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Abstract

While multi-task learning (MTL) has become an attrac-
tive topic, its training usually poses more difficulties than
the single-task case. How to successfully apply knowl-
edge distillation into MTL to improve training efficiency
and model performance is still a challenging problem. In
this paper, we introduce a new knowledge distillation pro-
cedure with an alternative match for MTL of dense predic-
tion based on two simple design principles. First, for mem-
ory and training efficiency, we use a single strong multi-
task model as a teacher during training instead of multiple
teachers, as widely adopted in existing studies. Second, we
employ a less sensitive Cauchy-Schwarz (CS) divergence
instead of the Kullback–Leibler (KL) divergence and pro-
pose a CS distillation loss accordingly. With the less sen-
sitive divergence, our knowledge distillation with an alter-
native match is applied for capturing inter-task and intra-
task information between the teacher model and the student
model of each task, thereby learning more ”dark knowl-
edge” for effective distillation. We conducted extensive ex-
periments on dense prediction datasets, including NYUD-v2
and PASCAL-Context, for multiple vision tasks, such as se-
mantic segmentation, human parts segmentation, depth es-
timation, surface normal estimation, and boundary detec-
tion. The results show that our proposed method decidedly
improves model performance and the practical inference ef-
ficiency.

1. Introduction
Multi-task learning (MTL) has become an increasingly

popular approach in the field of computer vision, where

the objective is to train a single model to perform multiple

tasks simultaneously. MTL can provide several advantages

over traditional single-task learning, including improved ef-

ficiency and generalization. First, the shared feature repre-
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sentations can be learned more efficiently than task-specific

representations, reducing the overall training time com-

pared to training multiple models independently. Second,

the shared feature representations learned across tasks can

capture more generalizable information in the data, leading

to improved performance on all tasks. For those reasons,

the MTL approach has been used extensively in various ma-

chine learning problems, such as natural language process-

ing [11], computer vision [3] and speech recognition [4].

Specifically, in this paper, we focus on dense (pixel-wise)

prediction vision tasks [49, 15, 23, 41, 20, 21, 29, 48], such

as semantic segmentation, instance segmentation, depth es-

timation, surface normal estimation, saliency estimation,

object detection and boundary detection from images.

A march of works [32, 46, 9, 3, 52, 2, 56, 53] aims

to develop novel MTL architectures and construct effi-

cient shared representation in the multi-taskdense predic-

tion field, which leverages the encoder-decoder architec-

ture. In these frameworks, an encoder is considered to gen-

erate a shared feature and then use a decoder to perform

multi-task of dense predictions. In the pursuit of better per-

formance, current MTL models are often designed to be

deeper and wider, resulting in increasingly larger models.

[3, 56] and [53, 24] demonstrate that better performance can

be obtained by utilizing a larger backbone network. How-

ever, such a heavy model can be more demanding for com-

putation and storage. It has been challenging to design an

effective MTL framework that can learn these tasks effi-

ciently. In this paper, we pose and study the question, how
can the knowledge from a large size MTL model be trans-
ferred to a small MTL model without increasing its size?

Recently, knowledge distillation (KD) [13] has been ex-

plored as a method to improve the MTL of dense prediction

tasks, such as semantic segmentation, depth estimation, and

surface normal prediction. Some studies [30, 12, 16, 1]

leverage the unique logit of each task to provide task-

specific information to the student model during knowl-

edge transfer. The essence of knowledge distillation lies
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in translating knowledge from the teacher model (large

model) to the student model (small model) by mimicking

the teacher model’s outputs. Typically, knowledge distilla-

tion methods use the logits matching by Kullback–Leibler

(KL) divergence [13] between the probability distributions

of the teacher and the probability distributions of the stu-

dent. In this way, during training, the student model can

be guided by more valuable information signals from the

teacher model, therefore, is expected to have a more promis-

ing performance than training alone. This approach has

shown promising results in improving model performance

and generalization and speeding up convergence in MTL.

For instance, We found that some works [22, 35, 12, 30, 17]

attempt to use knowledge distillation to transfer the knowl-

edge from teacher to student for multiple vision tasks in

MTL. We, in particular, identify two technical challenges.

1) Most previous approaches [22, 35, 17] must train a task-

specific model for each task, then load the trained task-

specific models. 2) Exact logit matching of teacher and

student predictions with KL divergence can interfere with

the training of the student model and is sensitive to outliers,

leading to less effective knowledge distillation.

To address these challenges, we explore knowledge dis-

tillation in multi-task learning of dense prediction tasks. We

present a novel framework that leverages task-specific guid-

ance to enable effective knowledge transfer. In Figure 1, we

show the difference between the existing and our methods.

Since using multiple single-task models as teacher models

would require an inordinate amount of memory, we only

load a single multi-task model as a teacher model instead

of loading multiple teacher models. We opt for one strong

teacher model to reduce computational and memory costs

instead of using multiple teacher models that perform a load

of each task separately.

We take inspiration from mathematical statistics meth-

ods from other domains to reduce the uncertainty in stu-

dents’ prediction when using KL divergence (see Figure 1).

We propose a novel knowledge distillation with Cauchy-

Schwarz (CS) divergence to replace the KL divergence. In

addition, during the logit matching, inter-task and intra-task

information are transferred from teacher to student. Specifi-

cally, we gather the corresponding predicted probabilities in

a batch for all tasks, then transfer the inter-task information

from teacher to student. For each task, we gather the cor-

responding predicted probabilities of all classes in a batch,

then transfer the intra-task information from teacher to stu-

dent. Our proposed knowledge distillation with the alterna-

tive match is less sensitive to small probabilities and can

account for uncertainty in the student model predictions.

To further close the computational and memory cost gap,

we only use one multi-task teacher model during training.

This MTL knowledge distillation procedure provides mul-

tiple training settings.
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Figure 1: Difference between existing KD methods and our KD

method. FT
st means the single-task (st) teacher (T ) model output.

FT
mt means the multi-task (mt) teacher model output. FS

mt means

the multi-task (mt) student (S) model output. n denotes the num-

ber of tasks.

Through extensive experiments on several publicly

available dense prediction datasets (i.e., NYUD-v2 and

PASCAL-Context), we compare our results with state-of-

the-art methods to demonstrate the effectiveness of our

framework.

In summary, our work makes the following contribu-

tions:

• We introduce a new procedure based on knowledge

distillation with an alternative match named KDAM,

which leverages inter-task and intra-task information.

It is less sensitive to small probabilities and can ac-

count for uncertainty in the student model predictions.

• Our new distillation procedure aims at reproducing

computational and memory costs by loading a strong

multi-task model as a teacher to guide student learning.

• We conduct experiments using our KDAM on two

MTL of dense prediction datasets, showing the superi-

ority under different experiment settings.

2. Related Work
Multi-task Learning of Dense Prediction. Multi-task

learning for dense prediction [37, 50, 58, 31, 10, 9, 3, 52, 56,

53, 33, 28, 25, 57, 26, 27] has been an active research area in

the computer vision community, with many studies explor-

ing various aspects of joint learning for tasks such as se-

mantic segmentation, depth estimation, surface normal esti-

mation, saliency estimation and boundary detection. A sur-

vey work [45] shows that MTL is mainly divided into two

categories: encoder-based and decoder-based architectures.

The encoder-based methods, such as [19, 44, 54], use a
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shared representation from an encoder to input task-specific

heads and perform multiple task predictions. NDDR-CNN

Network [10] is an encoder-focused MTL model which en-

ables automatic feature fusing at every layer from differ-

ent tasks and reduces channel dimension by processing the

features with a 1 × 1 convolutional layer before feeding

the result to the next layer. Their success heavily depends

on the encoder (i.e., backbone network) to learn a strong

shared representation [47, 59]. However, the encoder-based

methods lack task interaction information, failing to capture

commonalities and differences among tasks. The decoder-

based methods, such as [50, 31, 3, 56, 2], focus on im-

proving each task by repeatedly refining the predictions

through cross-task interaction and improving each task’s

performance. Unlike encoder-based, decoder-based archi-

tectures also exchange information during the decoding.

MTFormer [51] performs cross-task reasoning and designs

the cross-task attention mechanism to achieve effective fea-

ture propagation among tasks, resulting in performance im-

provement in MTL. [52, 56] introduces new techniques

for training deeper and wider via Transformers in MTL, al-

lowing for more efficient and accurate MTL performance.

Their success depends on a strong backbone network and

all relevant task interactions from different dimensions. In

addition, [40] introduces a controllable dynamic multi-task

architecture for dynamically adjusting the weighting of loss

of each task, which allows matching the desired task pref-

erence as well as the resource constraints. We propose an

KDAM, which uses a strong multi-task model as a teacher

to guide the student’s multi-task model learning.

Knowledge Distillation. The objective of the Knowl-

edge distillation [13, 1] is mainly to distill the logits from

certain outputs of a teacher to a student by minimizing

the KL divergence [13], where the temperature T factor

is applied to soften the output logits. Knowledge dis-

tillation is also introduced into vision tasks, such as im-

age classification [30, 6, 5, 18], segmentation [39, 14, 38]

and detection [55, 36, 48]. Knowledge distillation has

emerged as an effective technique for improving multi-task

learning of dense prediction tasks. Several recent stud-

ies [22, 35, 12, 17] have explored various aspects of knowl-

edge distillation in the context of multi-task learning, with a

focus on improving model performance and efficiency. The

work [8] is to distill representation from a full image to the

representation predicted from a masked image to perform

multiple tasks. [17] designs the selective training layers

for each task using an adaptive feature distillation loss with

an online task weighting scheme. This task-based feature

distillation allows MTL networks to be trained in a simi-

lar manner to single-task networks. Their success depends

on multiple strong teacher models to guide student model

training, which can get more information from the teacher

model during training. However, these distillation MTL

models’ exact logits matching of teacher and student predic-

tions with KL divergence can interfere with student model

training and become more sensitive to outliers, leading to

poor knowledge distillation. In this paper, we develop an

efficient distillation procedure specific to MTL of dense pre-

diction. We use an alternative knowledge distillation strat-

egy that leverages inter-task and intra-task information. It

provides less sensitivity to small probabilities and can ac-

count for uncertainty in the student model predictions.

3. Method
3.1. Notations

The input image xi ∈ R
H×W×C , where H , W , and C

are the height, width, and channel of the image feature,

respectively. We use n to denote the task number, with

n ∈ {1, 2, ..., N}, st to denote the single-task and mt to

denote the multi-task. Define FT
mt as the multi-task teacher

model and FT
st as the single-task teacher model.

3.2. Formulation

The clustering regularizer loss is defined as the

Kullback-Leibler (KL) [13] divergence between soft assign-

ment ypred and auxiliary target distribution ytrue:

LKL-div := KL(ypred, ytrue) = ytrue · log ytrue

ypred

= ytrue · (log ytrue − log ypred),
(1)

where ypred is the output of the model and ytrue is the obser-

vation labels in the dataset. KL divergence is leveraged in

plain KD to transform knowledge from the strong teacher

model to the student model, where ypred and ytrue are the

outputs of the student model and the teacher model. The

plain KD loss is represented as:

LplainKD = T 2 · LKL-div(PS , PT ), (2)

where T is the distillation temperature factor to control the

softness of logits of the softmax output. PS is the softmax

output of student model. PT is the softmax output of the

teacher model. The student and teacher generate the logits

FS and FT , respectively.

PS = softmax(FS/T ), PT = softmax(FT /T ), (3)

3.3. KD Alternative Match (KDAM)

KL divergence is a distance metric that measures the dif-

ference between the teacher’s and student’s probability dis-

tributions. However, it is sensitive to outliers in the data,

which can result in unstable training and poor generaliza-

tion.

There are two challenges using KL divergence in plain

KD. First, one issue with KL divergence in knowledge dis-

tillation is that it can be unstable and lead to vanishing
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Figure 2: Illustration of our knowledge distillation framework in MTL. Inter-task information: transmitted knowledge be-

tween the predicted probabilistic distributions on all tasks’ channels of teacher and student. Intra-task information: transmit-

ted knowledge of the probabilities of all the instances on each task. For simple purposes, We set two tasks in this figure. N
denotes the task number. FT

mt and FS
mt means the multi-task (mt) teacher and student model output, respectively.

gradients during training. This is because KL divergence

involves taking the logarithm of probabilities, which can

cause numerical instability when dealing with small or zero

probabilities. It can make optimizing models that use KL

divergence in knowledge distillation difficult. Second, KL

divergence does not consider the uncertainty in the student

predictions, which can lead to overconfidence and poor gen-

eralization in certain cases. This is particularly relevant in

scenarios where the student model is less complex than the

teacher model, as the student may not have the capacity to

capture all of the information contained in the teacher’s soft

targets.

To address these issues, alternative divergence measures

have been proposed, named Cauchy-Schwarz (CS) diver-

gence, which is less sensitive to small probabilities and can

account for uncertainty in the student model predictions. In

this way, the alternative KD tries to save more task-specific

information between the teacher and student on the proba-

bilistic distribution.

In knowledge distillation, let DS = (xi, yi) denote the

training dataset of the student network, where xi and yi are

the input and the corresponding ground truth label, respec-

tively. Let DT = (xi, PTi
) denote the training dataset of

the teacher network, where PTi
is the predicted probability

distribution over the class labels by the teacher network for

the input xi. Let FS : X → Y and FT : X → ΔC−1 de-

note the student and teacher networks, respectively, where

ΔC−1 is the C-dimensional probability simplex.

Knowledge distillation aims to train the student network

FS to match the predictions of the teacher network FT for

the same input data. To achieve this, we minimize the CS

divergence between the soft labels predicted by the teacher

network and those predicted by the student network. The

CS divergence between the soft label distributions PTi
and

PSi
predicted by the teacher and student models, respec-

tively, for the input xi is defined as:

LCS := DCS(PS , PT ) = − ln

∫
PTi

(x)PSi
(x)dx√∫

PTi(x)dx
∫
PSi(x)dx

.

(4)

Note that DCS = 0 only for PS = PT . Eq. 4 can improve

numerical stability and the ability to account for uncertainty

in student predictions.

The inter-task information for each task. We develop

an alternative inter-task comparison strategy in which the

distribution of teacher and student of all tasks. The inter-

task information between teacher and student is defined as:

Linter =
1

B

B∑
i=1

DCS(PSi,:, PTi,:
), (5)

where the B denotes batch size.

The intra-task information for each task. For intra-

class information, we discuss why naive hard example min-

ing cannot handle noise/outliers and propose a simple and

effective balancing strategy for fast and robust hard exam-

ple mining. As shown in Figure 2, the intra-task is defined

as:

Lintra =
1

C

C∑
j=1

DCS(PS :,j , PT:,j
), (6)

where C denotes the channel.
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Finally, we wrap task-independent knowledge distilla-

tion strategies into MTL. It can be formulated as follows:

LCSKD =

N∑
n=1

(Linter + Lintra), (7)

where the N is the task number. We sum up the Linter and

Lintra to improve the distillation performance for MTL.

3.4. Training objective

As depicted in Figure 2, our method consists of a teacher

MT model, a student MT model, and a new strategy of KD.

Concretely, we first train a strong MT model as a teacher

model. Then we introduce a trained teacher model for the

student MT model training. The plain multi-task loss func-

tion is given as:

Lmt := L(ytrue, PS) =
N∑

n=1

λnLn, (8)

where λn is a hyperparameter factor of the task number n.

In the multi-task knowledge distillation setting, there are

a trained multi-task teacher model (i.e., Tmt) and a student

model (i.e., Smt). As a result, the KDAM overall training

loss function is typically a weighted sum of the MTL loss

(Lmt) and the knowledge distillation loss.

Ltotal = α · Lmt + β · LCSKD(PSmt , PTmt), (9)

where α and β are the scale factor for balancing the losses.

In this way, via the LCSKD loss, the student to match the

strong teacher network’s output.

4. Experiments
We validate the superiority of our KDAM framework

under two representative datasets: NYUD-v2 [42] and

PASCAL-Context [7]. In Section 4.1, we provide the ex-

perimental setup and evaluation details we used for experi-

ments. Section 4.2 presents the main qualitative and quan-

titative MTL results. Finally, in Section 4.3, we perform

ablation studies to verify the effect of components and effi-

ciencies of our method.

4.1. Experiment setup

NYUD-v2 dataset and metrics. NYUD-v2 comprises

RGB and Depth frames 795 images are used for training

and 654 images for testing. NYUD-v2 is adopted for se-

mantic segmentation (SemSeg), depth estimation (Depth),

surface normal estimation (Normal) and boundary detection

(Bound) tasks by providing dense labels. The semantic seg-

mentation labels classify each pixel in the RGB images into

one of 40 object categories. Four evaluation metrics are

available to evaluate the MTL model performance, which

includes mean Intersection over Union (mIoU) for the Sem-

Seg task, root mean square error (rmse) for the Depth task,

mean Error (mErr) for the Normal task, and optimal dataset

scale F-measure (odsF) for the Bound task.

PASCAL-Context dataset and metrics. PASCAL-

Context consists of 10,103 images with complex scenes,

covering 400 object categories and 59 background regions.

PASCAL-Context is adopted for semantic segmentation

(SemSeg), human parts segmentation (PartSeg), saliency

estimation (Sal), surface normal estimation (Normal), and

boundary detection (Bound) tasks by pixel-level semantic

labels for each image. Five evaluation metrics are available

to evaluate the MTL model performance, which includes

mean Intersection over Union (mIoU) for the SemSeg and

PartSeg tasks, mean Error (mErr) for the Normal task, opti-

mal dataset scale F-measure (odsF) for the Bound task, and

maximum F-measure (maxF) for the Sal task. The average

per-task performance drop (Δmt) is used to quantify multi-

task performance. Δmt =
1
N

∑N
i=1(Fmt,n−Fst,n)/Fst,n×

100%, where mt, st and N mean multi-task model, single-

task baseline and task numbers. Δmt: higher is the better.

Setting. To be universal, we perform experiments on the

NYUD-v2 [42] and PASCAL-Context [7] datasets using

different teacher-student pairs. The ”Plain KD vs. DIST vs.

Our KDAM” experiment is conducted using Swin-L [34]

as a teacher model, Swin-T [34] and Swin-S [34] as stu-

dent models on the NYUD-v2. On PASCAL-Context, we

adopt Swin-L [34] and Swin-B [34] as teacher models, HR-

Net18 [43], Swin-T [34] and Swin-S [34] as student models.

Loss weights. In our experiments, we use the algorithm

in [3] to learn weights for each task over the course of train-

ing. For a fair comparison, we search the optimal hyperpa-

rameters (i.e., the loss ratio α, β and the temperature T )

for each teacher-student pair. On NYUD-v2 and PASCAL-

Context, we set α = 1.0, β = 1.0 in Eq. 9 using our TKD

method. For plain KD [13], we set α = 1.0, β = 1.0 in

Eq. 9 and use a default temperature T = 3 in Eq. 2. In

addition, For a fair comparison, we search the optimal hy-

perparameters i.e., β and T . We choose a temperature set

T ∈ [0.1, 0.5, 1, 3, 4, 8, 16] for an ablation study on NYUD-

v2 dataset (see Table 5a & 5b).

Baselines. Multi-task baseline uses a shared backbone net-

work in conjunction with task-specific heads to perform the

predictions for every task. We can choose different net-

works as backbones, such as HRNet [43] and Swin Trans-

former [34]. Single-task baseline uses a backbone network

with a task head to conduct the predictions for a task.

4.2. Results

NYUD-v2 dataset. We investigate the effectiveness of our

KDAM on NYUD-v2 dataset. We first train a multi-task

baseline model of Swin-L for our knowledge distillation

procedure. Then we load the well trained Swin-L model
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Table 1: We report the comparison of the MTL models with the state-of-the-art on NYUD-v2 dataset. ’↓’: lower is better.

’↑’: higher is better. Δmt denotes the average per-task performance drop. Swin-� indicates that the specific Swin model is

uncertain. Gray blocks mean the multi-task baseline using our knowledge distillation method.

Model Backbone
Params GFLOPs SemSeg Depth Normal Bound

Δmt[%]↑
(M) (G) (mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

single-task (ST) baseline HRNet18 16.09 40.93 38.02 0.6104 20.94 76.22 0.00

multi-task (MT) baseline HRNet18 4.52 17.59 36.35 0.6284 21.02 76.36 -1.89

MT+KDAM (Ours) HRNet18 4.52 17.59 36.85 0.6250 21.04 76.10 -0.73

Cross-Stitch[37] HRNet18 4.52 17.59 36.34 0.6290 20.88 76.38 -1.75

Pad-Net[50] HRNet18 5.02 25.18 36.70 0.6264 20.85 76.50 -1.33

PAP[58] HRNet18 4.54 53.04 36.72 0.6178 20.82 76.42 -0.95

PSD[31] HRNet18 4.71 21.10 36.69 0.6246 20.87 76.42 -1.30

NDDR-CNN[10] HRNet18 4.59 18.68 36.72 0.6288 20.89 76.32 -1.51

MTI-Net[46] HRNet18 12.56 19.14 36.61 0.6270 20.85 76.38 -1.44

ATRC[3] HRNet18 5.06 25.76 38.90 0.6010 20.48 76.34 1.56

ATRC+KDAM (Ours) HRNet18 5.06 25.76 39.30 0.5919 20.72 76.91 2.05

single-task (ST) baseline Swin-T 115.08 161.25 42.92 0.6104 20.94 76.22 0.00

multi-task (MT) baseline Swin-T 32.50 96.29 38.78 0.6312 21.05 75.60 -3.74

MT+KDAM (Ours) Swin-T 32.50 96.29 44.34 0.601 21.03 76.4 1.1

single-task (ST) baseline Swin-S 200.33 242.63 48.92 0.5804 20.94 77.20 0.00

multi-task (MT) baseline Swin-S 53.82 116.63 47.90 0.6053 21.17 76.90 -1.96

MTFormer[51] Swin-� 64.03 117.73 50.56 0.4830 - - 4.12

MT+KDAM (Ours) Swin-S 53.82 116.63 49.41 0.564 20.60 77.3 1.38

Table 2: Comparison results of DeMT and InvPT MTL model with our KDAM method. ’+’ means performance increase.

Network structure Accuracy multi-task student models Accuracy of our KDAM

Teacher Student SemSeg↑ Depth↓ Normal↓ Bound↑ SemSeg↑ Depth↓ Normal↓ Bound↑
Swin-L InvPT-T [56] 44.27 0.5589 20.46 76.10 44.93 (+ 0.66) 0.5577 (+ 0.0012) 20.27 (+ 0.19) 76.2 (+ 0.1)

Swin-L DeMT-T[53] 46.36 0.5871 20.65 76.90 47.07 (+ 0.71) 0.5855 (+ 0.0016) 20.62 (+ 0.03) 76.9 (+ 0.0)

Swin-L DeMT-S[53] 51.50 0.5474 20.02 78.10 51.91 (+ 0.41) 0.5512 (− 0.0038) 20.01 (+ 0.01) 78.1 (+ 0.0)

as a teacher model for student model training. In Table 1,

ours surpasses the HRNet18, Swin-T and Swin-S multi-task

baselines by more than 1.16%, 4.84% and 3.34% (average

per-task performance drop Δmt), respectively. The baseline

model coupled with the improvement in Δmt metric by our

distillation method demonstrates the effectiveness of distil-

lation. Note that These results are only conducted on the

outputs of the multi-task baseline model and have a similar

computational cost as the baseline model. Nevertheless, it

even achieves better performance compared to those care-

fully designed methods. As shown in Table 1, although

ATRC achieves better performance, it brings much more

parameters and computation compared to the MT base-

line. By contrast, our method based on distillation is cost-

free. We also conduct experiments based on DeMT [53]

and InvPT [56] and compare using our KD strategy with

the DeMT-T, DeMT-S and InvPT-T. As shown in Table 2,

our KDAM is outperformed by DeMT-T +0.71 mIoU and

DeMT-S by +0.41 mIoU on SemSeg task. Applying our

distillation recipe in combination with the DeMT configu-

ration to prove our method is effective. We can see that all

the added KDAM, regardless of DeMT or InvPT, improves

the performance. We observe that our distillation with an

alternative match leads the state-of-the-art performance.

PASCAL-Context. We also use the multi-task baseline

model of Swin-L as a teacher model. We further investi-

gate the effectiveness of our KDAM for dense predictions

on PASCAL-Context dataset. We train HRNet18, Swin-T

and Swin-S baseline with our distillation method. As shown

in Table 3, our KDAM outperforms all the previous MTL

methods on five dense predictions and the average per-task

performance drops Δmt. It is worth mentioning that using a

strong Swin-L teacher fails to give HRNet18 baseline an in-

tuitive performance increase. We find that the performance

of SemSeg task tends to get better as the student’s backbone

increases, which shows the effectiveness of our approach in

segmentation tasks. Results suggest that our method can

learn more semantic features for dense predictions.
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Table 3: We report a comparison of the MTL models with the state-of-the-art on PASCAL-Context dataset. ‘↓’: lower is

better. ‘↑’: higher is better. Δm denotes the average per-task performance drop (higher is better). Gray blocks mean the

multi-task baseline using our knowledge distillation method.

Model Backbone
SemSeg PartSeg Sal Normal Bound

Δmt[%]↑
(mIoU)↑ (mIoU)↑ (maxF)↑ (mErr)↓ (odsF)↑

single-task (ST) baseline HRNet18 62.23 61.66 85.08 13.69 73.06 0.00

multi-task (MT) baseline HRNet18 51.48 57.23 83.43 14.10 69.76 -6.77

MT+KDAM (Ours) HRNet18 51.91 57.63 83.92 13.90 70.1 -5.06

PAD-Net [50] HRNet18 53.60 59.60 65.80 15.3 72.50 -4.41

ATRC [3] HRNet18 57.89 57.33 83.77 13.99 69.74 -4.45

MQTransformer[52] HRNet18 58.91 57.43 83.78 14.17 69.80 -4.20

ATRC+KDAM (Ours) HRNet18 58.92 57.51 83.87 13.97 69.75 -3.94

single-task (ST) baseline Swin-T 67.81 56.32 82.18 14.81 70.90 0.00

multi-task (MT) baseline Swin-T 64.74 53.25 76.88 15.86 69.00 -3.23

MT+KDAM (Ours) Swin-T 64.81 53.80 81.72 15.06 69.5 -2.3

single-task (ST) baseline Swin-S 70.83 59.71 82.64 15.13 71.20 0.00

multi-task (MT) baseline Swin-S 68.10 56.20 80.64 16.09 70.20 -3.97

MT+KDAM (Ours) Swin-S 68.80 56.62 81.91 15.61 70.4 -2.54

Table 4: We report a comparison of the multi-task (MT) baseline models using different KD strategies on NYUD-v2 dataset.

MT and ST denote multi-task and single-task respectively. Gray blocks mean the MT baseline using our method.

Teacher (Student) Metrics
Accuracy ST models Accuracy MT models Plain KD DIST KD Our KDAM

Teacher Student Teacher Student Student (MT) Student (MT) Student(MT)

Swin-L (Swin-T)

SemSeg↑ 56.46 42.92 54.53 38.78 44.48 43.27 44.54

Depth↓ 0.508 0.610 0.532 0.631 0.604 0.599 0.601

Normal↓ 19.38 20.94 19.51 21.05 21.03 21.02 21.03

Bound↑ 78.8 76.22 78.3 75.60 76.80 76.50 76.40

Δmt[%]↑ - - -2.36 -3.74 1.08 0.58 1.10

Swin-L (Swin-S)

SemSeg↑ 56.46 48.92 54.53 47.90 49.20 49.39 49.41

Depth↓ 0.508 0.580 0.532 0.605 0.571 0.560 0.564

Normal↓ 19.38 20.94 19.51 21.17 20.58 20.51 20.60

Bound↑ 78.8 77.20 78.3 76.90 77.20 77.2 77.3

Δmt[%]↑ - - -2.36 -1.96 0.97 1.6 1.38

Swin-B (Swin-T)

SemSeg↑ 53.01 42.92 51.44 38.78 43.84 44.06 44.52

Depth↓ 0.552 0.610 0.581 0.631 0.603 0.596 0.592

Normal↓ 19.34 20.94 20.44 21.05 21.19 21.08 21.09

Bound↑ 78.00 76.22 77.80 75.60 76.60 76.70 76.6

Δmt[%]↑ - - -3.2 -3.74 0.49 1.07 1.47

4.3. Ablation Studies

Distillation with alternative match helps minimize the
performance gap between teacher and student. In Ta-

ble 4, we first conduct experiments to compare our KDAM

with plain KD [13] and DIST KD [16] at different stu-

dent and teacher model sizes. We compare three types of

teacher-student pairs: Swin-L:Swin-T, Swin-L:Swin-S and

Swin-B: Swin-T. As shown in Table 4 (Swin-T (Swin-L)

and Swin-T (Swin-B) rows), when the teacher goes larger,

the SWin-T students MTL performance Δmt perform even

worse than that with a medium-sized Swin-B teacher. We

observe that it is not the fact that a larger teacher model

leads to better performance. The plain KD using KL di-

vergence loss can help minimize the performance gap be-

tween strong teachers and students. In addition, our KDAM

showed an increasing trend with strong teachers and a more

significant improvement compared to the other KD strate-

gies, suggesting that our KDAM better handles the dif-

ferences between student and strong teacher performance.

Our KDAM can significantly outperform existing knowl-

edge distillation methods on MTL of dense predictions. The

results in Table 4 highlight that our KDAM is applied for

capturing inter-task and intra-task information between the

teacher model and the student model of each task, and thus

learns more “dark knowledge” for effective distillation.

Ablation on hyperparameters T &β. We compare the ef-
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Table 5: Ablation experiments of the optimal hyperparameters temperature factor T and the loss scale factor β of the plain

KD (Eq. 2) using a Swin-L as teacher model and Swin-T as student model on NYUD-v2 dataset.

(a) Ablation on β in Eq. 9 using T =3 and α=1.

KD style β
Accuracy multi-task student models

SemSeg↑ Depth↓ Normal↓ Bound↑

Plain KD

0.1 44.42 0.6001 21.16 76.2
0.5 44.90 0.6015 21.09 76.3
1 44.47 0.6044 21.03 76.2
2 44.61 0.5975 21.00 76.2
4 44.09 0.6017 21.06 76.1
8 44.42 0.6018 21.07 76.2

16 43.53 0.6104 21.34 76.3

(b) Ablation on temperatures T in Eq. 2 using α=1 and β=1.

KD style T Accuracy multi-task student models

SemSeg↑ Depth↓ Normal↓ Bound↑

Plain KD

0.1 44.27 0.6076 21.15 76.1
0.5 44.52 0.6054 21.16 76.2
1 44.83 0.5969 21.10 76.3
3 44.47 0.6044 21.03 76.2
4 44.21 0.6014 21.05 76.1
8 45.35 0.6012 21.04 76.5

16 44.69 0.6050 21.08 76.1

Table 6: Ablation on part of the loss. The student and

teacher models are Swin-T and Swin-L, respectively. ”w/”

indicates ”with”.

Method
Accuracy multi-task student model

SemSeg↑ Depth↓ Normal↓ Bound↑
MT baseline 38.78 0.6312 21.05 75.60

Ours w/ intra 43.31 0.6068 21.47 76.00

Ours w/ inter 44.06 0.5964 21.08 76.50

Ours w/ inter&intra 44.34 0.6012 21.03 76.70

fect of the number of temperature factor T and the distilla-

tion loss scale factor β in Table 5a & 5b. We find that having

a larger temperature of plain KD improves the performance

slightly, whereas increasing the number of distillation loss

scale factors does not improve the performance.

Ablation on part of the loss. We compare three different

methods named ”Ours w/ inter,” ”Ours w/ intra” and ”Ours

w/ inter & intra” in Table 6. To validate the effectiveness

of each loss, we conduct experiments to train students with

these methods separately. For all tasks, the intrinsic inter-

task and intra-task variance of the semantic similarities is

actually also informative. We can see that our KDAM can

achieve a performance improvement, which proves the ef-

fectiveness of the inter-task and intra-task. Our knowledge

distillation with an alternative match is applied to capture

inter-task and intra-task information between the teacher

and the student. The results show our distillation method

can learn more “dark knowledge” for effective distillation.

Ablation on training epochs. The default setting for the

number of training epochs for teachers and students is 400.

We independently train teacher models and pick them up

at epoch 200th and 400th. In Table 7, we conduct abla-

tion experiments of the training epochs using trained Swin-

L as a teacher on NYUD-v2 dataset. The teacher model is

trained at the 400th epoch. The student model of Swin-T

are selected at the 50th, 100th, 200th, 300th, 400th, 500th

Table 7: Ablation on the training epochs. The student and

teacher models are Swin-T and Swin-L, respectively.

Model epoch
Accuracy multi-task student model

SemSeg↑ Depth↓ Normal↓ Bound↑

KDAM

100 34.13 0.6715 23.26 75.3

200 42.33 0.6285 21.86 76.0

300 44.14 0.6156 21.28 76.2

400 44.34 0.6010 21.03 76.2

600 45.00 0.5955 20.69 76.4

and 600th epochs. Our multi-task student model reaches

45.00 (mIoU, Semseg) and 0.5955 (rmse, Depth) after 600

epochs. We observe that the multi-task student’s accuracy

increases monotonically with the increase of training epoch.

Noticeably, the trained strong teacher model is used for im-

proving student efficiency, while when the student model is

not trained still enough leads to poor performance.

5. Conclusion
This paper introduces a new knowledge distillation pro-

cedure with an alternative match (KDAM) for MTL of

dense prediction based on two simple design principles.

For memory and training efficiency, we use a single strong

multi-task model as a teacher during training instead of mul-

tiple teachers, as widely adopted in existing studies. Fur-

thermore, we employ a less sensitive CS divergence instead

of the KL divergence and propose a CS distillation loss

accordingly. This technique can significantly improve the

MTL model’s distillation performance and reduce the train-

ing cost. The Extensive experiment results show that our

proposed method significantly improves the model perfor-

mance and the practical inference efficiency.
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