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Abstract

We present a deep homography mixture motion model
for single image rolling shutter correction. Rolling shutter
(RS) effects are often caused by row-wise exposure delay
in the widely adopted CMOS sensor. Previous methods of-
ten require more than one frame for the correction, leading
to data quality requirements. Few approaches address the
more challenging task of single image RS correction, which
often adopt designs like trajectory estimation or long rect-
angular kernels, to learn the camera motion parameters of
an RS image, to restore the global shutter (GS) image. In
this work, we adopt a more straightforward method to learn
deep homography mixture motion between an RS image and
its corresponding GS image, without large solution space
or strict restrictions on image features. We show that divid-
ing an image into blocks with a Gaussian weight of block
scanlines fits well for the RS setting. Moreover, instead of
directly learning the motion mapping, we learn coefficients
that assemble several motion bases to produce the correc-
tion motion, where these bases are learned from the con-
secutive frames of natural videos beforehand. Experiments
show that our method outperforms existing single RS meth-
ods statistically and visually, in both synthesized and real
RS images. Our code and dataset are available at https:
//github.com/DavidYan2001/Deep_HM .

1. Introduction
Rolling shutter (RS) refers to the effects caused by differ-

ent row exposures that has been widely adopted in CMOS
sensors. Such a row-wise exposure often introduces arti-
facts, such as blending of straight lines and skewing of im-
age contents, which are not only visually unpleasant but
also harmful for downstream tasks [9, 26, 1, 25]

Existing RS rectification methods can be categorized
into: multi-frame [3, 13, 2, 15, 31] and single-frame [22,
21, 20, 38, 10]. Correcting RS from a single image is more
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Figure 1. Rectification result on real examples. Column 1: real RS
images. Column 2: results by [37]. Column 3: our results.

challenging but important under data-starved situations.
Most existing single RS methods are non-learning methods
(e.g., [22, 20, 12, 19]), only few works are learning-based
ones (e.g., [21, 10]). Non-learning methods rely on prior
assumptions for the correction, such as “straight lines re-
main straight”. However, they often fail when such salient
priors are not available in an image. In contrast, many deep
learning methods have been proposed but they are based on
multi-frame approaches. Only few methods target on single
RS correction, which is inherently an ill-posed problem.

Existing deep-learning single RS methods learn the row-
wise camera motion between RS and global shutter (GS)
pairs (e.g., [21]). However, row-wise motion introduces a
large solution space that increases the learning difficulty. To
facilitate the learning, [38] requires an additional depth as
the input, where the depth can be estimated by an off-the-
shelf method. Unfortunately, the quality of the correction is
affected by the quality of the estimated depth, and estimat-
ing depth from a single image is still an open problem.

In this paper, we present a novel method that learns a
deep homography mixture (HM) motion model for single
RS correction. HM [6] is originally proposed to align adja-
cent frames for the task of joint video RS removal and stabi-
lization. An HM divides a frame into several equally spaced
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horizontal blocks. Each block follows a homography trans-
formation with Gaussian smoothing of neighboring blocks
for the spatial smoothness. The model holds when 1) depth
of the scene is plane or at infinity, 2) camera motion across
rows maintains piece-wise smoothness. Previously, the
HM [6] is estimated by detecting [24] and tracking [28] im-
age feature points between consecutive frames, and solve
multiple smoothed homographies with a DLT [7]. Unlike
these methods, we use the model as the motion correction
model under our single RS rectify scenarios. Directly learn-
ing the homography mixture between RS and GS cannot
produce satisfactory results. Recently, BasisHomo [34] pro-
poses a method to learn deep homography by combining 8
pre-defined homography flow bases, each of which is a flow
map created by modifying one of a homography matrix el-
ement. In this way, the learning of a homography is con-
verted to the learning of coefficients corresponding to each
flow basis, which demonstrates superior performances com-
pared to directly regressing homography matrix elements,
or the 4pt motion vector representation [4]. Here, we adopt
flow basis representation, not for the frame registration [34],
but for the estimation of rectifying motion as HM between
GS and RS. Moreover, we notice that pre-defined bases are
not optimal. We propose to learn these bases from natu-
ral videos. PCA-Flow [32] shows that optical flow can be
estimated by first learning several optical flow bases from
a movie and then combine them for the flow estimation.
These bases are extracted by the PCA [8]. In this work, in-
stead of learning the complex basis with object-level motion
details as in optical flow [32], we learn global homography
flow basis that reflects camera motions.

On the other hand, many of the rolling shutter datasets
are designed for multi-frame cases. We follow the single RS
method [21] to synthesize RS and GS pairs. We notice that
many of the existing datasets contain rich textures, full of
salient lines, such as urban scenes [33]. A potential reason
is that rich salient lines are more friendly for the RS correc-
tion. Here, we move a step further by creating a new dataset
named as RS-Homo, based on the CA-Homo dataset [35],
which is designed for homography estimation of two im-
ages, and contains many adverse scenarios, such as poor
texture and low light. Trained on RS-Homo, we show that
our method can work well not only for synthesized images
in many scenarios but also for real RS captures.

In summary, our main contributions are:

• We propose deep homography mixture motion model
for the task of single image rolling shutter correction,
which neither requires camera intrinsics nor the addi-
tional IMU hardware.

• We introduce a pipeline that learns the motion map-
ping between GS and RS by combining motion bases,
which are learned from natural videos. We train our

network on the proposed RS-Homo dataset, delivering
high quality results even under adverse cases.

• Our method achieves state-of-the-art performances
when compared to previous single-frame approaches,
with 2.7% higher SSIM and 56% lower motion
RMSE (per pixel). The ablation study verifies the ef-
fectiveness of each component.

2. Related Works
Classical Single Image Methods Classical single RS cor-
rection methods rely heavily on the image contents, e.g.,
salient straight lines. Rengarajan et al. [22] rectified an RS
image by enforcing constraints of straight lines should re-
main straight. Purkait et al. [20] assumed Manhattan world
assumption. Lao et al. [12] used four straight lines to es-
timate the camera motion. Our deep network is free from
these strong assumptions, and can work in natural scenes.

Classical Multi-Image Methods Multi-image methods can
utilize temporal information for rectifications where accu-
rate image alignment becomes important. Liang et al. [13]
estimated per-pixel motion vectors. Forssèn et al. [23]
adopted KLT [28] for image feature tracking. Karpenko et
al. [11] adopted the gyroscope to estimate the rotational mo-
tion. Baker et al. [2] estimated motions with up to 30 row
blocks with affine or translational motion model. Besides,
3D information can also be utilized. Zhuang et al. [37] es-
timated SfM from RS frames. Vasu et al. [31] addressed
the occlusion issue in RS with the estimation of a latent
layer mask. Some methods take an entire video as input,
which optimizes RS and video stabilization jointly. Grund-
mann et al. [6] first proposed the HM for the registration of
neighboring frames with RS rectified during stabilization.
In contrast, we only have one frame, thus there is no image
alignment. We use HM as the rectification model instead of
registration model.

Deep Multi-Image Methods Deep RS network often con-
sists of an encoder for the feature extraction, a rectifica-
tion module and a decoder for result reconstruction. Fan et
al. [5] adopted PWC-based flow estimator and warped the
features to GS image decoder for the rectification. Liu et
al. [15] took two consecutive frames as input, and estimated
a pixel-wise velocity field and applied a differentiable for-
ward warping for the deep frame unrolling. Zhong et
al. [36] not only corrected the RS, but also deblurred the
frames jointly. In this work, we target the more challenging
single frame RS correction.

Deep Single Image Methods Only few works address the
task of deep single RS correction. These works train the
network with GS and synthesized RS pairs. Rengarajan et
al. [21] adopted simple affine motion model. Zhuang et
al. [38] additionally estimated a depth map from a single
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Figure 2. The illustration of Homography Mixture motion model.
The transformation of a point (x, y) not only corresponds to its
belonging block with homography Hi, but also affected by neigh-
boring homographies gaussian weighted within a certain range.

image. Besides, additional sensors can be adopted, such
as IMU [16]. In this work, we adopt HM for the rectifica-
tion. We show that it is much easier to learn indirect motion
mappings by assembling motion bases compared to directly
output the correction motion.

3. Proposed Method
3.1. Homography Mixture Model

Considering the camera model, a 3D location X can be
imaged by the corresponding projection matrix P ∈ R3×3

by x = PX, where P can be decomposed into a camera
intrinsic matrix K and the camera pose parameters R and
T by P = K[R|T ] and x is the projection of X on the image.

In the case of rolling shutter, assuming that the depth of
the plane is on a plane or at infinity, each row corresponds to
a certain P . Considering a position x with its homogeneous
coordinate (x, y, 1)T on an RS image and the matched pair
x0 with (x0, y0, 1)

T on the related GS image, we have

x = PRSX, x0 = PGSX (1)

From Eq. (1), x and x0 can be related as follows:

x0 = PGSP
−1
RS x ⇒ x0 = Hx, (2)

where H ∈ R3×3 is seen as a homography matrix [7].
Thus, each row corresponds to one homography matrix with
the assumption above. This may lead to some limitations
when captured scene has depth variations. In Sec. 5.4, we
find that the method still effective in this kind of image.
Moreover, estimating the homography matrices of all the
rows is unnecessary, given an assumption for the piece-
wise smoothness of the camera motion across rows. There-
fore, we divide an RS image into k blocks and estimate
Hi, i = 1, 2, ..., k for each block instead. As shown in
Fig. 2, a Gaussian weight is adopted to align the scanline
of each block, which maintains continuities between differ-
ent blocks. Having k homography matrices matched to k

blocks, the homography mixture for x can be defined as:

Hmix =

N∑
i=1

ωiHi ⇒ x0 = Hmixx, (3)

where ωi expresses the normalized Gaussian weight corre-
sponding to the ith block. Fig. 2 shows an example.

3.2. Our Network Pipeline

Our network takes a single rolling shutter image as in-
put, and outputs N numbers of coefficients for each ho-
mography block, yielding k × N in total as the network
outputs. These coefficients combine N numbers of mo-
tion bases into k motion maps for k blocks. The motion
bases are learned from consecutive frames in natural videos.
To obtain the correction maps, we multiply the normalized
Gaussian weights to former motion maps to build final ho-
mography mixture motion. Bilinear interpolation method is
adopted with the motion output to make corrections. This
mixture motion is adopted into rolling shutter correction.
The pipeline structure can be seen in Fig. 3.

Network Architecture We adopt a VGG-style net-
work [29] as our backbone, which takes a single RGB im-
age of size H × W × 3 as input. After the convolutional
layers and maxpool layers, the feature map is flattened and
sent into 2 fully connected layers and finally a bases weight
layer of size k×N is acquired. Note that, there are k blocks
with each block corresponding to N weights in the output
layer.

Homography Flow Bases A homography matrix can be
represented as 4 corner offsets [4, 35]. However, this rep-
resentation cannot work well in our single image RS rec-
tification task as we will show in our ablation studies. A
homography matrix can be converted into a flow map given
the image coordinates, yielding a homo flow representation.
We show that it is more accurate for neural networks to pre-
dict basis coefficients than the 4 corner offsets. Instead of
directly learning the homo flows, we learn coefficients that
combine motion bases as shown in [34]. The difference is
that, [34] combines 8 pre-defined bases, whereas our bases
are learned from real data as we will illustrate in Sec. 3.3.

After predicting the k × N bases weights from our net-
work, they are divided into k groups and each group is sent
to multiply the learned bases by dot product as follows:

flowi =

N∑
j=1

αijhj(i = 1, 2, ..., k), (4)

where flowi of size H ×W × 2 is the homography motion
flow for the ith block, hj of size H × W × 2 is the jth

learned basis and αij expresses the predicted coefficient
to the jth learned basis in the ith block. The bases are
visualized in Fig. 3. Hence, the k homography motion

9870



Figure 3. Our system pipeline. Our network takes a single rolling shutter image of size H × W × 3 as input, and outputs k × N bases
weights, where k is the number of blocks within a frame, and N is the number of bases. These weights combine N flow bases with
Gaussian weights for the spatial smoothness to create a motion output, which corrects the input image for the result. These flow bases are
learned from videos beforehand. For training, we calculate flow differences between motion outputs and synthesized ground-truth motions.

flows of size H × W × 2 corresponding to k blocks are
acquired.

Gaussian Weight Map As explained in Sec. 3.1, a Gaus-
sian weight is more appropriate for the continuities be-
tween blocks. The predefined Gaussian weight maps of size
k × H × W are combined with the homography motion
flows:

m =

k∑
i=1

flowi ◦mapi, (5)

where the entire H × W × 2 output m is the mixture mo-
tion flow that is used for rolling shutter correction, flowi

is previously obtained motion flow and mapi is the Gaus-
sian weight map corresponding to the ith block homogra-
phy motion flow. ◦ expresses the element-wise multiplica-
tion. Noted that all weights with respect to the same loca-
tion in an image are normalized before the combination.

Flow Loss Function In our method, the motion flow be-
tween RS and GS images is essential for the correction.
Considering the endpoint error (EPE), we design the follow-
ing flow loss function between the predicted motion flow m
and the ground truth synthesized motion flow M :

L =
1

HW

H∑
i=1

W∑
j=1

∥mij −Mij∥2. (6)

Thus, our goal is to minimize the mean EPE between m and
M by predicting the bases coefficients.

3.3. Motion Basis Learning

Basis learning is an interesting and effective method in
low-rank representations [14]. Tang et al. [30] illustrates

Figure 4. Motion Basis Learning. We estimate homography Hi

from pairs of images extracted from various type of videos. The
homographies are converted into homography flows, which are
then flattened and concatenated before SVD. The bases are col-
umn vectors that correspond to the top N singular values.

that low-level vision problems are potential to be solved by
discovering the subspaces. PCA-Flow [32] learns the opti-
cal flow bases from real movies and demonstrates that flow
estimation can be the combination of weighted bases. Ba-
sisHomo [34] adopts 8 pre-defined homography flow bases
to the homography estimation task. Following this, we learn
the global homography flow bases from natural videos in
the CA-Homo dataset showed in [35].

As shown in Fig. 4, we extract n pairs of consecutive
frames from natural videos. For the stability and robustness
reasons, we choose the regular(RE) video category [35].
Frame pairs are selected from videos with random skip, cre-
ating different rates. We adopt SIFT/SURF and RANSAC
algorithms to n RE frame pairs to estimate homography ma-
trices and transform the matrices into n H×W ×2 homog-
raphy flows.

The flows are flattened and concatenated to a 2HW × n
combination matrix F which is processed by SVD decom-
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Figure 5. Dataset Generation. We collect images from CA-Homo
dataset [35] and synthesize motion flow as GT flow label by tra-
jectory polynomial [21]. The GS image is warped based on the
motion flow to create RS image as the network input.

position as F = UΣV T , where U is a matrix of size
2HW×2HW containing the flatten bases, Σ is a 2HW×n
matrix with all the singular values and V is a n× n matrix.
Noted that U and V are both orthogonal matrices. With
PCA analysis [8], only N flatten bases corresponding to
the maximum N singular values are chosen as the motion
bases in our method. Therefore, N motion bases of size
H ×W × 2 in Fig. 3 are obtained.

4. Dataset Generation

Since most of the available datasets are designed for
multi-frame cases and capturing real RS-GS pairs is dif-
ficult, we use synthesized camera motion from a second-
degree polynomial for RS-GS image pair generation. As
shown in Fig. 5, an original image is first resized and
cropped into a 356 × 356 × 3 image with maintenance
of proportional structure. With the generation of motion
trajectory polynomials, a ground-truth motion flow of size
356 × 356 × 2 can be obtained. The flow is used to warp
the processed image and finally a cropped RS image of size
256× 256× 3 is output. The flow is also cropped in size of
256 × 256 × 2 as the ground truth. Noted that there are no
missing parts in the boundaries of the generated RS images.

5. Experiments

We evaluate our method on 3 datasets. As the previ-
ous single RS image correction methods [21, 10] evaluate
their results on the building dataset [33, 27, 18], we adopt
the same datasets for fair comparisons with previous single
RS methods. In addition, we use the Carla-RS dataset [15]
to compare with multi-frame methods [15, 5] as a refer-
ence. Moreover, we generate the RS-Homo dataset based
on the CA-Homo dataset [35]. We notice that trained on
this dataset can make our method works even in adverse
cases such as low light and poor texture. Not that, many
of the previous methods are not open-sourced, we have to
reuse many reported experiment results from the published
papers [21, 10, 5].

5.1. Implementation Details

For building datasets, there are 6,000 clean images. Fol-
lowing [21, 10], we randomly choose 2,000 images with
each image of 150 synthesized motions from camera mo-
tion parameters to form the training data of size 300k and 10
sythesized motions for the other different 40 images as the
testing data. For RS-Homo dataset, we randomly choose 5
frames for each of the 218 videos and each frame is warped
with 100 synthesized motions to constitute the training data
of size 109k. In 32 test videos, we randomly choose one
frame from each video and generate 10 motions for each
frame to create a test dataset. Our network is trained with
100k iterations by the Adam optimizer [17] with lr = 10−4.
The batch size is 16 and the lr is reduced by 20% for every
5k iterations. The implementation is based on PyTorch and
trained on two 1080 Ti. The inference time of our model on
a single test image is 21.9ms.

5.2. Comparison with Existing Methods

We mainly compare our method with previous related
RS methods which only require image as input on the build-
ing dataset [33, 27, 18]. Traditional approaches include
Rengarajan et al. [22], Grundmann et al.[6] and Purkait et
al. [20]. The learning-based methods include Rengara-
jan et al.[21] and Kandula et al.[10]. Although not that
fair, we also compare with some recent mult-frame meth-
ods as a reference, DSUN [15] and SUNet [5] on Carla-RS
dataset [15].

Quantitative Comparison For fair comparisons, peak
signal-to-noise ratio (PSNR)(dB), structural similarity in-
dex measure (SSIM) and endpoint error (EPE) are used as
metrics to measure the similarity between the RS rectified
image and the GS image as adopted by previous methods.
Pixels with no information are neglected in calculation. We
report the results in Table 1. Traditional approaches rely on
curve detection [22, 20] to realize motion parameters esti-
mation, which usually fails to correct RS images of adverse
cases without salient structures, leading to lower PSNR and
SSIM and higher EPE. The RS video correction method [6]
works only when frames contain rich texture or appropriate
light. The learning-based methods [21, 10] can sometimes
work in images with strong outliers, but large solution space
for the camera motion parameters increases the difficulty of
network prediction. Since our method adopts combination
of learned homography flow bases, it does not suffer from
the mentioned weaknesses and achieves higher PSNR and
SSIM and lower EPE.

When comparing with multi-frame methods [15, 5] and a
single-frame method [38] on Carla-RS dataset [15]. Noted
that [38] needs depth for training, thus it is not involved
in the building dataset experiment. Moreover, in Carla-RS,
there is only the ground truth GS images at the centered

9872



Figure 6. Comparison with previous methods [22, 20, 6, 21, 10]. Top and bottom are synthetic and real examples.

Method PSNR(dB)↑ SSIM↑ EPE↓
Rengarajan et al.[22] 29.82 0.67 11.89

Purkait et al.[20] 29.22 0.55 8.32
Rengarajan et al.[21] 32.25 0.70 3.76
Grundmann et al.[6] 32.57 0.72 3.34
Kandula et al.[10] 32.85 0.73 2.84

Ours 33.34 0.75 1.25

Table 1. Comparison of PSNR, SSIM and EPE between ours and
other single RS image methods on building dataset [33, 27, 18].

Method PSNR(dB)↑ SSIM↑
Single-frame[38] 18.47 0.58

DSUN[15] 26.46 0.81
SUNet[5] 29.18 0.85

Ours 20.62 0.62

Table 2. Comparison of PSNR and SSIM between ours and multi-
frame methods [15, 5] on Carla-RS dataset [15]. Noted that al-
though we do not outperform multi-frame methods, ours is better
than previous single-frame method [38], which requires depth in-
formation as the additional inputs.

time between two RS frames. The multi-frame methods use
two consecutive RS frames to restore the GS frame at the
centered time, while ours aims at restoring the GS frame
at the time when the first row of a single RS frame is cap-
tured. From Table 2, it can be seen that the metrics of ours
are lower than the multi-frame methods for the time differ-
ence mentioned above. However, the PSNR and SSIM are
obviously higher than the single-frame method [38].

Visual Comparison Fig. 6 illustrates rectified results in
both synthetic RS image and real RS image. Considering
the synthetic RS image in the first row, because of the oc-
clusion from branches, traditional methods [22, 20, 6] can
not work well under this situation. Previous learning-based
methods [21, 10] show better results, but the contours are
seen to be curved. Our result can display straight contours

Figure 7. Comparison with multi-frame methods [15, 5]. The
multi-frame methods take RS frame 1 and 2 as input, while ours
only inputs RS frame 2. The ground truth GS image is captured in
the centering time of capturing RS frame 1 and 2.

even in this occlusion condition. For the real RS image
in the second row, part of the house is covered with straw
and there is low texture with the sky at infinity, resulting in
failed correction with methods [22, 20, 6]. The learning-
based method [21] also fails. Results of another learning-
based method [10] is similar to our result, while it is visually
more skewed than ours. Fig. 7 displays results compared
with multi-frame methods [15, 5]. They take RS frame 1
and 2 as input and ours only input RS frame 2. The result
can be seen as competitive and even clearer than method
[15].

5.3. Ablation Studies

The ablation study is carried on the proposed RS-Homo
dataset. There are 5 types of images in CA-Homo [35],
so does ours. They are regular (RE), low texture (LT), low
light (LL), small foreground (SF) and large foreground (LF)
scenes. We use PSNR, SSIM, EPE as our metrics in abla-
tion study. Table 3 reports our ablation results.
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Component PSNR↑ SSIM ↑ EPE↓
weight average 23.74 0.73 5.87

single 24.86 0.74 5.18
Gaussian 26.15 0.77 4.10

block 4 25.10 0.75 4.25
8 26.15 0.77 4.10
12 25.61 0.76 4.35

offset and basis offsets 18.37 0.61 15.58
fixed 8 25.95 0.76 4.27

learned 8 26.15 0.77 4.10
learned 12 25.88 0.76 4.11

Table 3. Ablation study with different components including
weight, block, offset and basis. The table shows results for 5 cat-
egories in RS-Homo, RE, LT, LL, SF, LF. The optimal choice of
components is emphasized.

Figure 8. Comparison among different weight maps. With a single
RS image on the left as input, the following are results with aver-
age weight map, single weight map, Gaussian weight map.

Weight Maps We design 3 types of weight maps in our
experiment. The average weight map means N homogra-
phies play the same role to each block and the single weight
map represents that one block only corresponds to one ho-
mography. From Table 3, it can be observed that Gaussian
weight map has the best metircs in our test dataset. Holding
the assumption of smoothness in camera motion, Gaussian
weight can handle distortions more smoothly and the other
two weights tend to handle linear variations more often. As
shown in Fig.8, correction with average weight map still
has distortions and correction with single weight map even
has discontinuous parts. Correction with designed Gaussian
weight map is more effective than the other types. We select
Gaussian weight in other experiments.

Block Quantities Block quantity is related to the number of
homographies that need to predict. We conduct experiments
on block quantities of 4, 8, 12. Theoretically, more blocks
can lead to higher prediction accuracy. However, the in-
crease of the complexity of network prediction will reduce
the prediction accuracy. As shown in Table 3, 8 blocks has
more precise prediction results than the others, for lower
EPE, higher PSNR and SSIM. One example of occlusion is
shown in Fig. 9. It is obvious that correction with 8 blocks
has the least distortion for the building covered by branches
and results with block= 4 and 12 are visually less optimal.
We select 8 blocks in all other experiments.

Figure 9. Comparison among different block quantities. Top right:
the input RS image. The others are the correction results with
block quantities of 4,8,12, respectively.

Figure 10. Comparison among different methods of regression.
Column 1 is a single RS image, columns 2∼5 are regression with
corner offsets in each block, coefficients of fixed bases, coeffi-
cients of learned 8 bases and 12 bases, respectively.

Offsets vs. Homography Flow Bases In order to find the
most efficient motion bases, we compare the results from
previous corner offsets estimation [4, 35], coefficients of
fixed 8-bases [34], learned 8-bases and learned 12-bases.
In [34], it is justified that bases coefficient prediction is bet-
ter than corner offsets prediction. The fixed bases are gen-
erated by modifying each element of an identity matrix one
at a time, which produce bases that may not equally im-
portant during the prediction, thus less effective. Because
the real camera motions only span a subspace of the en-
tire solution space. In contrast, learning bases in real data
with PCA can effectively overcome these problems by ex-
tracting the most important bases corresponding to the real
camera motion. From Table. 3, the offset prediction method
has the worst metrics. Prediction with bases is significantly
better as shown. Moreover, correction with learned 8-bases
is quantitatively better than correction with fixed 8-bases.
Noted that results of learned 8-bases and 12-bases are simi-
lar, since the energy of the principal component has reached
99.9% while N = 8 in motion bases learning (in the supple-
mentary material). Fig. 10 displays an RS example in low
light. Result with offset regression is quite similar to the
input RS image so that it fails in correction. The results of
learned bases are similar to each other and both remove the
distortions much better than the rectified image from fixed
8-bases, which is consistent with our quantitative results.

5.4. Results on Images with Varying Depth

As mentioned in Sec.3.1, the HM model holds when
depth of the scene is on a plane or at infinity. The blend-
ing of homography flows is actually smooth interpolated
to avoid discontinuities across scanline blocks. Here, we
study how strict this requirement is by exploring some real
examples. In the experiments, under different depth varia-
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Figure 11. Our rectification results on synthetic data and real data. Noted that examples in row 1 are all images of adverse scenarios. Row 2
are all real RS examples to verify our method effectiveness. More results can be seen in the supplementary.

Figure 12. Scenes consisted of several planes with varying depth.
Left: depth variation with camera rotation. Right: depth variation
with camera translation.

tion cases, our method can still work. Fig. 12 shows two
real examples, where the left has discontinuous depth varia-
tion with camera rotation, while the right has discontinuous
depth variation with domination camera translation. Our
method is not designed for such settings but can work in
several cases in experiments.

5.5. Results on Images with Different Framerates

Our correction method and the learned bases are effec-
tive with respect to different timescales due to the following
reasons, 1) frame pairs are selected from videos with ran-
dom skip, creating different rates; 2) our RS-Homo dataset
is further synthesized using the same parameters as [37, 10],
which simulates different timescales, and 3) we learn from
the natural video data to obtain effective global homography
flow bases that own good generalizability. We show three
captured examples with 15fps, 25fps and 30fps in Fig.13,
with house, sky or vertical bars. It is shown that our method
can correct them successfully with the same learned basis.

5.6. Results on Synthetic and Real Images

To demonstrate the effectiveness of our method, more
examples are shown in Fig. 11. Row 1 displays the RS
image correction examples on the synthetic data from RS-
Homo dataset. Column 1∼2 is an example of sky and sea
with poor texture (little can be found on the beach), col-
umn 3∼6 are examples with low light (column 3 shows
buildings and river at night, column 5 depicts light in a park
at night), and column 7∼8 is an example with large fore-

Figure 13. Correction on real RS images with different framerates.
In each pair, the left is RS image and the right is corrected result,
which shows the generalizability of the learned-bases.

ground (cars and pedestrians in the foreground). However,
when we implement method [6], it always fails with these
types of images due to lack of rich or stable image features.
Row 2 shows correction on real RS images with our method.
Different types of real RS images are successfully corrected
by removing the distortions. Our method is trained on syn-
thetic data, but can work on real data.

6. Conclusion
We have presented the deep homography mixture model

for the task of single RS correction. We learn the correction
motion from a synthesized dataset RS-Homo consisting of
GS and RS pairs with adverse cases. We learn coefficients
that combine homo-bases learned from natural videos. We
show that this pipeline can work on a typical architecture
such as VGG. Experiments show that our method outper-
forms existing single RS image correction methods both
quantitatively and qualitatively, both on the synthesized and
real images. We also compare with multi-frame methods
in their proposed datasets. Our ablation studies show the
effectiveness of each component in our method.
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