third-person action recognition, despite the significant do-
main gap between egocentric and exocentric action [44, 25].
Notably, third-person action depicts almost full human body
and associated poses, while first-person action typically
only engages hands; third-person videos are usually stable
or readily stabilized, while first-person videos can exhibit
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different degrees of camera motion and shaking, which are
possibly intended by the actor. Given the large domain gap,
existing methods inherited from third-person vision are ar-
guably unsuitable. Moreover, it remains unclear whether
the existing Ego-HOI datasets [17, 7, 24, 35, 44] can sup-
port the model pre-training for transferability on down-
stream tasks. Thus, here, we address the important tech-
nical question in Ego-HOI: What are the effective model
and training mechanisms for Ego-HOI learning?

To understand the need for a new baseline and cus-
tomized training for Ego-HOI learning, we analyze the ex-
isting paradigm and observe three main weaknesses: 1)
Previous methods are mainly based on models pre-trained
on Kinetics [21]. It has been widely discussed that third-
person action datasets like Kinetics have a huge domain and
the semantic gap with egocentric videos [44, 43, 59, 5, 25].
Thus, we need a new pre-train set specifically designed for
Ego-HOI; 2) Previous ad-hoc models are designed for third-
person video learning. And these solutions are typically tai-
lored to address one or a limited subset of Ego-HOI learn-
ing instead of a more general one-for-all model, i.e., one
model for all Ego-HOI benchmarks; 3) In current schemes,
finetuning one shared pre-trained model for all downstream
tasks is inefficient, which also falls short of adapting to
every downstream task or benchmark. Therefore, a task-
specific scheme is necessary so that we can efficiently learn
a customized model for each downstream task.

In light of these weaknesses, in this work, we propose
a novel basic framework for Ego-HOI learning by Probing,
Curation and Adaption (EgoPCA): we probe the properties
of Ego-HOI videos, based on which we leverage data cu-
ration for balanced pre-train and test datasets, and finally
adapt the model according to specific tasks. The details are
as follows.

1) New Pre-Train and Test Sets. We build a new com-
prehensive pre-train set based on the videos from Ego-
HOI datasets. Although multiple datasets are available
for training a universal Ego-HOI model, the noisy, highly
long-tailed source datasets (e.g., EPIC-KITCHEN [7] and
EGTEA Gaze+ [24]) can introduce imbalance to the pre-
trained models and thus adversely influence their general-
ization ability [10]. The bulky “head” data in the long-
tailed distribution also result in unmanageable training cost
given the current rapid growth of the model and data size.
Hence we propose to seek a balanced pretrain data distri-
bution for the training efficacy and efficiency. In the scope
of Ego-HOI, the data should be balanced not only on the
semantics of samples but also on the other video proper-
ties such as camera motion or hand poses. After conducting
thorough studies on Ego-HOI video properties, we sample
a small but balanced and informative subset from multiple
datasets [17, 7, 24, 35]. which can support better transfer
learning for downstream tasks with domain and semantic

gaps. Alongside, a new balanced test set is built that ac-
counts for the long-tailed distribution of Ego-HOI videos
and its HOI semantics for fair and unbiased evaluation of
models, which is a widely adopted approach [32].

2) One-for-All Baseline Model. We propose a new
baseline given the unique egocentric video properties, that
consist of an efficient lite network and a representative
heavy network, which can leverage both frames and videos
in training. Moreover, we observe that the camera motion
associated with Ego-HOI videos often correlates to serial
attention to the visual scene of interaction. So we propose
Serial Visual Scene Attention (SVSA) prediction task to ex-
ploit such knowledge. In particular, we incorporate coun-
terfactual reasoning in ego-videos, applying intervention on
the “hand” causal node by replacing the hand patch with dif-
ferent hand states while keeping the scene/background. The
model output should change after intervention. With these
constraints, our baseline achieves state-of-the-art (SOTA)
on several benchmarks when pre-trained on our training set,
and outperforms the SOTA significantly on our test set.

3) All-for-One Customized Mechanism. Towards the
best settings for each downstream task, we propose a new
video sampling and selection algorithm based on the ego-
video properties analysis. Given our one-for-all model, we
apply our optimal training and tuning policies for each task.
Subsequently, we further outperform the performance of
our one-for-all model on several benchmarks.

Overall, to “standardize” Ego-HOI learning and inte-
grate resources, our contributions are: 1) we revisit the
Ego-HOI tasks and analyze the data from the perspectives
of dataset construction and model design; 2) according to
our analysis, instead of directly using the third-person video
methods/tools, we propose a new framework (pre-train set,
baseline, and test set) designed exclusively for Ego-HOI; 3)
to pursue SOTA while minimizing training costs, we pro-
pose a customized approach for downstream tasks.

2. Related Work

2.1. HOI Understanding

Different from the third-person and general HOI learn-
ing [26, 27] that studies the interactions between the whole
body and object, Ego-HOI only focuses on the hand-object
interactions in the egocentric view. Recently, various Ego-
HOI datasets have been proposed [17, 7, 24, 16, 44]. EPIC-
KITCHENS [7] is one of the first large-scale Ego-HOI
datasets with over 80 K instances, more general actions,
and objects, where hand and object positions are available.
Similarly, EGTEA Gaze+ [24] contains HOI annotation and
provides auxiliary gaze data. The success of deep learn-
ing has promoted the development of Ego-HOI recogni-
tion models, including 2D ConvNets [50], multi-stream net-
works [12], and 3D ConvNets [4]. Transformer-based net-
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works and visual-language models have played important
roles in HOI learning [11, 22, 51], which can significantly
boost performance.

2.2. Video Action Recognition

Video action recognition is a foundational task. In terms
of backbones, previous methods can roughly fall into three
groups. Two-stream [46, 49, 13], 3D CNN [4, 48, 57, 12],
and Transformer methods [2, 1, 11, 55, 33]. In terms
of large-scale pre-training, it has already been a stan-
dard procedure for Ego-HOI models. In the early ages,
researchers leverage the pre-training on large-scale image
datasets, e.g., ImageNet [8, 41] and MS-COCO [31]. Some
methods follow the image pre-training and extract fea-
tures from video frames, while such methods can not ex-
ploit the temporal information and require aggregation of
such information. Given large-scale video datasets, meth-
ods [39, 15, 14, 23, 28] pre-train models on Kinetics [21, 4]
or HowTo100M [36] to utilize the transferability and en-
hance recognition. Besides, CLIP [40] is a milestone in
adopting contrastive learning with large-scale image-text
pairs, demonstrating outstanding zero-shot performance. In
terms of transfer learning, previous works typically fine-
tune the pre-trained backbone paired with a new classifier
to adapt to downstream tasks. ActionCLIP [51] end-to-end
finetunes on target datasets and shows that finetuning is crit-
ical to both language and image encoders. Ego-Exo [25]
uses Kinetics pre-trained backbone and finetunes it on the
target egocentric dataset.

3. Ego-HOI Videos

Egocentric videos have various properties from exocen-
tric videos as they are often characterized by more camera
motions, higher blurriness, etc. So we explore the key prop-
erties inherent in Ego-HOI videos to guide the framework
design (Section 3.1) and propose our sampling strategy for
balanced data. We introduce the ego-property similarity and
selection method (Section 3.2) and the construction of our
pre-train set One4All-P (Section 3.3), which is comprehen-
sive, generalizable and transferable. Finally, we construct
our balanced test set One4All-T (Section 3.4).

3.1. Ego-HOI Video Properties

We first present how to quantitatively measure the video
properties to visualize and derive our sampling strategy.
The comprehensive analysis will be presented on five
datasets: EPIC-KITCHENS-100 [7], EGTEA Gaze+ [24],
Ego4D-AR 1, Something-Else [35] and our One4All-P.

1Ego4D-AR (Action Recognition) is constructed based on the hand-
object interaction split of Ego4D [17]. We assign the action labels from
anticipation tasks to the video clips for the HOI task to build an action
recognition benchmark. Please refer to the supplementary for more details.

EPIC-100
Sth-Else

Ego4D-AR EGTEA One4All-P

Figure 2: Semantic distribution of actions of Ego-HOI train sets.
We use BERT [9] embeddings to visualize the classes.

Ego-HOI Semantics. The action label of a video clip is
one of the most important properties of egocentric videos.
Considering the ego-property similarity in the labels among
different datasets, we represent the HOI semantics of a
video clip as the label word vectors extracted by the pre-
trained BERT [9]. Thus, videos with similar HOIs are in
close proximity in the BERT latent space. Figure 2 depicts
the t-SNE visualization of the class semantics of several
datasets, which shows that our One4All-P spans the largest
area and that the class embeddings of Something-Else are
differently located from the rest of the datasets.

Camera Motion. Different from third-person videos
typically shot by stable cameras, egocentric videos are cap-
tured by wearable cameras, so they exhibit a wider variety
of viewpoints, view angles, and shaking movements. Such
camera motions highly correlate to the human’s intention in
the HOI task which helps video understanding, e.g., which
object to interact with in the next step. We use dense optical
flows between frames to quantify per-pixel camera motion.
We compute the polar histogram of shift vectors by angles
and take the angle and length of the largest bin to represent
the camera motion of the frame. The camera motion of each
video is represented as the polar histogram of motion vec-
tors of the frames. Figure 3 shows the polar histogram of
camera motion of datasets, and EPIC-100 and Ego4D-AR
exhibit larger motion than EGTEA and One4All-P.

Blurriness. Egocentric videos can be blurry due to
fast camera motion, either intentional or occasional. We
measure the blurriness by the variance of Laplacian of the
frames since a blurry frame has a smaller variance of Lapla-
cian. Then each video is represented as the mean and vari-
ance of blurriness of multiple frames. Figure 5 shows the
distribution of blurriness. Something-Else has the lowest
blurriness score as it was captured with less camera move-
ment. In comparison, our One4All-P is more balanced in
blurriness and covers the blurriness ranges of other datasets.

Hand/Object Location. The location distribution of
hands or objects varies among different datasets. We ex-
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Figure 3: Camera motion polar histogram of Ego-HOI train sets.
The length and angle of the bars: the motion magnitude and angle.

EPIC-KITCHENS-100 Ego4D-AR EGTEA Gaze+ One4All-P-100K

Wrist Thumb CMC Middle MCP Middle PIP Middle Tip

Figure 4: Hand pose. We show the high-density contours of the
heatmaps of different hand keypoints on different train sets.
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Figure 5: Blurriness (train sets). µ: average blurriness value.

tract the hands and objects’ location with existing detection
toolboxes (MMPose [6] for hand and Detic [61] for object),
and each video is represented as discrete heatmaps of hands
and objects. We show the heatmaps of hand and object lo-
cations (Figure 6, 7). The hands and objects are primarily
located at the bottom of the frames in EGTEA Gaze+, while
they are rather arbitrary in EPIC-100 and One4All-P.

Hand Pose. To more accurately capture the detail of
human hands, we measure the hand pose in videos with an
off-the-shelf pose detector (MMPose [6]). Then, each video
clip is represented as the 21 keypoints (a 42-dim vector).
Figure 4 visualizes the distribution of hand poses, where we
generate heatmaps of 5 main keypoints (from wrist to mid-
dle fingertip) and draw the contours of their high-density
area. The figure shows that the hands are usually placed ver-
tically and fingers pointing upwards in Ego-HOI datasets,
which is omitted in hand box representations. Moreover,
the hands in EPIC-100 are closer to the center than those
of EGTEA Gaze+. Compared to EPIC-100 and Ego4D, the
hand pose of One4All-P is more diversified.

We also present comparisons between valid/test sets of
Ego-HOI datasets. The hand location heatmaps are shown
in Figure 8. For the rest, please refer to the supplementary.
Our One4All-Val also shows balancedness on the proposed
video properties over other datasets.

3.2. Ego-Property Similarity

To measure the property similarity between datasets, we
propose the ego-property similarity. For the similarity
between sets A and B, we use Kernel Density Estimation
(KDE) to estimate the distribution of A as P̃A. Then the
similarity is measured as the likelihood of the set B on PA:

Sim(A,B) = P̃A(B) =
∏
x∈B

P̃A(x), (1)

where the representation x of a sample is one of the afore-
mentioned quantitative properties, e.g. semantic BERT vec-
tors, hand pose keypoints. In KDE, we assume the Gaus-

Algorithm 1 Video Selection

Input: Source data S and extra data E, KDE update fre-
quency k, target instance number m, temperature τ

Output: Selected instances T = {t1, · · · , tm}
1: T ← {}
2: repeat
3: Train KDE model PS with source data S,
4: Compute log-likelihood qi = logPS (ei) ,∀ei ∈ E,
5: Compute sampling probability pi with Equation 2
6: Draw k instances Ek from E with distribution pi
7: S ← S

⋃
Ek, T ← T

⋃
Ek

8: E ← E\Ek

9: until |S| reach m

sian kernels have diagonal covariance, and the bandwidth of
each dimension is selected with Silverman’s estimator [45].
Exceptionally, for the blurriness, we regard the mean values
of blurriness of video frames as the representation x and
the standard deviation as the bandwidth. As an example,
we compare the ego-property similarity between datasets in
Figure 9 and list the most similar dataset for each dataset.

Video Selection. Based on the ego-property similarity,
we propose an ego-property similarity-based selection al-
gorithm to sample extra data to enrich the original video
set towards balancedness or higher performance. We es-
timate the KDE distribution P̃S of source dataset S and
select a subset T from extra dataset E based on the like-
lihood P̃S(ei) of each sample ei. If the aim is performance,
we maximize the ego-property similarity between S and
T , so the sampling probability is the normalized likelihood
pi ∝ P̃S(ei). And if the aim is balancedness, we maxi-
mize the distance between S and T for data diversity, so we
incorporat reversed probability pi ∝ P̃S(ei)

−1. Since the
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Figure 6: Hand location heatmaps of Ego-
HOI datasets (train set).
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Figure 7: Object location heatmaps of Ego-
HOI datasets (train set).
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Figure 8: Comparison of hand location of
test set of Ego-HOI datasets.

Random Action Semantic Camera Motion Blurriness Hand Location Object Location Hand Pose Unified (best weight)
+5% 69.7 (+0.3) 70.0 (+0.5) 70.5 (+1.0) 70.0 (+0.5) 70.5 (+1.0) 70.5 (+1.1) 70.3 (+0.9) 70.6 (+1.2)
+10% 69.7 (+0.2) 70.1 (+0.6) 70.2 (+0.8) 70.2 (+0.7) 71.0 (+1.5) 69.7 (+0.3) 70.0 (+0.6) 70.6 (+1.2)
+20% 69.6 (+0.2) 70.2 (+0.8) 70.3 (+0.8) 70.0 (+0.5) 70.9 (+1.5) 70.3 (+0.8) 70.2 (+0.7) 71.2 (+1.8)

Table 1: Performance after adding data to EGTEA Gaze+ [24] split 3 according to various criteria. The baseline (w/o additional data)
accuracy is 69.4%. We find that the camera motion, hand location/pose, and object location are more important among all the factors.
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Figure 9: The unified ego-property similarity between datasets.

z-score normalization of probability is equal to the softmax
of log-likelihood, the sampling probability is formulated:

pi =


softmax(

1

τ
log P̃S(ei)), (performance)

softmax(−1

τ
log P̃S(ei)), (balancedness)

(2)

where temperature τ modulates the sampling strength. We
gradually select samples and update the KDE distribution
per k instances. The input is our video property representa-
tions. The complete algorithm is shown in Algorithm 1.

We conduct an ablation study in Table 1. We add aux-
iliary videos from 3 other datasets ([7, 35, 17]) to EGTEA
Gaze+ to enhance the performance according to different
video properties. Results indicate that camera motion, hand
location and pose, and object location are better criteria for

Dataset Sample Class
EGTEA Gaze+ [24] 8,300 106
Something-Else [35] 157,389 174
EPIC-KITCHENS-100 [7] 67,217 97
Ego4D-AR [17] 22,081 66
Kinetics-400 [21] 306,245 400
One4All-P-20K 20,000 394
One4All-P-30K 30,000 394
One4All-P-50K 50,000 394
EGTEA Gaze+ [24] (test split 3) 2,021 106
Something-Else [35] (val) 22,660 174
EPIC-KITCHENS-100 [7] (val) 9,668 97
Ego4D-AR [17] (val) 14,530 58
One4All-T-3K 3,000 204
One4All-T-5K 5,000 204
One4All-T-10K 10,000 204

(a) Datasets

0% 20% 40% 60% 80% 100%

O4A-T-10K

O4A-T-5K

O4A-T-3K

O4A-P-50K

O4A-P-30K

O4A-P-20K

Ego4D-AR
EPIC100

EgteaGaze+
SthElse

(b) Data Sources

Table 2: Previous datasets and our pre-train/test sets. (a) The upper
block indicates the (pre)train sets and the lower block shows the
validation/test sets. (b) The components in our datasets.

video selection compared to semantics, blurriness, etc.
Unified Ego-Property Based Sampling. Then we pro-

pose a unified sampling criterion with ego properties. We
compute the sampling probability with Eq. 2 for each video
property and take their weighted sum as unified sampling
probability. The weight is obtained in proportion to the sig-
nificance of each property. An example is given in Table 1.
The ablation shows the superiority of the unified criterion.

3.3. Constructing A Comprehensive Pre-train Set

Considering the generalization and transfer ability of the
pre-trained model, we intend for a more comprehensive
pre-train set, which is balanced and diverse not only on
labels but also on the proposed properties. With the ego-
property similarity and selection algorithm, we progres-
sively select samples to enhance the dataset’s balancedness
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on multiple properties while ensuring high sample diversity.
We construct our pre-train set with EPIC-KITCHENS-100,
EGTEA Gaze+, Something-Else, and Ego4D-AR. Note that
we only use Something-Else for training since it also con-
tains third-person videos (roughly 10%), in order to exploit
its high diversity in hand and object. We first merge the
action labels of the datasets and merge the semantically
identical classes. Then we randomly sample 30 instances
for each class for a class-balanced base dataset. Then, the
Algorithm 1 is applied to complement the dataset while
keeping the balancedness. Thus, we propose our pre-train
datasets One4All-P-20K, One4All-P-30K, and One4All-
P-50K, with 20 K, 30 K, and 50 K video clips respectively.
Table 2 shows their details. Here, we aim at studying how to
build a high-quality while minimal pre-train set to improve
efficiency while pursuing maximum performance. Adding
more data may indeed improve performance while some-
times may degrade the scores, as the more severe longtailed
distribution, the less diversity, background bias, etc.

3.4. Constructing A More Balanced Test Set

The widely adopted Ego-HOI benchmarks like EPIC-
KITCHENS and EGTEA-Gaze+ are either limited in scale
or possess severely long-tailed test sets, resulting in a
skewed evaluation. Thus, a more balanced test set is re-
quired by the Ego-HOI community for a fair and balanced
evaluation, which is balanced from multiple aspects like
interaction semantics, hand/object locations, etc. We use
the same video selection approach (Algorithm 1) to ex-
tract our new test sets One4All-T-5K, One4All-T-10K, and
One4All-T-20K. Table 2 tabulates the details of the test set.

4. Methodology

We propose our paradigm based on the analysis. Ex-
isting methods typically adopt approaches of third-person
action. Considering the gap between egocentric and exo-
centric HOI, we propose a baseline and pre-train it on our
pre-train dataset for a one-for-all model (Section 4.1). Then
the pre-trained model can be finetuned to a stronger task-
specific model with our customization (Section 4.2).

4.1. One-for-All (One4All) Baseline Model

Ego-HOI data has unique properties making it unsuitable
to use third-person models and pre-train directly. More-
over, these properties should be utilized rather than ig-
nored in Ego-HOI models. So we propose a new baseline
model for Ego-HOI learning. As shown in Figure 11, our
model resembles CLIP [40] and consists of three encoders:
lite, heavy, and text networks. The lite network captures
frame-level features while the heavy network learns spatio-
temporal features. These two streams are aligned with the
text feature. As the instances in a batch may belong to the

same class, we incorporate a KL contrastive loss follow-
ing [51] different from CLIP [40]: in each B-sized batch,
the output visual features F = fi|Bi=1 are aligned with the
text feature T = ti|Bi=1 of label prompts by the loss:

Lkl (F,T,y) =
1

B

B∑
i=1

KL[Softmax (
Si•

τ
)∥Qi•]+

1

B

B∑
j=1

KL[Softmax (
S•j

τ
)∥Q•j ],

(3)

where y is the class label and τ is the softmax temperature.
Sij = cos⟨fi, tj⟩ is the cosine similarity matrix between
visual and text features. Q is the ground truth matrix and
Qij is 1 only if ith and jth instance is in the same class.
The KL contrastive loss draws closer to the visual and text
features that have the same semantics.

Specifically, the model is trained in multiple steps. First,
the frame-level lite network is pre-trained with frame-text
pairs in Ego-HOI data. Then we freeze the frame encoder
and pre-train ATP module [3] with video-text pairs. ATP
is a keyframe selector that automatically selects the most
informative frame given a batch of features. We sample N
frames for each video clip, from which the ATP module
selects the feature of one frame to represent the video. Both
steps are supervised by KL contrastive loss as Equation 3.

After that, both the frame encoder and ATP module are
frozen during the joint training of lite and heavy networks
on our One4All-P dataset. For each video in a batch, we
sample L1 × N frames to the frame encoder and the ATP
module selects L1 frames. A shallow Transformer will ag-
gregate the frame features to Fl. Another L2 frames are sent
to the heavy network for video representation Fh. Both fea-
tures are aligned with the text feature by constraint:

LCL (Fl,Fh,T) = Lkl (Fl,T,y)

+Lkl (Fh,T,y) + Lce (Fl,Fh) .
(4)

Lce is the CE contrastive loss in CLIP [40] since we only
align the lite and heavy features of the same instance.

During inference, the lite and heavy networks indepen-
dently generate prediction by cosine similarity to the text
embeddings of the classes. The two streams can be com-
bined by mean pooling to produce the Full model result.
In the non-zero-shot scenario, linear probing can be applied
to enhance fixed-class recognition performance. Thus, our
method is flexible in HOI learning. The full model achieves
better model performance, while the lite or heavy models
are more efficient and amenable to customization.

Given the special properties of Ego-HOI videos, we fur-
ther design two customized constraints to better utilize the
rich information inherent in Ego-HOI videos.

Serial Visual Scene Attention Learning (SVSA). If a
model can learn human intention from its associated view
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Figure 11: Baseline model overview. (a) It consists of a lite and a heavy network. The embeddings are aligned with text features by
contrastive learning; (b, c) Given the unique properties, we propose SVSA and counterfactual reasoning to promote Ego-HOI learning.

Model Pre-train Set Ego4D-AR EPIC-100 EGTEA One4All-T-3k One4All-T-5K One4All-T-10k
1 Chance / 1.6 1.0 1.1 0.2 0.2 0.2
2 CLIP [40] CLIP 400M 4.0 10.4 17.2 2.3 1.8 1.5
3 CLIP [40] Kinetics-400 3.0 7.2 23.7 3.5 2.6 2.2
4 ActionCLIP [51] Kinetics-400 3.0 8.8 18.5 2.9 2.2 1.8
5 EgoVLP [30] EgoClip 2.1 5.5 12.4 1.6 1.2 1.0
6 CLIP [40] One4All-P-50K 6.9 21.4 35.7 15.7 14.6 13.7
7 ActionCLIP [51] One4All-P-50K 5.8 33.8 44.2 21.0 20.1 19.3
8 Ours (Full) Random-50K 6.9 34.6 50.5 22.7 20.7 20.2
9 Ours (Lite) One4All-P-50K 5.6 40.5 48.9 23.2 22.2 21.4
10 Ours (Full) One4All-P-20K 6.6 35.1 50.8 22.5 20.8 19.5
11 Ours (Full) One4All-P-30K 6.0 35.7 52.5 22.7 20.9 19.7
12 Ours (Full) One4All-P-50K 7.2 41.8 52.9 25.1 23.8 23.3

Table 3: Performance of one-for-all model on benchmarks. Our lite model adopts the CLIP pre-trained model, and the heavy model uses a
Kinetics-400 pre-trained MViT backbone. Full means the simple late fusion of the lite and heavy model logits. Top-1 accuracy is reported.

changes, dubbed as SVSA, its focus on the view of HOI
should be temporally continuous and thus predictable. We
enhance the learning of SVSA with an auxiliary task by
proposing to predict the movement of the view center from
the semantic feature flow. As shown in Figure 11, we hope
the motion direction can be recoverable. Thankfully, for
each video clip with sampled frame features F = fi|Li=1,
we have already extracted the camera motion m = [x, y]
during the dataset analysis, which stands for the movement
of the camera center from Lth frame to (L+1)th frame. So
we propose the following SVSA constraint:

LSV SA (F,m) = 1− cos⟨Fs(F),m⟩, (5)

where Fs is a shallow network receiving a frame feature
sequence and outputs a 2D direction vector. The negative
cosine drives the predicted angle to approach ground truth.
Here, we use 2D motion. Considering 3D may bring a

new improvement, but it is more expensive given egocen-
tric videos for 3D reconstruction.

Counterfactual Reasoning for Ego-HOI. Counterfac-
tual causation studies the outcome of an event if the event
does not actually occur and we leverage counterfactual
learning to enhance causal robustness. We construct coun-
terfactual Ego-HOI samples. In Figure 11, for a clip with
frames F = fi|Li=1, we modify the “hand” node (hand state)
and expect changes in the output. We sample α% from the
L frames and construct counterfactual video Fcf by 1) re-
placing the whole frames by frames in the same video but
with dissimilar hand pose or action label, or 2) if possible,
replacing the hand area by hand boxes of other frames with
different hand poses or action labels. Thus we modify the
hand node without changing other nodes. We propose a
constraint to supervise the prediction after counterfactual
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Method Ego4D-AR EGTEA
SOTA 16.3 64.0
Ours (full) 17.6 70.8
Ours (full, +5%) 17.8 71.1
Ours (full, +10%) 18.5 71.5
Ours (full, +20%) 17.9 71.5
Ours (full, -5%⇒ +5%) 17.7 70.4
Ours (full, -10%⇒ +10%) 17.9 70.2
Ours (full, -20%⇒ +20%) 16.8 68.4

Table 5: Results of customized all-for-one strategy. Adding sam-
ples with our sampling strategy brings significant improvement.
Replacing samples also enhances the models while maintaining
the training efficiency.

modification, as a “reversed” contrastive loss [19]:

LCF (F, y) = max [0, γ − cos⟨T (y),V(Fcf )⟩]2 , (6)

where V and T are the visual (lite/heavy) and text net, and γ
is the contrastive margin to clamp the cosine similarity and
penalize the cosine similarity that is smaller than γ. This
constraint ensures that the label of the counterfactual sam-
ple is semantically different from the original GT.

The full training loss with weight λ1, λ2 is:

L = LCL + λ1LSV SA + λ2LCF . (7)

4.2. All-for-One (All4One) Customized Mechanism

Our pre-train set and baseline yield high-performing
Ego-HOI models, which can be further strengthened with
customized strategies on each dataset. Besides the dataset-
specific finetuning, we can add informative samples to en-
hance the performance with minimum overhead based on
the video properties of each instance and video selection
(Algorithm 1), instead of adding data optionally. And recent
research [42] shows that removing samples only results in
minor performance degradation, and at times even produces
slight improvement. Thus we apply data pruning before ad-
dition to offset its overhead. The pruning is similar to video
selection where instances with high KDE likelihood are re-
moved, as they are more likely to be redundant.

5. Experiments

5.1. Datasets

Our experiments are conducted on several widely-
employed egocentric datasets: EPIC-KITCHENS-100 [7],
EGTEA Gaze+ [24], Ego4D-AR [17] (Table 2). Please
refer to the supplementary for details of Ego4D-AR.
We report top-1 verb accuracy on EPIC-KITCHENS-100,
Ego4D-AR, and action accuracy on EGTEA-Gaze+.

5.2. Implementation Details

We apply video selection on several datasets and in par-
ticular, Something-Else [35] is used in pre-train set con-
struction. In the analysis and selection, for semantics,
we use pre-trained BERT-Base for semantic embeddings.
For hand location and pose, the frames are sampled at
FPS=2 and we use cascade mask-RCNN with ResNeXt101
and ResNet50 pose estimator [56] pre-trained on One-
hand10k [54] from MMPose [6]. For object location,
the frames are sampled at FPS=2 and we use ImageNet-
21K [8]+LVIS [18] pre-trained Detic [61] with Swin trans-
former [33]. For camera motion, the frames are sampled at
FPS=8 and we estimate the Gunnar-Farneback optical flow.
The shift vectors are put into 90 bins by their angles. For
blurriness, we resize the frames to 65,536 pixels for a fair
comparison. We use ViT as the lite network and MViT as
the heavy network. The frame-level ViT is 12-layered and
the patch size used is 16. The video MViT [11] receives
16 × 16 × 3 tubelet embeddings. The text network is a
12-layered Transformer. The ATP module connecting the
image stream and video stream is a fully connected layer.
The aggregator of frame features in the lite network is 6-
layered Transformers and the SVSA estimator is 3-layered
Transformers.

For more details, please refer to the supplementary.

5.3. One-for-All Model

We first train our model on One4All-P. We compare
our method with multiple methods and pre-train datasets.
Table 3 shows that our Full method surpasses the previ-
ous models and pre-train sets on all benchmarks. The lite
network also outperforms previous methods on EGTEA-
Gaze+. The overall performance on Ego4D-AR is lower
than other benchmarks due to its zero-shot test samples.

Pretrain Set Comparison. (Experiment {2, 3, 6}, {4,
7} , and {8, 10, 11, 12}) The models trained on One4All-P
outperform the counterparts with other pre-train sets such
as Kinetics-400. Besides, we randomly sample a subset
of Random-50K from the same 4 datasets as One4All-P.
Although given the same data source, pretraining on our
One4All-P is superior to a random subset, showing that a
balanced dataset indeed benefits the pretraining process and
the design taken into consideration of our proposed video
properties is proper for Ego-HOI videos.

Model Comparison. (Experiment {6, 7, 9, 12}) On
the same pre-train set One4All-P-50K or Random-50K, our
Full is the strongest one-for-all baseline on most bench-
marks. On Ego4D-AR, our baseline is comparable to Ac-
tionCLIP but outperforms it on other benchmarks.

One4All-T. Besides the existing benchmarks, we evalu-
ate the models on our test sets One4All-T in different sizes.
One4All-T is a more balanced and harder test set, while our
Full model still outperforms the rest on our test sets.
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Method Ego4D-AR
I3D [4] 14.6*
SlowFast [12] 16.1*
ActionCLIP [51] 12.3*
MViT-B/16x4 [11] 16.3*
ViViT-L/16x2 [1] 16.1*
Ours (lite) 12.7
Ours (heavy) 17.2
Ours (full) 17.6

(a) Ego4D-AR

Method EPIC-100
TSM [29] 67.9
Ego-Exo [25] 67.0
IPL [53] 68.6
ViViT-L/16x2 [1] 66.4
MFormer-HR [38] 67.0
TimeSformer [2] 67.1
MeMViT/16x4 [55] 70.4
Ours (lite) 62.9
Ours (heavy) 67.9
Ours (full) 68.7

(b) EPIC-KITCHENS-100

Method EGTEA
Kapidis et al. [20] 65.7†

Min et al. [37] 69.6‡

Zhang et al. [60] 69.6†

I3D [4] 58.0
TSM [29] 60.2
Ego-RNN et al. [47] 58.6
SAP [52] 62.0
TSM+STAM [58] 64.0
Lu et al. [34] 68.6
Ours (lite) 66.2
Ours (heavy) 69.8
Ours (full) 70.8

(c) EGTEA Gaze+ split 3

Table 4: Performance comparison on Ego4D-AR, EPIC-KITCHENS-100, EGTEA Gaze+ of the all-for-one models finetuned on each
respective dataset. The results with * are reproduced. (†: accuracy on 3 splits; ‡: accuracy on split 1. The actual split 3 accuracy is lower
than the reported score for these two methods). Top-1 accuracy is reported here.

5.4. All-for-One Mechanism

With the pre-trained model, we finetune the model on
each dataset, as shown in Table 4. Most baselines adopt
Kinetics pretraining, only except TSM and Ego-RNN. Our
method achieves the SOTA on Ego4D-AR, EGTEA-Gaze+
by over 1% margin. On EPIC-100, our method could be
further improved if using a larger temporal reception field
similar to MeMViT. We also apply our sampling strategy
to select informative samples and strengthen our baseline in
Table 5. With our unified selection criterion, adding only
10% of samples from the data pool brings about a 1% im-
provement on all datasets. Moreover, to enhance our model
while keeping the training efficiency, we replace part of the
train set with video selection and maintain the data size.
Replacing only 5% to 10% of samples can bring perfor-
mance gain on Ego4D-AR without adding cost. While on
EGTEA-Gaze+, replacing samples leads to comparable per-
formance, and replacing 20% leads to a drop since EGTEA
has a larger domain gap than the other datasets and it is hard
to find substitutes that can compensate for the semantic loss.

5.5. Ablation Study

We conduct ablations to justify our modules and designs.
SVSA and Counterfactual Reasoning. We exclude the

SVSA or counterfactual reasoning task during training. As
shown in Table 6, the full model suffers degradation without
either LSV SA or LCF , which verifies their efficacy based
on the unique property of Ego-HOI video.

Factor Weights. The factor weights of our unified crite-
rion are crucial in video selection and dataset construction.
The weight is derived according to the analysis and exper-
iments on the video properties, where we find hand/object
location, hand pose, and camera motion are more important.
We conduct comparisons of weights in Table 7 and we use
the empirical best weight combination in our method.

Method EGTEA Ego4D-AR
Full Model 70.8 17.6
w/o LSV SA 70.1 16.8
w/o LCF 70.3 17.0
w/o linear probing 70.6 16.8

Table 6: Ablation verifying model components, weights for video
properties for the unified criterion, and model constraints.

Unified Weight +5% +10% +20%
1 : 1 : 1 : 1 : 1 : 1 70.6 70.0 70.7
0 : 1 : 1 : 0 : 1 : 0 70.2 70.0 70.4
0 : 1 : 1 : 1 : 1 : 0 70.8 70.3 70.9
5 : 10 : 8 : 8 : 10 : 5 (Ours) 70.6 70.6 71.2

Table 7: Ablations on weights (semantics, hand box, pose, ob-
ject box, camera motion, blurriness) of the unified property on
EGTEA-Gaze+. Baseline (w/o additional data) accuracy: 69.4%.

For more visualizations, limitations, and discussions,
please refer to our supplementary materials.

6. Conclusion

In this work, we propose a new framework for Ego-HOI
learning. Different from previous works relying on tools,
data, and mechanisms from the 3rd-view recognition, we
provide more balanced pre-train and test sets with more
diverse semantics and hand-object spatial configurations
to improve the pre-training and evaluation. And we pro-
pose a baseline and training mechanisms for downstream
tasks. The experiments validate that our framework not only
achieves SOTA on multiple benchmarks but also paves the
way for more robust and fruitful Ego-HOI studies.
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