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Abstract

Explanatory Visual Question Answering (EVQA) is a re-
cently proposed multimodal reasoning task that requires an-
swering visual questions and generating multimodal expla-
nations for the reasoning processes. Unlike traditional Vi-
sual Question Answering (VQA) which focuses solely on an-
swering, EVQA aims to provide user-friendly explanations
to enhance the explainability and credibility of reasoning
models. However, existing EVQA methods typically predict
the answer and explanation separately, which ignores the
causal correlation between them. Moreover, they neglect
the complex relationships among question words, visual re-
gions, and explanation tokens. To address these issues, we
propose a Variational Causal Inference Network (VCIN)
that establishes the causal correlation between predicted
answers and explanations, and captures cross-modal rela-
tionships to generate rational explanations. First, we uti-
lize a vision-and-language pretrained model to extract vi-
sual features and question features. Secondly, we propose a
multimodal explanation gating transformer that constructs
cross-modal relationships and generates rational explana-
tions. Finally, we propose a variational causal inference
to establish the target causal structure and predict the an-
swers. Comprehensive experiments demonstrate the superi-
ority of VCIN over state-of-the-art EVQA methods.

1. Introduction
Multimodal reasoning is a vital ability for humans and

a fundamental problem for artificial intelligence [27, 39, 8].
Despite the promising performance of deep neural networks
on various multimodal reasoning tasks [35, 37, 47, 34, 36],
existing models typically generate reasoning results without
explaining the rationale behind their results. Consequently,
the low explainability of the generated results severely re-

Figure 1. An example of Visual Question Answering (VQA) and
Explanatory Visual Question Answering (EVQA): VQA requires
answering the question with a related image, while EVQA addi-
tionally requires explaining the reasoning process.

duces the credibility and restricts the application of reason-
ing models. To address this issue, Chen and Zhao [11] re-
cently proposed Explanatory Visual Question Answering
(EVQA) task, which expands upon Visual Question An-
swering (VQA) [5, 15] by requiring multimodal reasoning
explanations. As shown in Figure 1, while traditional VQA
aims to answer a question with a related image, EVQA goes
further by demanding an explanation of the reasoning pro-
cess. This extension creates the possibility for improved
explainability and credibility of reasoning models.

Due to the definition of EVQA that the generated ex-
planation should interpret the reasoning process of the in-
ference model, it is crucial to maintain consistency between
the predicted answer and explanation, or the inferred results
can be incredible for users. However, existing methods for
EVQA [11] predict the answer and the explanation sepa-
rately based on the input multimodal information, which ig-
nore the consistency relation between two outputs and may
infer inconsistent results. As shown in Figure 2, the state-
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(a) REX [11] (b) Ground Truth
Figure 2. An example of inconsistent answer and explanation in-
ferred by REX on GQA-REX dataset.

of-the-art EVQA method REX [11] predicts the answer
“Microwave” but explains the target object as “phone” in
this example. These contradictory results cannot be adopted
in practice and can even hurt the credibility of the reasoning
system. Besides the qualitative analysis, we compute the
Consistency score (see Section 5.2) of the results inferred
by REX on GQA-REX dataset, which is 74.69% and far
from 100% of the ideal results. These analyses jointly re-
veal the low answer-explanation consistency of the existing
methods. Therefore, we have to address Challenge 1: How
to establish the consistency relation between the predicted
answers and explanations to improve the credibility of the
EVQA model?

Moreover, the existing methods [11] for EVQA feed a
fused input feature into LSTM-based decoders to generate
the explanation while ignoring the complex relationships
among question words, visual regions, and explanation to-
kens. However, an ideal explanation is usually similar to
the visual question in terms of both semantics and sentence
structure. For the example in Figure 1, the explanation sim-
ply transforms the question (an interrogative sentence) into
a declarative sentence while replacing nouns with specific
visual regions. Furthermore, since the consistency between
explanations and answers is essential, the quality of the gen-
erated explanations can also affect the accuracy of the pre-
dicted answers. Therefore, we need to address Challenge
2: How to construct relationships among question words,
visual regions, and explanation tokens to improve the qual-
ity of the generated multimodal explanation for EVQA?

Motivated by the above observations, we propose a novel
Variational Causal Inference Network (VCIN) for EVQA to
improve both the quality and consistency of the inferred re-
sults. For Challenge 1, we propose a variational causal in-
ference to establish the causal correlation between answer
and explanation while reasoning, which can significantly
improve the consistency between the predicted answers and
explanations. Different from the existing work of causal
learning in CV and NLP [24, 23, 48] that typically focuses

on eliminating biased dependency, we propose to estab-
lish the ignored causal correlation in the Structural Causal
Model (SCM) for EVQA. Additionally, we propose an au-
tomatic Consistency (Con.) metric to evaluate the answer-
explanation consistency and facilitate the research of cred-
ible reasoning for EVQA. For Challenge 2, we design a
multimodal explanation gating transformer to capture com-
plex relationships among question words, visual regions,
and explanation tokens, which can generate coherent and ra-
tional explanations of the reasoning processes. To flexibly
generate multimodal explanations, we adopt a multimodal
gating network to dynamically select word tokens and vi-
sual tokens for explanation generation. Comprehensive ex-
periments on EVQA benchmark datasets demonstrate a sig-
nificant performance boost of our proposed model com-
pared with the state-of-the-art methods. In brief, the con-
tributions of this paper are listed as follows:

• We propose an end-to-end Variational Causal Infer-
ence Network (VCIN) by converting the target SCM
into deep variational inference and designing a multi-
modal explanation gating transformer to improve both
the credibility and quality of the inferred results for
Explanatory Visual Question Answering (EVQA).

• We propose a novel variational causal inference to es-
tablish the causal correlation between answer and ex-
planation while reasoning, which can significantly im-
prove the answer-explanation consistency of the pre-
dicted results. Additionally, we propose an auto-
matic metric named Consistency (Con.) to evaluate
the answer-explanation consistency and facilitate the
research of credible reasoning for EVQA.

• We design a multimodal explanation gating trans-
former to capture complex relationships among ques-
tion words, visual regions, and explanation tokens for
generating rational multimodal explanations of reason-
ing processes. Additionally, we utilize a multimodal
gating network to flexibly generate visual and textual
tokens in explanations.

• Extensive experiments on EVQA benchmark datasets
indicate the superiority of the proposed method com-
pared with the state-of-the-art methods in terms of both
the quality and consistency of the inferred results.

2. Related Work

2.1. Explanatory Visual Question Answering

Explanatory Visual Question Answering (EVQA) [11] is
a recently proposed task. While Visual Question Answer-
ing (VQA) requires answering a question with a related im-
age [5, 15, 41], EVQA additionally aims at generating user-
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friendly explanations of the reasoning process to improve
the explainability of the inferred results.

Existing VQA methods mainly focus on effectively
learning features of images and questions, and fusing mul-
timodal features for answer prediction. For image represen-
tation, grid features [16, 10, 9] extracted by ResNet [13],
ResNeXt [46], or ViT [12] and object features [4, 50, 28]
extracted by Faster R-CNN [40] are two widely-used op-
tions. For question representation, Glove [32] and BERT
[17] are two typical language models. To fuse multimodal
features, various vision-and-language pretrained models are
proposed, such as VisualBERT [20], LXMERT [42], and
Unicoder-VL [19]. Besides, some researchers design com-
plex attention mechanisms to improve cross-modal interac-
tion [53, 38, 28].

However, most VQA methods are based on DNNs and
infer answers via black-box processes, which significantly
reduces the explainability of results. Therefore, we focus on
EVQA task, which aims at improving the explainability of
VQA. REX [11] utilizes the fused input feature to generate
the explanation via an LSTM-based generator. Differently,
we propose a multimodal explanation gating transformer to
capture complex relationships among question words, vi-
sual regions, and explanation tokens. Moreover, we propose
a variational causal inference to improve the consistency be-
tween the predicted answers and explanations.

(a) Traditional model
P (A|M)

(b) Ideal model
P (A|M,E′)

(c) Joint model
P (A|M,E)

(d) Our model
P (A|M,F )

Figure 3. Structural causal models for Explanatory Visual Ques-
tion Answering. Q denotes the textual question, I denotes the
question-related image, M denotes multimodal content features,
E and E′ denote the explanation, F denotes robust explanation
feature, and A denotes the answer. Gray nodes correspond to ob-
served/input features, white nodes correspond to inferred features.

2.2. Causal Inference

Recently, researchers have incorporated causal inference
into deep learning models [26, 52, 24]. These efforts enable
DNNs to learn causal effects, which improves the perfor-

mance of models for various applications, such as seman-
tic segmentation [52], image caption [24], and sequential
prediction [48]. For example, Zhang et al. [52] propose a
context adjustment in the structural causal model to remove
the confounding bias in image-level classification. Causal
inference has also been introduced to VQA. For instance,
Agarwal et al. [2] propose automated semantic image ma-
nipulations to alleviate spurious correlations while learning.
Niu et al. [29] propose a counterfactual inference frame-
work to capture and mitigate language bias in VQA. Yang
et al. [51] propose a causal attention mechanism to reduce
the confounding bias which can mislead attention modules.

Different from the existing work that typically focuses
on eliminating biased dependency in learning, we propose
to reconstruct the ignored causal correlation between ex-
planation and answer for EVQA by converting the target
structural causal model into a deep variational inference.

3. Notation and Problem Formulation
We first introduce some notations used in this paper.

EVQA aims to predict the answer of a given question with
a related image and generate a multimodal explanation of
the reasoning process. The input can be denoted as (Q, I).
Q = q1q2...qm is a textual question of total m words and qi
is the ith word in the question. I is a question-related image
that can be represented by an RGB tensor. The output of an
EVQA model can be denoted as (A,E). A is the answer
selected from a predefined set {c1, ..., cK} of total K an-
swers. E = e1e2...en is the explanation of total n tokens,
where ei is the ith token that can be a word from a prede-
fined vocabulary or a number linking to a visual region. In
training, ground truth outputs (A′, E′) are given.

The core of EVQA is to learn a multimodal reasoning
model g : (Q, I) 7→ (A,E), which can simultaneously
answer the visual question and generate the explanation to
conduct explainable and credible multimodal reasoning.

4. Methodology
Next, we introduce our causal inference method for

EVQA. Due to the space limitation, some computation de-
tails are included in Supplementary Material.

4.1. Causal Perspective of EVQA

We first analyze the limitations of traditional EVQA
models and introduce our solution from a causal perspec-
tive. We demonstrate the structural causal models (SCMs)
[31] of different methods in Figure 3.

Traditional model As shown in Figure 3 (a), traditional
EVQA methods [11] learn multimodal content features M
based on input question Q and image I , which are further
utilized to predict the explanation E and the answer A sep-
arately. While merely optimizing the marginal probabilities
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P (E = E′|M) and P (A = A′|M), the joint probability
P (E = E′, A = A′|M) that implies the consistency be-
tween E and A is ignored. Therefore, these methods usu-
ally lead to inconsistent explanations and answers.

Ideal model In ideal, as shown in Figure 3 (b), to max-
imize the accuracy of the predicted answer that is also
consistent with the ground truth explanation, we can opti-
mize the joint probability P (E′, A = A′|M) = P (A =
A′|M,E′)P (E′|M), where E′ is the ground truth explana-
tion and is observed in the ideal model, i.e., P (E′|M) = 1
is a Dirac delta distribution.

Joint model However, since E′ is unavailable in the test,
we propose an approximate model in Figure 3 (c), where
the joint probability P (E = E′, A = A′|M) = P (E =
E′|M)P (A = A′|M,E = E′) is optimized. However,
since E is a token sequence, it is empirically hard to gener-
ate the identical ground truth in the test, i.e., E(M) = E′.
Therefore, optimizing P (A = A′|M,E = E′) can hurt ef-
fectiveness and robustness in test where we can only utilize
the explanation E = E∗ with the highest generative proba-
bility, i.e., E∗ = argmax

E
P (E|M).

Our model To alleviate the impact of the distribution
shift between E′ in training and E∗ in test, as shown in Fig-
ure 3 (d), we add a front-door path E → F → A in the
SCM, where F is a robust explanation feature. To improve
the robustness of F , we model F to follow a Gaussian distri-
bution, i.e., F ∼ N (µE , diag(σ

2
E)), where {µE ,σ

2
E} are

two df -dimensional vectors computed based on E. More-
over, we aim at minimizing the Kullback-Leibler (KL) di-
vergence KL(P (F |E′)∥P (F |E∗)) to reduce the bias be-
tween distributions P (A|M,E′) and P (A|M,E∗).

4.2. Variational Causal Inference

In this section, we introduce the optimization objectives
of our method. We denote the distributions of our model
and the ideal model as p and q, respectively. Similar to
Figure 3 (d), we add the explanation feature F to the ideal
model. To train our model, our first objective is maximizing
the Evidence Lower Bound (ELBO) [49] of the marginal
likelihood of predicting the true answer A′ while modeling
causal effects from explanation to answer as follows:

log p(A′|M)

≥Eq(F |M)[log p(A
′|M,F ) + log p(F |M)− log q(F |M)]

=Eq(F |M)[log p(A
′|M,F )]−KL(q(F |M) ∥ p(F |M))

=Eq(F |E′)[log p(A
′|M,F )]−KL(q(F |E′) ∥ p(F |M)),

(1)
where we utilize the following lemma:

q(F |M) =
∑
E

q(F |E)q(E|M) = q(F |E′), (2)

since q(E|M) is a Dirac delta distribution satisfying
q(E′|M) = 1. However, in Equation 1, p(F |M) =

∑
E p(F |E)p(E|M) is difficult to compute since comput-

ing {p(E|M)|∀E} is of exponential complexity and there is
no explicit algorithm to sample E ∼ p(E|M). Therefore,
we propose to utilize an approximation P (F |E∗) which
corresponds to the test scenario where E∗ is the gener-
ated explanation. To sum up, we can obtain our variational
causal inference loss as follows:

Lans

=− Eq(F |E′)[log p(A
′|M,F )] +KL(q(F |E′) ∥ p(F |E∗))

=− Eq(F |E′)[log p(A
′|M,F )]

+
1

2

[
log
|ΣE∗ |
|ΣE′ |

− df + tr{Σ−1
E∗ΣE′}+∆µTΣ−1

E∗∆µ
]

(3)
where we denote ΣE′ = diag(σ2

E′), ΣE∗ = diag(σ2
E∗),

∆µ = (µE∗ − µE′) while df is the dimension of F and
the detailed derivation of the KL divergence is included in
Supplementary Material. Besides maximizing the marginal
likelihood logP (A′|M) of predicting true answer A′, we
also aim at maximizing the generative probability p(E′|M)
of the ground truth explanation E′ by the following loss:

Lexp = − log p(E′|M). (4)

By optimizingLans andLexp, we can train our SCM in Fig-
ure 3 (d) to predict accurate answers and generate rational
explanations while modeling the causal correlation between
explanation E and answer A. We also prove the objectives
proposed in this section and Section 4.1 are consistent in
Supplementary Material. Next, we will introduce our spe-
cific reasoning model to implement the proposed SCM, of
which the framework is shown in Figure 4.

4.3. Multimodal Content Encoder

To implement path Q → M ← I in our SCM and
compute M = M(Q, I), we adopt Vision-and-Language
Pretrained Model (VLPM) [25] (e.g., VisualBert [20] and
LXMERT [42]) due to their promising ability of produc-
ing joint representations of vision and language. We follow
REX [11] to utilize pretrained Faster R-CNN [40] to ex-
tract 36 visual objects {(f i,pi)}36i=1 from image I , where
f i ∈ R2048 is the region-of-interest (ROI) feature and
pi ∈ R4 is the position vector of the ith object. For question
words q1q2...qm, we add a [CLS] token to the beginning
and a [EOS] token to the end (i.e., q0 = [CLS], qm+1 =
[EOS]). Then, we input all visual objects and question to-
kens into a VLPM to obtain the fused multimodal features:

V ,T = VLPM({(f i,pi)}36i=1, q0q1...qm+1), (5)

where we adopt LXMERT as VLPM in experiments, V ∈
R36×768 are visual features of 36 image regions, T ∈
R(m+2)×768 are question features of (m + 2) question to-
kens, and we can obtain M = {V ,T }.
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Figure 4. The framework of VCIN: (1) Causal path Q → M ← I is implemented by a Vision-and-Language Pretrained Model and
multimodal content features are obtained; (2) Causal path M → E is implemented by the multimodal explanation gating transformer and
multimodal explanation is predicted; (3) Causal path E → F is implemented by the multimodal explanation encoder and explanation
feature is computed; (4) Causal path M → A← F is implemented by the answer classifier and the answer is predicted.

4.4. Multimodal Explanation Gating Transformer

To implement path M → E in our SCM and compute
E = E(M), different from the existing methods [11] that
utilize LSTM-based decoders to generate the explanation,
we propose Multimodal Explanation Gating Transformer
(MEGT) to capture the complex cross-modal relationship.
Our MEGT is based on Transformer [43]. However, differ-
ent from traditional generative Transformers that generate
tokens of a single modality, our model aims at generating
both visual and textual tokens. Specially, we use token #j
to represent the jth visual object. At the tth step of the ex-
planation generation, we first obtain token embeddings of
previous (t− 1) output tokens {ei}t−1

i=1 as follows:

emb(ei) =

{
wordemb(ei), if ei is a word token
V j , if ei = #j is a visual token,

(6)

where wordemb(·) is a word embedding function. Denote
B = [emb(e1), ..., emb(et−1)] ∈ R(t−1)×768, we model
relationships among question words, visual regions, and
generated explanation tokens to fuse comprehensive mul-
timodal information by a L-layer Transformer as follows:

B0 = B,

B̄
l
= TransLayerl(Bl−1),

Bl = MultiHeadl(B̄
l
, [V ,T ], [V ,T ]),

l = 1, 2, ..., L,

(7)

where TransLayerl(·) is the lth self-attention Transformer
layer and MultiHeadl(·, ·, ·) is the lth multi-head attention
layer proposed in [43].

Multimodal Gating Network Inspired by [45], we uti-
lize a gating function to determine whether generating a

word token or a visual token at the tth step as follows:

ωt = sigmoid(LN(GELU(BL
t−1W

1
g))W

2
g) ∈ [0, 1],

(8)
where W 1

g ∈ R768×dg and W 2
g ∈ Rdg×1 are learnable

matrices, GELU(·) is GELU function [14], and LN(·) is
layer normalization function [6]. Then we adopt an MLP to
predict the words in the vocabulary and utilize visual object
features to predict the visual region numbers as follows:

yw
t = softmax(LN(GELU(BL

t−1W
1
w))W

2
w) ∈ RU ,

yv
t = softmax(BL

t−1V
T ) ∈ R36,

(9)
where W 1

w ∈ R768×do , W 2
w ∈ Rdo×U are learnable pa-

rameters of two linear layers, BL
t−1 is the output feature of

the (t − 1)th token of the Lth Transformer layer, and U is
the size of the vocabulary. By combining two probability
vectors with the gating function, we obtain the final token
probability as follows:

yt = [ωty
w
t |(1− ωt)y

v
t ] ∈ RU+36, (10)

where [·|·] is vector concatenation. During inference, the
tth token is generated by taking the token with the highest
prediction probability, i.e., e∗t = argmax

i
yt
i.

4.5. Multimodal Explanation Encoder

To implement path E → F in our SCM and encode
a robust explanation feature F = F (E), we first insert a
[CLS] token in the beginning of the explanation and utilize
a Transformer to obtain contextual features as follows:

C =
[
emb([CLS]), emb(e1), ..., emb(eT )

]
∈ R(T+1)×768,

F̄ = Transformer(C) ∈ R(T+1)×768,
(11)
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where emb(·) is the token embedding proposed in Equation
6, T is the length of the explanation, and Transformer(·)
is a 2-layer Transformer [43]. To obtain robust explanation
feature, we assume F ∼ N (µE , diag(σ

2
E)) and compute

the parameters of the distribution as follows:[
µE

logσ2
E

]
= MLP (F̄ 0), (12)

where MLP (·) is a 2-layer MLP [33] and F̄ 0 is the con-
textual feature of [CLS].

4.6. Answer Classifier

To implement path F → A ← M in our SCM and pre-
dict the answer A = A(M,F ), we utilize explanation fea-
ture F and multimodal context feature T 0 of [CLS] token
in Equation 5 and compute p(A|M,F ) as follows:

p(A|M,F )

=softmax(LN([F |T 0])W a) ∈ RK ,
(13)

where [·|·] is concatenation function, W a ∈ R1536×K is a
learnable matrix, and K is the number of all possible an-
swers. In the test, to avoid sampling bias and uncertain
results, we compute the expectation of p(A|M,F ) to pre-
dict the answer by applying Normalized Weighted Geomet-
ric Mean (NWGM) approximation [7] as follows:

EF {p(A|M,F )} =EF {softmax(LN([F |T 0])W a)}
≈softmax(LN([E{F}|T 0])W a)

=softmax(LN([µE∗ |T 0])W a),
(14)

where E∗ is the predicted explanation.

4.7. Optimization

We train our model by optimizing losses proposed in
Equation 3 and 4 as follows:

Lans =−
1

H

H∑
i=1

A′ log p(A|M,Fi)

+
1

2

[
log
|ΣE∗ |
|ΣE′ |

− df + tr{Σ−1
E∗ΣE′}+∆µTΣ−1

E∗∆µ
]
,

Lexp =

T∑
t=1

e′t log y
t +

T∑
t=1

[ω′
t logωt + (1− ω′

t) log(1− ωt)],

L =Lans + Lexp,
(15)

where A′ is the ground truth answer, ω′
t is the ground truth

gating value of the tth step, e′t is the tth ground truth expla-
nation token, and we utilize Monte Carlo (MC) estimation
to approximate the expectation as follows:

−Eq(F |E′) log p(A
′|M,F ) ≈ − 1

H

H∑
i=1

A′ log p(A|M,Fi),

(16)

where {Fi ∼ N (µE′ , diag(σ2
E′))}Hi=1 are H i.i.d. sam-

ples. Specially, Lexp aims at maximizing the prediction
probabilities of both explanation tokens and gating values.

5. Experiments

In this paper, we focus on Explanatory Visual Ques-
tion Answering (EVQA) task and conduct extensive exper-
iments to verify the superiority of our VCIN. More details
and results are included in Supplementary Material.

5.1. Datasets

We adopt the newly introduced GQA-REX [11] dataset,
which expands upon the widely-used GQA [15] dataset
by annotating multimodal explanations for visual reasoning
processes. Specifically, GQA-REX is based on the balanced
training set, balanced validation set, and standard test set of
GQA. Moreover, we conduct experiments on GQA-OOD
dataset [18], which has been recently introduced and con-
tains out-of-distribution data.

5.2. Baseline Methods and Evaluation Metrics

To evaluate the effectiveness of the proposed VCIN
method for EVQA, we compare it with three baseline ap-
proaches. VQAE [21] employs an LSTM-based language
model for generating explanations and learns question an-
swering jointly. EXP [45] utilizes an attention mechanism
to integrate image features into an LSTM-based explana-
tion generator. REX [11] is the state-of-the-art method,
which employs a gating LSTM to generate explanations
based on a fused input feature. The original REX (denoted
as REX-VisualBert) employs VisualBert [20] as its back-
bone. To conduct a fair comparison with our VCIN that
utilizes LXMERT, we also adopt a variant of REX (denoted
as REX-LXMERT) that uses LXMERT as its backbone.

Following Chen and Zhao [11], we evaluate the model
performance of visual question answering and multimodal
explanation generation. To evaluate the visual question an-
swering performance, we compute the answering Accu-
racy on validation and test sets. To evaluate the quality
of the generated multimodal explanations, we employ five
language metrics, namely BLEU-4 [30], METEOR [1],
ROUGE-L [22], CIDEr [44], and SPICE [3]. Ground-
ing metric [11] is utilized to evaluate the ability of cor-
rectly grounding visual regions in the generated explana-
tions. Moreover, to evaluate the consistency between pre-
dicted answers and explanations, we propose a new auto-
matic metric named Consistency (Con.) to compute the
rate of explanations that contain the corresponding answers.
More details about Con. are included in Supplementary Ma-
terial. To align with human judgment, we also conduct a hu-
man evaluation. We design two criteria named Visual Con-
sistency (Vis.) and Textual Consistency (Tex.) to evaluate
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Table 1. Results on explanation generation and question answering for Explanatory Visual Question Answering. GQA- and OOD- denote
answering accuracy on GQA-REX and GQA-OOD datasets. The best results are highlighted in bold.

Model BLEU-4 METEOR ROUGE-L CIDEr SPICE Grounding GQA-val GQA-test OOD-val OOD-test
VQAE 42.56 34.51 73.59 358.20 40.39 31.29 65.19 57.24 49.20 46.28
EXP 42.45 34.46 73.51 357.10 40.35 33.52 65.17 56.92 49.43 47.69

REX-VisualBert 54.59 39.22 78.56 464.20 46.80 67.95 66.16 57.77 50.26 48.26
REX-LXMERT 54.79 39.51 79.41 466.01 49.98 70.79 78.19 58.15 71.23 52.15

VCIN 58.65 41.57 81.45 519.23 54.63 77.33 81.80 60.61 74.79 54.29

whether the predicted visual and textual tokens in explana-
tions are consistent with the predicted answers, respectively.
A 5-grade marking system is applied, with 5 as the maxi-
mum grade and 1 as the worst. We randomly select 500 val-
idation samples and employ three professional annotators to
conduct a blind evaluation. As annotated explanations are
unavailable in the test set, we evaluate the generated expla-
nations only on the validation set of GQA-REX.

Table 2. Results of consistency between predicted answers and ex-
planations on GQA-REX. The best results are highlighted in bold.

Model Con. Vis. Tex. Average
REX-VisualBert 74.69 2.82 3.77 3.30
REX-LXMERT 84.90 3.12 4.14 3.63

VCIN 93.44 3.55 4.51 4.03

Table 3. Performance comparisons among variants of VCIN on
GQA-REX. The best results are highlighted in bold.

Model BLEU-4 METEOR CIDEr Grounding GQA-val Con.
VCIN-ANS 58.26 41.12 504.53 72.52 0.02 0.10
VCIN-EXP 0.03 6.79 0.00 22.52 80.58 0.00
VCIN-E2A 57.79 40.89 513.82 74.25 81.02 87.05
VCIN-RBF 57.81 40.62 514.56 74.26 78.73 90.56

VCIN 58.65 41.57 519.23 77.33 81.80 93.44

5.3. Results and Discussions

Table 1-2 shows the experimental results of all compared
methods on GQA-REX and GQA-OOD. From the results,
we have the following observations:

(1) VCIN significantly improves the quality of gener-
ated multimodal explanations. Compared with REX-
LXMERT, VCIN achieves relative improvements of
7.0%, 5.2%, 2.6%, 11.4%, 9.3%, and 9.2% for BLEU-
4, METEOR, ROUGE-L, CIDEr, SPICE, and Ground-
ing. This indicates that our multimodal explanation
gating transformer can capture relations among visual
regions, question words, and explanation tokens, lead-
ing to more coherent and rational explanations.

(2) VCIN significantly improves the accuracy of visual
question answering. while using the same backbone as
REX-LXMERT, VCIN achieves answering accuracy
improvements of 3.61%, 2.46%, 3.56%, and 2.14% on

GQA-val, GQA-test, OOD-val, and OOD-test. This
indicates that our proposed variational causal inference
can effectively capture semantics in explanations and
construct dependency between explanations and an-
swers, resulting in more accurate answers.

(3) As shown in Table 2, both automatic metric and hu-
man evaluation show a significant improvement in
the answer-explanation consistency of our proposed
VCIN. Using the same backbone as REX-LXMERT,
VCIN improves Con. by 8.54% and relatively im-
proves Vis. and Tex. by 13.8% and 8.9% respec-
tively. These results verify that our proposed vari-
ational causal inference can effectively establish the
consistency relation between the predicted answers
and explanations to enhance the credibility of results.

5.4. Ablation Study

To investigate the effectiveness of the proposed compo-
nents, several variants are designed as follows: LININ-
ANS abandons variational causal inference loss Lans.
LININ-EXP abandons explanation generation loss Lexp.
LININ-E2A abandons the causal correlation from explana-
tion to answer and predicts answers by P (A|M). LININ-
RBF is a causal variant that abandons the robust explanation
feature F and implement the joint model in Figure 3 (c).

We conduct experiments with the above variants on
GQA-REX. The optimization procedure of all variants fol-
lows the proposed VCIN. In Table 3, the experimental re-
sults are listed, from which we have the following obser-
vations: (1) The answering accuracy (GQA-val) of VCIN-
ANS and the explanation quality (BlEU-4, METEOR,
CIDEr, and Grounding) of VCIN-EXP sharply decrease.
This shows the effectiveness of losses Lans and Lexp for
question answering and explanation generation. (2) All
metric scores especially the answer-explanation consistency
(Con.) of VCIN-E2A decrease. This is because VCIN-E2A
abandons the causal correlation between explanations and
answers. These results indicate that our variational causal
inference can effectively model the causal correlation and
improve the consistency. (3) All metric scores especially the
answering accuracy of VCIN-RBF decline. This is due to
the distribution shift between the ground truth explanations
in training and the predicted explanations in test. These re-
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Figure 5. Causal results of manually intervening explanation E in our trained VCIN. Q and I are omitted in SCMs for brevity.

sults also verify that our proposed robust explanation fea-
ture can enhance the robustness of the causal correlation.

5.5. Analysis of Causal Effects

To further investigate whether the proposed VCIN can
learn the causal correlation between explanation and an-
swer, we analyze the causal effects [31] of explanation E
on answer A by manually intervening E and observing the
outcomes of A. In Figure 5, we demonstrate four examples
in GQA-REX, from which we can find our VCIN changes
the predicted answers to be consistent with the intervened
explanations. For instance in Figure 5 (c), our VCIN pre-
dicts an explanation that the doll is wearing glasses and pre-
dicts the answer “glasses”. After we manually replaced the
word and visual object of “glasses” in the explanation with
those of “shirt”, VCIN changes its answer to “shirt” as well,
which shows the causal dependency of A on E. However,
existing EVQA methods predict explanations and answers
separately and intervening explanations cannot change their
predicted answers. Those results indicate that our VCIN
can learn the causal correlation between explanation and
answer, based on which more consistent results can be in-
ferred.

5.6. Qualitative Study

To further investigate the inferred results, we conduct
a qualitative study on predicted answers and explanations.
We show four examples in Figure 6 where REX uses
LXMERT as the backbone for a fair comparison. Compared
with the state-of-the-art REX, our proposed VCIN can per-
form better in terms of question answering, explanation
generation, and answer-explanation consistency: (1) In (a)
and (b), REX cannot ground the true objects in the images
for explanation generation. However, our proposed multi-

modal explanation gating transformer can capture the com-
plex relationships among visual regions, question words,
and explanation tokens. (2) (c) and (d) show the ability of
our VCIN to accurately capture relations among various vi-
sual objects to infer explanations and answers, though the
explanation in (c) is different from the ground truth. (3)
In (b) and (c), the explanations and the answers inferred
by REX are contradictory, while our VCIN can generate
consistent results for all demonstrated examples. This im-
proved answer-explanation consistency is important for a
credible reasoning system.

5.7. Key Attributes in Explanation Generation

Following Chen and Zhao [11], we evaluate the ability
of recognizing eight attributes (i.e., color, material, sport,
shape, pose, size, activity, and relation) in explanations by
calculating their recall rates on GQA-REX. To avoid trivial
solutions, only questions where the attributes do not appear
are considered. As shown in Table 4, VCIN significantly
improves the recall rates of 8 key attributes related to differ-
ent visual skills in the generated explanations. Compared
with the state-of-the-art REX-LXMERT model, VCIN rel-
atively improves Color, Material, Sport, Shape, Pose, Size,
Activity, and Relation by 5.81%, 8.09%, 17.16%, 8.37%,
15.09%, 10.68%, 32.94%, and 8.48%, respectively. These
results further demonstrate that our proposed VCIN can bet-
ter capture diverse visual attributes to generate more coher-
ent and rational explanations.

6. Conclusion
In this paper, we propose a novel Variational Causal

Inference Network (VCIN) for explanatory visual ques-
tion answering. To improve the consistency between the
predicted answers and explanations, we propose a varia-

2522



Figure 6. Qualitative results of different models for EVQA. Visual grounding is represented with the token #.

Table 4. Recall rates of key attributes related to different visual skills for explanation generation. The best results are highlighted in bold.
Model Color Material Sport Shape Pose Size Activity Relation

REX-VisualBert 56.01 49.27 72.77 40.64 74.80 65.31 46.58 29.00
REX-LXMERT 65.38 60.22 70.16 51.95 74.41 69.83 45.75 29.83

VCIN 69.18 65.09 82.20 56.30 85.64 77.29 60.82 32.36

tional causal inference to establish the causal correlation
between the answer and explanation. To improve multi-
modal explanation generation, we design a multimodal ex-
planation gating transformer to capture complex relation-
ships among visual regions, question words, and explana-
tion tokens. Extensive experiments indicate the superior-
ity of VCIN in terms of answering accuracy, explanation
quality, and answer-explanation consistency. In the future,
we will attempt to apply the variational causal inference in
more reasoning tasks to improve credibility and explainabil-
ity.
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[8] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. Multimodal machine learning: A survey and tax-
onomy. IEEE transactions on pattern analysis and machine
intelligence, 41(2):423–443, 2018.

[9] Paola Cascante-Bonilla, Hui Wu, Letao Wang, Rogerio S
Feris, and Vicente Ordonez. Simvqa: Exploring simulated
environments for visual question answering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5056–5066, 2022.

[10] Hongyu Chen, Ruifang Liu, and Bo Peng. Cross-modal re-
lational reasoning network for visual question answering. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3956–3965, 2021.

[11] Shi Chen and Qi Zhao. Rex: Reasoning-aware and grounded
explanation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15586–
15595, 2022.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[15] Drew A Hudson and Christopher D Manning. Gqa: A new
dataset for real-world visual reasoning and compositional
question answering. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6700–6709, 2019.

[16] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-
Miller, and Xinlei Chen. In defense of grid features for visual
question answering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10267–10276, 2020.

[17] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019.

[18] Corentin Kervadec, Grigory Antipov, Moez Baccouche, and
Christian Wolf. Roses are red, violets are blue... but should
vqa expect them to? In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2776–2785, 2021.

[19] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and Daxin
Jiang. Unicoder-vl: A universal encoder for vision and lan-
guage by cross-modal pre-training. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages
11336–11344, 2020.

[20] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019.

[21] Qing Li, Qingyi Tao, Shafiq Joty, Jianfei Cai, and Jiebo Luo.
Vqa-e: Explaining, elaborating, and enhancing your answers
for visual questions. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 552–567, 2018.

[22] Chin-Yew Lin. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pages
74–81, 2004.

[23] Xiangru Lin, Yuyang Chen, Guanbin Li, and Yizhou Yu. A
causal inference look at unsupervised video anomaly detec-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 1620–1629, 2022.

[24] Bing Liu, Dong Wang, Xu Yang, Yong Zhou, Rui Yao, Zhi-
wen Shao, and Jiaqi Zhao. Show, deconfound and tell: Im-
age captioning with causal inference. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18041–18050, 2022.

[25] Siqu Long, Feiqi Cao, Soyeon Caren Han, and Haiqin Yang.
Vision-and-language pretrained models: A survey. In Pro-
ceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI-22, pages 5530–5537, 7
2022.

[26] David Lopez-Paz, Robert Nishihara, Soumith Chintala,
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