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Figure 1: Robust 3D scene reconstruction of challenging and diverse scenes. Given a monocular video, our algorithm
reconstructs the 3D scene without requiring offline-acquired camera poses. Significantly, our approach only involves dozens
of parameters of each frame to optimize online. Here, the red triangulations denote the estimated camera trajectories.

Abstract

3D scene reconstruction is a long-standing vision task.
Existing approaches can be categorized into geometry-
based and learning-based methods. The former leverages
multi-view geometry but may face catastrophic failures due
to the reliance on accurate pixel correspondence across
views, while the latter mitigates these issues by learning 2D
or 3D representation directly. However, without a large-
scale video or 3D training data, it can hardly be general-
ized to diverse real-world scenarios due to the presence of
tens of millions or even billions of optimization parameters
in the deep network.

Recently, robust monocular depth estimation models
trained with large-scale datasets have been proven to pos-
sess weak 3D geometry priov, but they are insufficient for
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fzhao956 @ustc.edu.cn.

reconstruction due to the unknown camera parameters, the
affine-invariant property, and inter-frame inconsistency. To
address these issues, we propose a novel test-time optimiza-
tion approach that can transfer the robustness of affine-
invariant depth models such as LeReS to challenging di-
verse scenes while ensuring inter-frame consistency, with
only dozens of parameters to optimize per video frame.
Specifically, our approach involves freezing the pre-trained
affine-invariant depth model’s depth predictions, rectifying
them by optimizing the unknown scale-shift values with a
geometric consistency alignment module, and employing
the resulting scale-consistent depth maps to robustly ob-
tain camera poses and achieve dense scene reconstruction,
even in low-texture regions. Experiments show that our
method achieves state-of-the-art cross-dataset reconstruc-
tion on five zero-shot testing datasets. Code is available at:
https://aim-uofa.github.io/FrozenRecon/
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1. Introduction

Dense 3D reconstruction is a fundamental vision task,
which has a wide range of applications in autonomous driv-
ing [7], virtual/augmented reality [4, 37], robot naviga-
tion, medical-CAD modeling [32], efc. Existing geometry-
based methods and learning-based methods have achieved
impressive performance. Despite progress, we observe fail-
ure cases in certain real-world scenarios, such as incomplete
or noisy reconstruction of low-texture scenes, tracking fail-
ures for pose estimation, limited generalization to unseen
scenes, efc. In this work, we aim to robustly and efficiently
reconstruct diverse scenes on monocular videos, with the
intrinsic camera parameters and poses jointly optimized at
the same time.

Most 3D scene reconstruction algorithms can be catego-
rized into learning-based [20, 30, 35] and geometry-based
methods [43, 2, 3, 14, 38, 17, 15, 16]. The first group
of methods typically rely on a strong neural network to
learn the scene geometry, which often requires large-scale
and high-quality data to optimize for millions or billions of
learnable parameters. Such an expensive data requirement
limits applications to various scenarios. Furthermore, some
methods, such as SC-DepthV3 [31], optimize the depth and
poses at the same time, for which the optimization can
be challenging and may become stuck in trivial solutions,
partly due to the large number of optimization parameters.

In contrast, geometry-based methods find feature corre-
spondences across views to achieve dense 3D reconstruc-
tion. Thus, fewer/no training data are needed. The draw-
back is that these methods can easily fail on texture-less or
low-texture scenes. Moreover, planar scenes and in-place
rotations also lead to degeneration in camera pose optimiza-
tion. Occlusion, lighting changes, and low-texture regions
can make the dense matching intractable and thus lead to
incomplete reconstructions. Seeking to mitigate these limi-
tations, we propose to exploit a pre-trained, robust monocu-
lar depth model to obtain scene geometry priors, which can
largely ease pose optimization and reconstruction.

Recently, foundation models [21, 1] trained with large-
scale datasets can generalize to new datasets/tasks with few
samples by optimizing for a small portion of parameters
(so-called adaptors). Inspired by the success, we use a pre-
trained monocular depth model of strong performance such
as LeReS [41], and optimize for a very sparse set of param-
eters for quickly rectifying the depth maps on test videos,
such that scale-consistent depth maps can be attained.

Models such as LeReS [41], MiDaS [23], and DPT [22]
use millions of training images to train a robust monocular
depth model, which generalizes well to diverse scenes. Un-
fortunately, the predicted depth maps of those models are
affine-invariant, i.e., up to an unknown scale and shift com-
pared against the ground-truth metric depth. As pointed out
in [41], the unknown shift can cause significant distortion.

Naively fusing pre-frame prediction is prone to cause recon-
struction distortion and scale misalignment. Furthermore,
the unknown intrinsic camera parameters and poses are an-
other obstacle for multi-frame reconstruction. If we have
access to accurate camera parameters, we can fine tune the
pre-trained model to solve the above issues, as in [17].

Instead, we freeze the monocular depth model, and on
the given videos, we optimize for the global scale value, the
global shift value, a local scale map and a local shift map
to rectify each predicted affine-invariant depth map. Intrin-
sic camera parameters and camera poses are also optimized
at the same time. The number of parameters that need to
be optimized online is only around 30 per frame. This is
a sharp contrast compared with learning-based approaches,
e.g., SC-DepthV3, where tens of millions of parameters are
involved in optimization. The shift and scale parameters are
optimized by supervising the photometric consistency and
geometric consistency between selected keyframes. Due to
the sparsity of optimization parameters and the robustness
of the monocular depth model, our method works much bet-
ter in terms of domain gap compared to existing deep learn-
ing methods for this task. At the same time, compared with
traditional geometry-based 3D scene reconstruction meth-
ods, ours can be more robust to low-texture regions.

In order to validate the robustness of our system, we test
on 5 unseen datasets: NYU [28], ScanNet [8], 7-Scenes
[27], TUM [29], and KITTI [12]. Experiments show that
our pipeline outperforms recent methods and achieves state-
of-the-art reconstruction performance. Besides, we also
perform extensive ablation studies to explore the effective-
ness of components of our reconstruction pipeline. Our
main contributions are summarized as follows:

* We propose a novel pipeline for dense 3D scene re-
construction by using a frozen affine-invariant depth
model, and jointly optimizing a sparse set of parame-
ters for rectifying depth maps, camera poses, and in-
trinsic camera parameters. Our method is robust on
diverse unseen scenarios.

» Experiments on diverse datasets show the robustness
of our method and verify the usefulness of each com-
ponent in our method.

2. Related Work

Learning-based 3D Scene Reconstruction. Learning-
based methods [20, 30, 35] rely on a neural network with a
large number of learnable parameters to learn the geometry
of scenes. Some approaches generate the 3D voxel volume
from the 2D image features of the entire sequence [20] or
local fragments [30], and estimate an implicit 3D represen-
tation from posed images. Besides, some other algorithms
[43, 2, 3] attempt to predict poses and depth maps jointly.
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Figure 2: The pipeline of 3D scene reconstruction. Given a monocular video, we use a frozen, robust monocular depth
estimation model to obtain the estimated depths of all frames. Then, we propose a geometric consistency alignment module,
which optimizes a sparse set of parameters (i.e., scale, shift, and weight factors) to achieve multi-view geometric consistent
depths among all frames. The camera’s intrinsic parameters and poses are also optimized simultaneously. As a result, we
achieve high-quality dense 3D reconstruction with optimized depths and camera parameters.

They employ an ego-motion network and a depth network
to predict relative camera poses and depth maps, and su-
pervise the photo-metric consistency [43, 3] and geometric
consistency [3].

Multi-view Geometry Based 3D Scene Reconstruction.
Multi-view geometry based methods [43, 2, 3, 14, 38, 6, 13]
achieve dense 3D reconstruction by finding feature cor-
respondences across views. Traditional methods [25, 26]
extract image features, establish correspondences between
frames, and optimize the pose and depth iteratively, typi-
cally using bundle adjustment [34]. To achieve robust fea-
ture representation, some methods leverage plane sweep-
ing to establish correspondences with assumed depth val-
ues. They usually construct a cost volume with the CNN-
extracted features between images [ 13, 38, 14], and employ
a ConvNet to predict depth maps after regularization. Com-
pared with those approaches, ours is less likely to suffer
from pose catastrophic failures in low-texture regions and
can be more robust to diverse scenes.

Besides, visual SLAM systems [18, 19, 5,9, 10, 11, 24,
33] also estimate the camera motion and construct the map
of unknown environments. Methods of [18, 19, 5, 9] rely
on the assumption of geometric or photometric consistency
to estimate poses and depth through bundle adjustment. Re-
cent works [24, 33] propose to improve the robustness and
accuracy by integrating more representative clues and op-
timization tools from deep learning. These algorithms fo-
cus on accurate pose estimation, but may fail to build dense
maps with geometry details.

Robust Monocular Depth Estimation. To achieve robust
monocular depth estimation, some methods [23, 22, 41, 39]

learn the affine-invariant depth with large-scale datasets,
which is more likely to be robust to unseen scenarios but
up to an unknown scale and shift. Although they achieve
promising robustness, the estimated affine-invariant depth
needs to recover scale-shift values by globally aligning
[23, 22, 41] with ground-truth depth. Some algorithms
[17, 15, 16] propose to employ robust depth prediction and
achieve visually consistent video depth estimation. In con-
trast, this work focuses on leveraging robust monocular
depth models and aiming at dense 3D scene reconstruction
without extra offline-obtained information.

3. Method
3.1. Overview

Aiming at 3D reconstruction from a monocular video,
we propose a lightweight optimization pipeline to jointly
optimize depth maps, camera poses, and intrinsic camera
parameters in Figure 2. The core components of our method
are the geometric consistency alignment module, optimiza-
tion objectives, camera parameters initialization, and the
keyframe sampling strategy.

With the sampled images {I;}£_;, we first use LeReS
[41, 40] to obtain affine-invariant depth maps {D?},
To avoid disastrous point cloud duplication and distortion,
we leverage a geometric consistency alignment module
F(-,-,,) to retrieve unknown scale and shift of affine-
invariant depth and compute scale-consistent depth D;:

D ]:( i auﬁu"%) (1)

where «;, 3;, and w; are the optimization variables.
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Figure 3: The geometric consistency alignment module. We propose to first recover the global scale and shift of depth
map, then apply the locally weighted linear regression method to compute the scale map and shift map, and finally achieve

scale-consistent depth.

In order to transfer the robustness of the depth model,
three optimization objectives are supervised to ensure
multi-frame consistency by warping from source frame 7 to
reference frame j. With this warping process, we propose
to minimize the color and depth difference between warped
points and reference points, i.e., photometric and geometric
constraints. An additional regularization constraint is also
employed to stabilize the optimization process.

During optimization, the consistency supervision relies
on two conditions: 1) the warped reference image and
source images must have overlaps; 2) nicely overlapped
frames can be automatically selected as our keyframes.
Therefore, the appropriate initialization of camera param-
eters and the keyframes’ sampling strategy are essential.

Finally, with the optimized intrinsic camera parameters,
camera poses, and scale-consistent depth maps, we can
achieve accurate 3D scene reconstruction with a simple
TSDF fusion [42].

3.2. Optimization

We assume a simple pinhole camera model, and use ho-
mogeneous representation for all image coordinates. By de-
fault, the scale factor in homogeneous coordinate is 1.
Geometric Consistency Alignment Module. The details
of geometric consistency alignment module F(-) are shown
in Figure 3. The predicted depths {D¢}7  are affine-
invariant. The unknown scale and shift will cause duplica-
tions and distortions if they are incorrectly estimated. To re-
trieve them, we perform a two-stage alignment, i.e., a global
scale-shift alignment, and a local scale-shift alignment. In
the global alignment [41], we optimize for a global scale
«; and a global shift 3; to obtain the globally aligned depth
map D as follows:

DY = ;D¢ + fi. )

In the local alignment, we compute a scale map A; €
RZXW and shift map B; € R7*W for each frame i to re-

fine the globally aligned depth. Instead of directly optimiz-
ing these two maps, we uniformly sample M sparse global
depth {d? (p;)}}, from the globally aligned depth DY:

d?(pt) = fS(Df7pi,t)7 for t = 1]V[7

where fi(-, ) retrieves the depth value at a position; e.g.,
Js(DY, pi.+) obtains d? (p;) from DY at the position p; ;.
Then, by multiplying sparse global depth {d? (p;)}}£, with
the weights {w; ,}Z,, we compute the sparse anchor points
{wit - d?(pt)}L, and use the locally weighted linear re-
gression method [30], i.e., fiwir (-, -), to compute the local
scale map A; € RT*W and local shift map B; € RE*W,
We also describe the fiwrr(-,-) module in detail in the sup-
plementary. Such indirect optimization reduces the parame-
ters to ease optimization. The local alignment is as follows.

A;,B; = fiwir(DY {wis - d?(pe) }Ly),

3
D, =A, o D!+ B, @

where ® means element-wise multiplication, and M is set
to 25 in our experiments. Therefore, in this module, we
only need to optimize for 27 parameters for each frame,
i.e., a;, B, w;. With our geometric consistency alignment
module, we can achieve scale-consistent depth.

Representation of Camera Poses and Intrinsic Camera
Parameters. We propose to optimize for the relative ro-
tation vector {ri_>(,1¢+1)}f;_11 (i.e., Buler angles) and rela-
tive translation vector {t; ,(; 1)} f:ll between two adjacent
frames. They are initialized to 0 and are transformed to 4 x4
relative pose matrices {Pi%(iﬂ)}i’ll with H(-,-). The
relative pose matrices {PH(HI)}ZZ 711 are transformed into
camera-to-world poses matrices {P;}; with the product
operation. Such initialization ensures the initial overlap of
keyframes. For intrinsic camera parameters, we assume a
simple pinhole camera model, initialize the focal length to
be fo = 1.2 - max(H, W), and learn the focal length with
a learnable scalar §. We assume that the optical center is at
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the image center. Thus for camera parameters, we need to
optimize for 6(P — 1) + 1 variables:

Pi(it1) = H(ris@is1)s tin@r1)): P1=Egg,
i—1 (Sfo 0 VV/Z (4)
P, =P, H Pirny, K=10 dfp Hf2|,
k=1 0 0 1

where E, 4 is the 4 x 4 elementary matrix.
Optimization Objectives. The image coordinate p; in
frame ¢ can be wrapped to frame j as follows.

Js(Disj, Pi)Pisj = KR]T [RiK ' f(Dy, pi)pi + ti — t5],

Pi,Pimsj: ti,t; € R¥Y R, R, K € R¥3,
(@)
where K is the intrinsic camera parameter. R,; and t; are

the camera-to-world rotation and translation matrices, and
R, t; . .

P, = { 02 11 , Pi—;j is the point warped from p; of frame

1 to frame j, and D;_, ; is the warped depth map.

To optimize the proposed variables including {o;} 4,
2P P—1 P-1 P
{Bi}izi 0. {ris vy ticr » {tis@r1) Yimr » and {wi}iZg.
we propose to use the pixel-wise photometric and geometric
constraint [2] together to ensure the consistency of color and

depth along the video as follows.

1
Lye = U] > i) = (L, i), (6)
peV
(i,5)EK

|£s(Dy, Pisj) = fs(Disj, Pi)l
Js(Dj,pisy) + fs(Disj, pi)

)

1
Lgc:m >

PEV
(i,j)EK
where V' represents all valid points successfully projected
from frame ¢ to frame j, K is the selected keyframe pairs.
Furthermore, we enforce a regularization term on the
sampled sparse anchor points:

N M

=3 i —widl, ®)

i=1 t=1

Lregu

The overall constraints are as follows.
L= )\chpc + )\chgc + )\reguLTegu7 (9)

where Apc, Age, and A4, are weights to balance them.
Optimization Details. Before we perform optimization, we
first sample P frames from the video to reduce the time
complexity. With these sampled frames, we perform the
keyframes sampling and optimization, which consists of
two stages, i.e., local keyframes sampling for optimization,
and global keyframes sampling for optimization.

Local keyframes sampling and optimization. In opti-
mization, we first sample local keyframes from the k nearest

Algorithm 1 Optimization Algorithm

Input: N images {1}/,

Output: scale-consistent depth maps {D;}f-;l, intrinsic camera
parameter K, camera-to-world camera poses {P;}77*
1: Sample P images {I;}/_, from {I,} X,
2: Obtain affine-invariant depth {D2}Z_, from {I,},
- Initialize the global scale {c;}/2;, global shift {3;}/2,, fo-
cal length scalar 4, relative rotation {riﬁ\(iﬂ)}f;_ll, relative
translation {t;_,(;+1)}7",", sparse points weight {w; }£,

W

4: for stage in [Local, Global] do

5 for iter = 1 to iterations do

6: Compute {P;}7! and K with Eq. (4)

7: if stage = Local then

8: Sample keyframe pairs {(ix, jx) }i_; with Eq. (10)
9 else

10: Sample keyframe pairs {(ix, ji) i, with Eq. (11)
11: end if
12: for keyframe pair (4, j) in { (i1, j1) }1—y do

13: Compute scale-consistent depth D;, D; with Eq. (3);
14: Warp p; from frame ¢ to frame j, get warped depth
D;_,; and warped locations p;,; with Eq. (5)

15: Compute optimization objectives with Eq. (9)
16: end for

17: Back-propagate and update {ai}f;h {Bi}f;l, é,

{rivaen bz fbisan Yo wihin
18:  end for
19: end for
20: Compute scale-consistent depth maps {D;}7_, with Eq. (3),
compute camera parameters K and {P;}7-,! with Eq. (4)

frames of each reference frame. k is set to 6 in our experi-
ments. To reduce computation time complexity, we do not
use all these local keyframes with the current frame but se-
lect them based on probability. The probability for each
keyframe is set as follows.

1
—, if k-nearest neighbors,
=9k (10)

0, otherwise,

where p; is the keyframe sample probability.

Global keyframes sampling and optimization. We further
perform global keyframes sampling and optimization to im-
prove long-range consistency. For each reference frame, all
other frames are regarded as paired keyframes, but they are
labeled with different sampling probabilities. We compute
the relative pose between each reference frame I; and any
other frame I;. Based on the relative pose angle 6;;, we set
the global sampling probability p, as follows.

0is if 0<6;; <¢

¢
_p+p 9 .
g — 2 P = g7%7 if¢<0ij<2¢7 (11)

0, otherwise
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Table 1: Quantitative comparison of zero-shot 3D scene reconstruction with state-of-the-art methods. We compare our
method with seven categories of reconstruction algorithms on several video sequences of five unseen datasets: NYU [28],
ScanNet [8], 7-Scenes [27], TUM [29], and KITTI [12]. Note that NeuralRecon is trained on ScanNet [&], * denotes ground-
truth camera poses are given, and “Rank” means average ranking performance of each column. We evaluate the Chamfer
distance C-/; and F-score with a threshold of 5cm. As a result, we achieve state-of-the-art rank on the five zero-shot datasets.

NYU [28] ScanNet [8] 7-Scenes [27] TUM [29] KITTI[12]
Method C-l; | F-scoref | C-l; |  F-scoret | C-l; | F-scoret | C-l; | F-scoret | C-[; | F-scoret Rank
NeuralRecon* [30] | 0.487 0.185 | trained on ScanNet | 0.235 0.219 | 0.435 0.241 failed on KITTI 8.125
DPSNet* [14] | 0.198 0.391 | 0.299 0.266 | 0.574 0.142 | 0.336 0.263 | 0.290 0.232 | 4.800
BoostingDepth-DROID [36] | 0.139 0.481 | 0.379 0.292 | 0.235 0.460 | 0.322 0.439 | 2431 0.010 | 3.600
SC-DepthV3 [31] | 0.196 0.458 | 0.402 0.214 | 0.252 0.240 | 0.525 0.244 | 4.133 0.036 | 5.500
CVD[17] | 0.471 0.302 | failed on ScanNet | 0.416 0.215 | 0.378 0.239 | 5.479 0.029 | 7.900
RCVD [15] | 0.303 0.346 | 0.641 0.125 | 0.497 0.182 | 0.679 0.218 | 58.372 0.020 | 8.300
GCVD [16] | 0.148 0.453 | 0.631 0.147 | 0.196 0.326 | 0.350 0.339 | 2.127 0.114 | 4.400
COLMAP [25, 26] | 0.251 0.343 | 0.796 0.127 | 0.513 0.178 | 0.385 0.249 | 107.451 0.152 | 7.300
DROID-SLAM [33] | 0.224 0.516 | 0.416 0.384 | 0.304 0.469 | 0.285 0.433 | 0.686 0.155 | 3.200
Ours | 0.099 0.622 | 0.170 0.410 | 0.170 0.464 | 0.211 0.453 | 0.670 0.151 | 1.500

Table 2: Quantitative comparison of zero-shot depth estimation with state-of-the-art methods.

We evaluate the absolute
relative error (AbsRel) and percentage of accurate depth pixels (1) on several videos of five unseen datasets. “Rank” means
average ranking performance of each column. The gray “L.eReS” represents performance of affine-invariant depth without
any alignment with ground-truth depth. As a result, our algorithm achieves state-of-the-art rank performance.

Method NYU [28] ScanNet [8] 7-Scenes [27] TUM [29] KITTI[12] Rank
AbsRel] 017 | AbsRel] 011 | AbsRel] 017 | AbsRel| 0117 | AbsRell o1
DPSNet* [14] | 0.200 0.662 | 0.216 0.630 | 0.201 0.657 | 0.331 0.457 | 0.188 0.729 | 6.4
BoostingDepth-DROID [36] | 0.096 0.921 | 0.236 0.685 | 0.145 0.828 | 0.180 0.742 | 0.112 0.860 | 2.7
SC-DepthV3 [31] | 0.120 0.858 | 0.197 0.672 | 0.188 0.688 | 0.254 0.569 | 0.287 0.463 | 5.2
CVD [17] | 0.167 0.837 | failed on ScanNet | 0.180 0.847 | 0.148 0.797 | 0.717 0.215 | 5.6
RCVD [15] | 0.192 0.700 | 0.235 0.620 | 0.241 0.635 | 0.246 0.612 | 0.220 0.606 | 6.6
GCVD [16] | 0.163 0.768 | 0.316 0.527 | 0.203 0.650 | 0.248 0.697 | 0.240 0.543 | 6.4
COLMAP [26, 25] | 0.233 0.722 | 0.562 0.409 | 0.268 0.666 | 0.269 0.665 | 0.302 0.773 | 7.2
DROID-SLAM [33] | 0.143 0.847 | 0.210 0.773 | 0.154 0.827 | 0.210 0.720 | 0.115 0914 | 3.1
LeReS [41] | 0.277 0.508 | 0.409 0.339 | 0.414 0.345 | 0.445 0.320 | 0.298 0.439
Ours | 0.092 0.923 | 0.127 0.858 | 0.135 0.844 | 0.145 0.799 | 0.203 0.632 | 1.8

where ¢ is an angle threshold, and 6;; is the relative rotation
angle between the source frame I, and the reference frame
I;. p; is the local probability with Eq. (10). The optimiza-
tion is summarized in Algorithm 1.

4. Experiments

We evaluate the 3D reconstruction, scale-consistent
depths, optimized camera poses, and optimized intrinsic
camera parameters in experiments. More details and analy-
ses including runtime can be found in the supplementary.

4.1. Dense 3D Scene Reconstruction

To show the robustness and accuracy of our reconstruc-
tion method, we compare it with a learning-based volumet-
ric 3D reconstruction method (NeuralRecon [30]), a multi-
view depth estimation method (DPSNet [14]), a per-frame
scale-shift alignment method (BoostingDepth [36]), an un-
supervised video depth estimation method (SC-DepthV3

[31]), some consistent video depth estimation methods
(CVD [17], RCVD [15], GCVD [16]), a Structure-from-
Motion method COLMAP [26, 25], and a robust deep vi-
sual SLAM method (DROID-SLAM [33]) on several video
sequences of 5 zero-shot datasets, i.e., NYU [28], Scan-
Net [8], 7-Scenes [27], TUM [29], KITTI [12]. Note that
NeuralRecon is trained on ScanNet, while others are eval-
uated on unseen scenarios. NeuralRecon and DPSNet re-
quire GT poses and camera intrinsic as input, and SC-
DepthV3, CVD, and DROID-SLAM require camera in-
trinsic. For fair comparison, we employ the estimated
poses and depths of DROID-SLAM for BoostingDepth
(BoostingDepth-DROID) to iteratively align the scale-shift
values and filter outliers, as their paper does. Other methods
optimize camera parameters on their own.

Quantitative comparisons of zero-shot 3D reconstruction
and depth are shown in Table 1 and Table 2 respectively.
NeuralRecon [30], DPSNet [14], SC-DepthV3 [31] need
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Table 3: Quantitative comparison of zero-shot pose estimation. “ATE”, “RPE-T”, and “RPE-R” stand for the absolute
trajectory error and the relative pose errors of translation and rotation, respectively. “%” represents the percentage of success-
fully tracked frames. Note that ORB-SLAM3 fails to track the trajectory on some low-texture regions, and can only estimate
partial camera poses. Our algorithm achieves comparable performance to ORB-SLAM3 on three unseen datasets and better

performance than the video depth estimation algorithms.

Method| . GT NYU [28] ScanNet [5] 7-Scenes [27] TUM [29] KITTI[12]
Intrinsic[ATE] RPE-T] RPE-R| %7 |ATE| RPE-T] RPE-R| %7 |ATE| RPE-T| RPE-R| %|ATE] RPE-T| RPE-R| %1|ATE] RPE-T| RPER| %]

SC-DepthV3 [31]] v |0.241 0444 0.115 1.000[0492 0.702 0.327 1.000[1.011 1.644 0389 1.000[0.528 0.787 0399 1.000[1.796 4.186 0.077 1.000
CVD[17]] < |I.192 2.049 0.107 1.000[0.734 1.197 0257 1.000[0.532 1.644 0.378 1.000[0.268 0.844 0447 1.000[19.32 2450 0.027 1.000

RCVD [15] 0460 1263 0.114 1.000[1.025 1708 0615 1.000[0.559 1.545 0394 1.000/0.626 1083 0421 1.000[1343 1607 0.463 1.000
GCVD [16] 0.160 0237 0.083 1.000[0.573 0979 0.620 1.000[0.259 0.368 0.162 1.000/0.162 0.204 0.113 1.000|5.678 8.733 0.089 1.000
COLMAP [26, 75] 0.091 0.137 0.055 1.000[0.352 0426 0096 1.000[0.062 0.090 0.5 1.0000.075 0.102 0.064 1.000[3.707 3.454 0.016 1.000
DROID-SLAM [33]] v [0.050 0.079 0.032 1.000[0.230 0.230 0.052 1.000[0.050 0.072 0.072 1.0000.044 0.077 0.079 1.000[1.491 2302 0.005 1.000
ORB-SLAM3 [5]| v [0.065 0.097 0.039 0.791/0.208 0300 0.098 0.426/0.118 0211 0.121 0956[0.104 0.144 0082 0.504|3.124 3.926 0.009 0.971

Ours 0.079 0.121  0.046 1.000/0.130 0.184  0.085 1.000

0.141 0229 0.075 1.000{0.176 0.228 0.151 1.000|3.541 5.663 0.053 1.000

Table 4: Quantitative comparison of zero-shot intrinsic
camera parameter estimation. “FOV AbsRel” represents
the absolute relative error of the field of view. Note that only
three algorithms can estimate the intrinsic camera parameter
from the input video, and our method can achieve accurate
and robust performance on four unseen datasets.

NYU [28] | ScanNet [8] |7-Scenes [27]| TUM [29]
Method &6y A h RelT[FOV AbsRel[[FOV AbsRell[FOV AbsRel]|R2"™K
RCVD[15] 0.144 0.148 0.110 0174 2755
Gevp (6l 0.015 0.126 0.143 0043 175
Ours| 0,032 0.032 0.085 0.056 150

to optimize millions of parameters, thus showing less ro-
bustness to unseen datasets. Rather than purely per-frame
aligning with offline-obtained depth after filtering as Boost-
ingDepth [36] does, we jointly optimize the camera param-
eters and depth parameters, which ensures consistency be-
tween frames and less suffers from outliers of sparse points.
CVD [17] fails to reconstruct half of the ScanNet scenarios.
Compared with RCVD [15], and GCVD [16], our method
employs a global and a local scale-shift recovery strategy,
which can rectify the affine-invariant depth to a much more
accurate scale-consistent depth. Thus, we can achieve much
more accurate reconstructions. The COLMAP [26, 25]
struggles to estimate dense depth maps, and thus results in
sparse 3D reconstruction. The robust DROID-SLAM [33
focuses on optimizing more robust poses and trajectories
with the recurrent module, and spends less effort on dense
reconstruction. Thus, their dense reconstruction is more
likely to suffer from outliers. In contrast, our optimization
is based on dense depth priors and employs a global and lo-
cal optimization strategy to reduce noise, thus we in general
achieve better reconstruction performance.

Quantitative comparisons of zero-shot pose estimation
and intrinsic camera parameter estimation are shown in
Table 3 and Table 4. Our algorithm achieves compara-
ble performance with the traditional SLAM methods ORB-
SLAMS3 [5] on three datasets. However, the ORB-SLAM?3

Table 5: Runtime analysis on three representative
scenes. Our pipeline achieves state-of-the-art reconstruc-
tion but only takes around a quarter of an hour to optimize.

Method|basement_0001a|bedroom_0015|  chess
NeuralRecon[30] - - -
DPSNet[ 14] 5m 53s 45s 12m 20s
BoostingDepth-DROID[36] 35s 10s 47s
SC-DepthV3[31] 1m 47s 17s 1m 54s
CVD[17] 1h 7m 6s 12m 30s 8h 1m 34s
RCVD[15]| 1h 15m45s 10m 6s 6h 14m 54s
GCVD[16] 10m 26s 2m 37s 52m 15s
DROID-SLAM[33] 35s 16s Im 18s
COLMAP[25, 26] 50m 44s 8m 34s 9h 40m 49s
Ours 14m 55s 6m 55s 21m 8s

can only estimate the camera poses of partial frames due
to the failure of tracking features. In contrast, our algo-
rithm can optimize and interpolate to obtain dense trajec-
tories. Compared to four video depth estimation methods,
we can outperform them by a large margin. Note that only
ours, RCVD, and GCVD can optimize the intrinsic camera
parameters, while others can only employ GT camera in-
trinsic as input. For intrinsic camera parameter estimation,
our algorithm can achieve robust and accurate performance
on four unseen datasets.

Qualitative comparisons are reported in Figure. 4. Neu-
ralRecon can only reconstruct partial meshes of unseen
scenarios. The DPSNet [14] suffers from inaccurate fea-
ture correspondences, which cause noisy point clouds.
BoostingDepth [36] can only filter out inaccurate points
of DROID-SLAM but cannot ensure the temporal consis-
tency, and thus fails to reconstruct consistent mesh. The
SC-DepthV3 [31] suffers from the weak supervision of pho-
tometric loss and work worse on some low-texture regions.
Consistent video depth estimation methods such as GCVD
[16] cannot recover the shift of depth maps, which will
cause distortions in 3D point clouds. DROID-SLAM [33
concentrates on accurate pose estimation but does not work
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ScanNet 7-Scenes KITTI (Top View, Front View)

Failed on KITTI

Boosting
Depth
-DROID

Ground
Truth

Figure 4: Qualitative comparison of zero-shot 3D scene reconstruction from a monocular video. We compare our
method with five representative algorithms on five unseen datasets. Note that NeuralRecon is trained on ScanNet [¢] and can
only output uncolored mesh, and * represents the employment of ground-truth camera poses during reconstruction. These
methods either suffer from inaccurate pose estimation, or predict noise depth maps (please see the red arrows). As can be
seen, our approach can reconstruct better 3D scene shape without any offline-computed camera parameters.

well for dense reconstruction, and thus suffering from out- accurate 3D scene reconstruction, without requiring offline-
liers. In contrast, our method can achieve more robust and acquired camera poses and camera intrinsic parameters.
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Table 6: Comparison of geometric consistency align-
ment mechanisms on the NYU [28] dataset. “w/ deform.”
means optimizing the flexible deformation map of RCVD
[15] as a replacement for our alignment module. “Base-
line” means directly optimizing the per-frame pixel-wise
depth map without the affine-invariant depth priors. As a
result, the employment of our geometric consistency align-
ment module contributes significantly to the optimization.

Depth Pose Reconstruction
AbsRel]  9;T|ATE| RPE-T] RPE-R||C-l;] F-score?
Ours|0.092  0.923/0.096 0.144 0.05310.099  0.622

w/ deform. [15]]0.153  0.771]0.145 0.290 0.08210.160  0.470
Baseline|0.350  0.466|0.710 1.097 0.215/0.285  0.303

Method

Table 8: Effectiveness of our two-stage keyframe sam-
pling and optimization strategy. The “Local” stage en-
sures consistency between the nearest & keyframes. The
“Global” stage samples keyframes globally with different
sampling probabilities according to the optimized relative
poses. As a result, our algorithm achieves better perfor-
mance with the coarse-to-fine optimization strategy. The
experiment is conducted on NYU [28] dataset.

Depth Pose Reconstruction
AbsRel| ¢; 1|ATE] RPE-T| RPE-R||C-l; | F-scoret
Local|0.111  0.884|0.111 0.179 0.068(0.091 0.593
Global |0.092  0.923/0.096 0.144 0.053(0.099 0.622

Stage

Table 7: Comparison of optimization objectives on the
ScanNet [8] dataset. The photometric constraint super-
vises the color consistency, the geometric constraint ensures
the multi-view geometry consistency, and the regularization
constraint stabilizes the convergence of optimization. As a
result, the three components of our optimization objectives
are all important.

Depth Pose Reconstruction
AbsRel|  011|ATE] RPE-T) RPE-R||C-l;] F-scorel
Ours|0.127  0.858|0.271 0.348 0.14710.170  0.410

w/o photo.{0.219  0.636(1.722 2.331 1.039]0.775  0.169
w/o geo.[0.168  0.750]0.316 0.404 0.179(0.211 0.323
w/oregu.[0.226  0.603|0.245 0.338 0.189]0.220  0.254

Method

For quantitative efficiency analysis, the runtime compar-
isons on 40 Intel Xeon Silver 4210 CPUs and an RTX 3090
Ti GPU are presented in Table 5, which includes three rep-
resentative scenes with 225, 48, and 1000 images, respec-
tively. Our pipeline achieves state-of-the-art reconstruction
while only taking about a quarter of an hour to optimize,
even for 1000 images. Note that only the time of predicting
depth and poses without RGB-D fusion are recorded.

4.2. Ablation Studies

We carry out ablation experiments in terms of essential
components of our algorithm to evaluate their effectiveness.
Geometric Consistency Alignment Module. Table 6
shows the performance of different geometric consistency
alignment modules. Previous consistent video depth meth-
ods RCVD and GCVD employ flexible deformation maps
(“w/ deform.”) and aim for more accurate scale-consistent
depth. However, they both ignore the shift issues in affine-
invariant depth, which is pretty significant in the 3D recon-
struction task. By contrast, our method (“Ours’) proposes
a global and local scale shift alignment module for depth
rectification. We also compare with a baseline method
(“baseline”), which directly optimizes all frames’ pixel-
wise depths without the affine-invariant depth priors. All

depths are initialized to 1. Our alignment module works
much better than previous methods.

Optimization Objectives. To evaluate the effectiveness of
each constraint employed in our method, we propose to re-
move them one by one, and the results are shown in Table 7.
We can see that without the photometric constraint or geo-
metric constraint, the performance will degrade a lot. When
removing the regularization term, the accuracy of the pose,
depth, and reconstruction will also decrease.

Effectiveness of Optimization Stages. Our optimization
algorithm is composed of local keyframes optimization
(“Local”) and global keyframes optimization (“Global”).
The local stage endures the local consistency between the
nearest k keyframes, and can reconstruct roughly accu-
rate 3D scene shapes. The global stage selects long-range
keyframes to supervise global consistency. As shown in Ta-
ble 8, the reconstruction performance improves gradually.

5. Conclusion

In this paper, we have presented an effective pipeline to
realize 3D scene reconstruction by leveraging the robust-
ness of affine-invariant depth estimation, freezing the depth
model, and jointly optimizing dozens of depth and camera
parameters for each frame. Due to the sparsity of parame-
ters, our pipeline can transfer the robustness of seemingly
weak depth geometry prior to diverse scenes. Extensive ex-
periments show that our pipeline can achieve robust dense
3D reconstruction on challenging unseen scenes.
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