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Figure 1. A comparison between rush-hour (a, b, c) and non-rush-hour (d, e, f) traffic at the same intersection in our INT2 dataset. They
are naturally treated as two different trajectory prediction domains.

Abstract

Motion forecasting is an important component in au-
tonomous driving systems. One of the most challenging
problems in motion forecasting is interactive trajectory pre-
diction, whose goal is to jointly forecasts the future trajec-
tories of interacting agents. To this end, we present a large-
scale interactive trajectory prediction dataset named INT2
for INTeractive trajectory prediction at INTersections.
INT2 includes 612,000 scenes, each lasting 1 minute, con-
taining up to 10,200 hours of data. The agent trajectories
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are auto-labeled by a high-performance offline temporal de-
tection and fusion algorithm, whose quality is further in-
spected by human judges. Vectorized semantic maps and
traffic light information are also included in INT2. Addi-
tionally, the dataset poses an interesting domain mismatch
challenge. For each intersection, we treat rush-hour and
non-rush-hour segments as different domains. We bench-
mark the best open-sourced interactive trajectory predic-
tion method on INT2 and Waymo Open Motion, under in-
domain and cross-domain settings. The dataset, code and
models are publicly available at https://github.com/AIR-
DISCOVER/INT2.
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1. Introduction
Autonomous driving is one of the most developed appli-

cation fields of computer vision, with many heavily stud-
ied sub-tasks like 3D detection [36, 37, 50], segmentation
[44, 47] and localization [2, 34]. More recently, the re-
search community has directed its focus towards the bur-
geoning problem of motion forecasting, which seeks to aug-
ment down-stream decision making mechanisms by provid-
ing enhanced insights into the future trajectories of objects.

Motion forecasting is indeed an old problem in the com-
puter vision community. Conventional datasets focus on
forecasting pedestrian trajectory in campus [23, 32, 43].
Whilst methods developed on these legacy datasets can po-
tentially be applied to autonomous driving scenarios, they
treat each agent separately or say they are not interactive. If
we forecast the future trajectories of two interacting agents
separately, they may crash into each other, which makes lit-
tle sense for down-stream decision making modules.

To this end, interactive trajectory prediction is recently
formalized by the Waymo Open Motion dataset [7] which
benchmarks the trajectory prediction accuracy of interact-
ing agents in diverse scenarios. In this paper, we contribute
another large-scale interactive trajectory prediction dataset
to the community, with a focus on intersections. Our dataset
is named as INT2, which is short for INTeractive trajectory
prediction at INTersections. INT2 has the following fea-
tures:

(1) High quality. INT2 is captured at 16 different in-
tersections by a multi-sensor system and an offline detec-
tion and tracking algorithm stack. The multi-sensor system
consists of several RGB cameras and LiDARs mounted on
poles. Sensors are calibrated routinely. The offline algo-
rithm stack applies state-of-the-art 3D detection and track-
ing algorithms on raw data without the concern of latency,
and fuses the results with production-level rules.

(2) Large scale. INT2 contains about 612,000 scenes
with each 1 minute long, counting up to 10,200 hours. By
contrast, Waymo Open Motion has about 100,000 scenes
with every 20 seconds long, counting up to 570 hours. Apart
from the total scale, traffic in each 1-minute segment can
cover one complete traffic light cycle.

(3) Rich information. INT2 has rich information in sev-
eral terms. INT2 provides vectorized road maps at all 16
intersections, which is a common input to state-of-the-art
trajectory prediction algorithms. INT2 provides 3D agent
boxes for small and large vehicles, pedestrians and cyclists.
INT provides temporal traffic light information and links to
the lanes they have control over.

Besides the aforementioned three standard merits, INT2
is suitable for the study of domain mismatch problem thanks
to the fact that it is captured at intersections.

Firstly, domain mismatch is as important for interactive
trajectory prediction as for other sensing problems. Since

trajectory prediction models are usually used in an itera-
tive manner in practice, minor errors caused by domain mis-
match would explode over several rounds. For example, if
we predict the future trajectory for 8 seconds and then use
the predicted trajectory for another 8 seconds, errors caused
by domain mismatch would get larger.

Secondly, it is difficult to properly define domains for
the trajectory prediction problem. We ask readers to think
about this problem: given two different traffic scenarios,
how could we tell whether they are sampled from the same
domain or not? Since state-of-the-art trajectory predic-
tion methods all exploit vectorized maps as input, the ever-
changing map information in existing datasets makes the
definition of domains challenging. In our INT2 dataset, by
contrast, the definition of domains becomes natural as tra-
jectories are captured at fixed intersections so that we can
use rush-hour and non-rush-hour data as two clearly differ-
ent domains (Fig. 1), while bypassing the impact of maps.

For initial benchmarking, we provide in-domain and
cross-domain interactive trajectory prediction results using
the state-of-the-art method M2I [39], pointing to interesting
and practical challenges. Baseline training framework and
pre-trained models will be released along with the dataset.

2. Related Work
Autonomous Driving Dataset. The key techniques for

a self-driving car include solving tasks like 3D construc-
tion, scene understanding, segmentation, motion predic-
tion, etc[17, 24, 25, 42, 49]. In past decades, a variety of
datasets and benchmarks, have been released to push for-
ward the development of Autonomous Driving. Among
them, KITTI[10] and Torontocity[40] are proposed to eval-
uate visual/LiDAR reconstruction, segmentation, optical
flow, stereo and road segmentation tasks. For a better un-
derstanding of complex scenes, Cityscapes [6] is to train
and test approaches for pixel-level and instance-level se-
mantic segmentation, while Panoptic nuscenes[8] is to eval-
uate LiDAR panoptic segmentation and tracking. Besides,
Waymo adopts panoramic video for Panoptic Segmenta-
tion to reason about their surroundings in terms of seman-
tic and geometry properties[29]. Compared with KITTI
and Cityscapes, ApolloScape[15, 16] contains much larger
and richer labeling including holistic semantic dense point
cloud, stereo, per-pixel semantic labeling, lanemark label-
ing, instance segmentation, 3D car instance, high accurate
location for every frame in various driving videos. Since
no single type of sensor is sufficient for perception, the first
multimodal dataset nuScenes[3] carry full autonomous ve-
hicle sensors (cameras, radars and lidar) suited for detection
and tracking.

On top of the scene understanding task, high-quality
motion data rich in both interactions and annotations to
develop motion planning models are necessary. Several
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(c) The overall perception pipeline
(b) Schematic diagram of 
data acquisition system

(a) The visualization of 3D perception results

Camera 
RAW DATA

LiDAR
RAW DATA

2D Object Detection 2D-to-3D
Back-projecting

3D Detection

Fusion Tracker 3D Object
×8 Camera
×4 Fisheye Camera
×4 LiDAR
×1 RSU

×1 PC

×1 Signal Cabinet

Figure 2. Data Acquisition System. (a) On the left is the original
scene, and on the right is the result of 3D perception. (b) Shows
the schematic diagram of our data collection system. (c) Illustrates
the data collection process.

datasets[4, 14, 38] have been developed for motion forecast-
ing in large-scale real-world urban driving environments.
As predicting individual object motion is not sufficient,
[7] introduces the most diverse interactive motion dataset
and provides specific labels for interacting objects suit-
able for developing joint prediction models. What’s more,
vehicle-infrastructure cooperation is considered an effec-
tive paradigm for autonomous driving, and DAIR-V2X[45]
is the first large-scale, multi-modality, multi-view dataset
from real scenarios to accelerate computer vision research
for Vehicle-Infrastructure Cooperative Autonomous Driv-
ing (VICAD).

Trajectory Prediction. Understanding agent behavior
is critical for autonomous moving platforms. Social LSTM
[1] is proposed to model human movement and predict their
future trajectories in crowded scenes. Human motion is in-
herently multi-modal in dynamic scenes, so GCN[13, 30]
is adopted to model motion histories and predicts socially
plausible future behavior. On top of this, DESIRE[22] ac-
counts for scene context as well as the interactions among
the agents. [28] focuses on long-term trajectory forecasting
and proposes a scene-compliant trajectory prediction net-
work to resolve it. [11] leverages graph representations of
the High Definition Map and sparse projections to generate
the future position probability distribution of an agent.

Forecasting the trajectory of multiple agents is necessary
for planning in dynamic traffic environments. Depending
on the abundant semantic labels, lanes and spatial locality
information of map, [5, 9, 26, 33] predict the trajectories
of multiple agents by leveraging graph-structured models.
TNT[48] and DenseTNT[12] generate state sequences con-
ditioned on targets for trajectory prediction of vehicles and
pedestrians. Due to its attention mechanism, Transformer-
based multi-agent models[27, 31, 35, 46] can naturally
model the interaction between different agents. Specifi-
cally, Scene Transformer[31] provides a multi-agent model

Figure 3. An illustration of the vectorized maps of our intersec-
tions, with more figures to be found in the supplementary material.

for predicting the behavior of all agents. AgentFormer[46]
leverages a novel agent-aware attention mechanism to si-
multaneously model the time and social dimensions. Mo-
tion transformer[35] models trajectory prediction as the
joint optimization of global intention localization and lo-
cal movement refinement, and incorporates spatial intention
priors by adopting learnable motion query pairs. Besides,
M2I[39] models pairs of interaction agents as pairs of in-
fluencers and reactors, then leverages a marginal prediction
model and a conditional prediction model to predict trajec-
tories for the influencers and reactors, respectively. In this
work, We provide a rich set of cross-domain multi-agent
interaction data in traffic scenarios based on M2I.

3. The INT2 Dataset
3.1. Data acquisition system

Our INT2 dataset was collected at 16 intersections in one
of the largest cities in the world, using a sensor system con-
sisting of 8 groups of cameras, 4 groups of Fisheye cam-
eras, and 4 groups of LiDARs, as shown in Fig. 2b. Of the
8 cameras, 4 are oriented toward the intersection and 4 are
oriented toward the entrance lanes. Additionally, 4 groups
of LiDARs are oriented towards the intersection, while the 4
Fisheye cameras are oriented towards the ground, covering
the area between the entrance lane and the intersection. The
cameras and Fisheye cameras use an RGB color space, with
a 25Hz sampling frequency, 1920 × 1080 resolution, and a
JPEG compression coding scheme. The LiDARs are 300-
line LiDAR with a 10Hz sampling frequency, 100◦ horizon-
tal FOV, and -30◦ to 10◦ vertical FOV, with a visual range of
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Table 1. Comparison between our INT2 dataset and several related trajectory prediction datasets.
# unique tracks Avg track length Time horizon # segments Segment duration Total time # object types Boxes Offline perception Interactions Traffic signal states

Lyft [18] 53.4M 1.8 s 5 s 170k 25 s 1118 h 3 2D - - ✓
NuSc [3] 4.3k - 6 s 1k 20 s 5.5 h 1 3D - - -
Argo [4] 11.7M 2.48 s 3 s 324k 5 s 320 h 1 - - - -
Inter [20] 40k 19.8 s 3 s - - 16.5 h 1 2D ✓ ✓ -

Waymo [29] 7.64M 7.04 s 8 s 104k 20 s 574 h 3 3D ✓ ✓ ✓
Argo2 [41] 13.9M 5.16 s 6 s 250k - 763 h 5 3D ✓ ✓ -

INT2 106.8M 25.58 s 8 s 612k 60 s 10200 h 3 3D ✓ ✓ ✓

Table 2. Agent-agent and agent-boundary collision rate at 16 intersections.
Scenario ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean

Agent-agent 0.0071 0.0114 0.0120 0.0091 0.0508 0.0180 0.0106 0.0069 0.0127 0.0253 0.0151 0.0088 0.0134 0.0128 0.0088 0.0063 0.0142

Agent-boundary 0.2395 0.1960 0.1896 0.1203 0.1612 0.1578 0.2666 0.1983 0.3025 0.1568 0.2185 0.1779 0.1907 0.2868 0.2741 0.1819 0.2074

280 m and an accuracy of ±3cm. Since there are multiple
sensors and our dataset spans almost one year, transforma-
tion matrices between sensors may change due to various
mechanical factors. For this, we calibrate the sensor sys-
tem using human-annotated correspondence routinely dur-
ing the whole time span of INT2, guaranteeing the quality
of post-fusion of detection results from several sources.

The data collected by sensors is processed into structured
data and sent to the roadside communication computing
unit (RSCU) for computational processing. The perception
pipeline takes input from different sensors and undergoes
2D object detection, 2D-to-3D back-projecting, and 3D fu-
sion tracking to generate the fused 3D perception results.
Specifically, we use a two-stage 3D monocular detection
backbone for camera data, and PointPillars [21] for LiDAR
data to generate 3D perception results, as shown in Fig. 2a.
The 3D fusion tracking module fuses 3D perception results
(including obstacle position, size, orientation, covariance,
et. al.) from different sensors using a data association al-
gorithm based on the Kalman filter and probability distribu-
tion. The fused results are generated in the world coordinate
system. The overall pipeline is depicted in Fig. 2c.

We note that all our ground truth generation algorithms
(deep learning based or not) are run in an offline mode with-
out the concern of runtime latency. So we choose an en-
semble of detectors with large backbones and long iteration
steps for linking algorithms. The quality of our temporal
track data is recognized by a hybrid team of industrial and
academic experts. Meanwhile, our dataset consists of vec-
torized maps as shown in Fig. 3. Note that this kind of map
information is an important input for modern (interactive)
trajectory prediction methods as it can serve as a prior that
enforce the predicted trajectories to be constrained on lanes.
Blue rectangles can be zoomed into a full resolution in the
electronic version. These maps are generated by smashing
existing HD maps for these areas to the ground plane. Our
dataset provides lane boundaries that are critical to modern
vectorized map protocols. To clarify, due to data security
reasons, we are unable to release the whole map shown in
Fig. 3 but will release local vectorized maps at intersections,

which can be used for training and evaluation of state-of-
the-art trajectory prediction algorithms.

3.2. Comparisons with related datasets

In Tab. 1, we compare INT2 with several published
large-scale trajectory prediction datasets, highlighting sev-
eral advantages over counterparts. INT2 contains a total of
106.8 million unique tracks, which is over 10 times larger
than the de facto standard interactive trajectory forecasting
dataset Waymo Open Motion. This large scale is also re-
flected in the total time and segment number metrics. And
we note that all of these data are of the same quality as they
are generated by the same offline perception system.

Another unique feature is that every segment in INT2
lasts for 60 seconds, which is longer than its counterparts by
2 or 3 times. This seems to be marginal but we would like
to highlight that reaching 60 seconds means many segments
see a whole traffic light cycle in our dataset, which is criti-
cal to the future study of interactions at intersections. This
is also reflected by the average agent track length, which
reaches 25.58 seconds and is much longer than Waymo
Open Motion. Finally, for the trajectory forecasting hori-
zon, we follow the practice of Waymo Open Motion and
use 9.1 seconds as the default setting.

Our INT2 dataset involves three kinds of agents: vehi-
cles, pedestrians, and cyclists. We also provide traffic light
signals and state signals over time. And an advantage of
INT2 over Waymo Open Motion is that we also provide the
control relationship between traffic lights and lanes. We ar-
gue that the traffic light has seen limited usage in existing
works mainly because of the lack of this relationship. We
believe this additional information can bring research in-
terests from the community. Finally, we define interactive
scenarios as described in the Sec.4.

3.3. Dataset statistics

The duration of each scene in our dataset is approxi-
mately 1 minute, captured using 10 Hz sampling. Simi-
lar to the Waymo Open Motion Dataset, each state includes
object bounding boxes (3D center point, heading, size, and
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Figure 4. Our dataset contains many agents including pedestri-
ans, cyclists, and various interaction types. a. 78% of the seg-
ments have more than 100 agents, and 33% segments have more
than 300 agents. b. All segments have both vehicles and pedestri-
ans, and 95% of the scenes have both vehicles and cyclists. c.The
main types of interactions are included in the INT2.

velocity components in the x- and y-axis). Our dataset also
provides precise map information, such as lane boundaries,
lane center lines, crosswalks, junctions, and stop lines. Ad-
ditionally, we offer intersection-specific traffic lights with
real-time status information and corresponding controlled
roads. We create 9.1 second scenes for validation of the lat-
est research methods and the original more than 9.1 second
segments are also provided for research requiring longer
time frames.

Our dataset includes diverse interaction types in heavy
traffic scenarios. Fig. 4a illustrates the distribution of seg-
ments with varying numbers of agents. The majority of seg-
ments contain more than 100 agents and approximately one-
third of the scenes have more than 300 agents. In Fig. 4b,
we present the proportion of different agent categories for
different agent counts in all scenes. We can observe that the
number of cyclists is generally distributed between 1 and
50, while the scenes with different numbers of vehicles and
pedestrians have similar ratios.

Additionally, Fig. 4c displays the main interaction types
and their respective proportions in our dataset. No-
tably, most of the intersections are left-turn protection in-
tersections, so a large number of interactions occur be-
tween the front and rear vehicles. We filtered out nu-
merous neighboring-fellowing and long-distance follow-
ing the same path interactions while retaining a consid-
erable amount of left-turn-through interactions. Overall,
our dataset contained approximately 40% following interac-
tions data (most of which were nearing following and long-
distance following), around 20% left turn-straight interac-
tions, and about 40% other interactions (such as u-turns,
merge and overtaking, etc.).

To give readers a better understanding of our dataset, We
report collision rates so that they can function as baselines
for potential trajectory generation (instead of trajectory
forecasting) applications. Generated trajectories should be
as collision-free as possible. We show the collision rate of
our dataset on agent-agent and agent-boundary, where the
agents include vehicles, cyclists and pedestrians, as shown
in Tab. 2

4. Definition of interaction
In this section, we outline our methodology for defin-

ing interactions. We propose an algorithm designed to ef-
ficiently extract interactions of research value from an ex-
tensive dataset. The algorithm, shown in Fig. 5, consists of
three steps: Sec.4.1 filtering out non-interacting pairs based
on a spatiotemporal distance threshold, Sec.4.2 normaliz-
ing and calculating direction, and Sec.4.3 removing non-
compliant pairs and human inspection. Finally, we visualize
the main types of interactions in the data at Sec.4.4.

4.1. Filter out non-interacting pairs based on spa-
tiotemporal distance threshold.

To simplify the interactive relations of the complex
scenes in our dataset, following [19, 39], we focus on pair-
wise interaction and define three relation types: pass, yield,
and none. A pair of agents are considered interactive when
their nearest distance is close enough, otherwise, it will be
removed and the relation will be assigned as none. The first
agent that arrives at the closest position is taken as influ-
encer (pass) and the other one is reactor (yield).

Formally, for two agent trajectories y1 and y2, the closest
distance dI during T step is:

dI = min
1≤τ1≤T

min
1≤τ2≤T

∥yτ11 − yτ22 ∥2 (1)

Considering the dimension of the agents, we define the
spatiotemporal distance threshold ϵd to be:

ϵd =

√
(l21 + w2

1)

2
+

√
(l22 + w2

2)

2
+ kd, (2)
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Figure 5. The illustration of interaction definement pipeline. Initially, the pairs of trajectories that exhibit spatiotemporal distances
above a predefined threshold are discarded, alongside the exclusion of static objects. The remaining trajectory pairs are subjected to
normalization and direction calculation, and pairs that do not comply with the pre-established criteria are eliminated according to specific
rules. Ultimately, the acquisition of the final data is conducted through a meticulous process of manual review.

where l1, l2, w1, w2 are the lengths and widths of the agents,
kd > 0 is the predefined maximum distance of interaction.
Then the time steps when the agents arrive at the closest
position can be calculated as:

t1 = arg min
1≤τ1≤T

min
1≤τ2≤T

∥yτ11 − yτ22 ∥2

t2 = arg min
1≤τ2≤T

min
1≤τ1≤T

∥yτ11 − yτ22 ∥2
(3)

When t1 < t2, agent 1 is taken as influencer, agent 2 is
defined as reactor, and vice versa.

Our method effectively filters out irrelevant object pairs
from a vast amount of data by selecting pairs that have in-
teracted within a time segment over 1 minute and meet-
ing a spatiotemporal distance threshold of more than ϵd.
We eliminate interaction pairs with lengths shorter than 91
frames to exclude pairs that may not exhibit meaningful
interactions. Then, we identify an influencer and reactor
among the remaining pairs by assuming that they engage
in interactions. This crucial recognition process eliminates
more than 80% non-interaction pairs.

4.2. Normalization and calculation of direction

In the previous step, we filtered out pairs that is far in dis-
tance. However, in reality, some agent pairs may be close
in distance but not interact, such as the so-called interaction
between a long bus and cars in its neighboring lane. To ad-
dress this issue, we established rules to filter non-interacting
pairs more strictly in three steps:

First, we remove static agents that may remain station-
ary for long periods due to traffic lights. We consider in-
teractions such as overtaking and lane changing caused by
these objects to have no actual interaction significance, as
they are equivalent to obstacles or buildings on the road.

Therefore, we remove all pairs of vehicles with a displace-
ment less than the threshold λx within 91 frames.

Secondly, to better capture the properties and character-
istics of trajectories, we judge the spatiotemporal relative
positions of the trajectories of the influencer and reactor.
We obtain the coordinates x′ and y′ of the influencer and
the reactor by applying the transformation matrix A.

x′

y′

1

 = A

xy
1

 ,where (4)

A =

cosθ0 −sinθ0 −x0cosθ0 + y0sinθ0
sinθ0 cosθ0 −x0sinθ0 − y0cosθ0
0 0 1

 , (5)

where x0, y0, and θ0 respectively represent the initial coor-
dinates and yaw of the influencer’s frame, x and y represent
the coordinates of the interaction pair at all time points in
the time series. At this time, the trajectory of the influencer
starts from the origin with an initial direction towards the
positive x-axis, and the relative position between the trajec-
tory of the reactor and the influencer remains unchanged.
Therefore, the relative positional relationship between the
influencer and the reactor can be easily obtained.

Finally, the trajectory characteristics, such as left-turn,
right-turn, straight, straight and turn, u-turn, etc., are de-
rived by computing the curvature of the path, displace-
ments, and changes in trajectory speed and orientation. To
filter out the behaviors that lack interaction significance, we
rely on prescribed rules obtained from multiple experiments
and interactive studies.
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Figure 6. Diverse interaction samples. We present some of the main interactions that exist at intersections, including those between
vehicles, cyclists, and pedestrians. In each panel, the red and yellow trajectories depict the future behavior of two agents (Vehicle, Cyclist,
and Pedestrian). Panels (1) and (4) show the yellow car following the red car either in the same or a different lane while making an
unprotected left-turn. In panel (2), the red car makes an unprotected left-turn while the yellow car makes a perpendicular left-turn. In panel
(3), both the red car and the yellow car make left-turns in opposite directions. In panel (5), the red car merges into the lane where the
yellow car goes straight. In panel (6), the red car makes a u-turn while the yellow car waits and then makes a left-turn. In panel (7), the red
car makes a right-turn while the yellow motorcyclist waits and then goes straight. In panel (8), the yellow car overtakes the red car. Panel
(9) shows the red motorcyclist going straight while the yellow car changes lanes and turns left. In panel (10), the red motorcyclist with a
yellow cyclist and the red bus with a yellow car is driving toward each other. In panel (11), the red car turns left and the yellow pedestrian
goes straight. In panel (12), the yellow car is forced to stop by the red car, and this interaction may be caused by the traffic light, so it is
removed from our dataset. In panel (13), the red car goes straight while the yellow car makes a left turn in the opposite direction. In panel
(14), the yellow car follows the red car on the same road straight.

4.3. Remove non-compliant pairs and Human in-
spection

Following the two filtering steps described above, we
observe that almost all of the selected pairs showed sub-
jective interactions. To mitigate potential inaccuracies re-
sulting from non-compliance with the prescribed rules, we
manually exclude less significant interactions. We also ob-
serve that a majority of the interactions involved the reac-
tor following influencer on the same lane or neighbor lane.
Therefore, we include only a subset of these interactions in
our final dataset.

4.4. Interactions visualization

The presented samples in Fig.6 showcase various inter-
section scenarios. These samples display a range of inter-
action types involving influencers (red agents) and reactors
(yellow agents) at intersections. Crosswalks (blue poly-
gons) and pedestrians (white squares) are also shown, along
with cyclists or motorcyclists (blue bike icons) as seen in
the enlarged part of Fig.6(1).

5. Benchmarking

5.1. Dataset split

Domain mismatch. Our dataset presents the challenge of
domain mismatch. We calculate the number of interactions
between vehicles, cyclists, and pedestrians in each scene

based on the interaction rules. Then, we designate the top
40% of the interaction counts in each segment as rush-hour
data, which predominantly occurs from 7 to 9 am in the
morning and 5 to 8 pm in the evening. The remaining data
represents non-rush-hour instances.
Training and Validation set. We randomly select 28,000
segments, comprising 360,000 Vehicle-Vehicle, 100,000
Vehicle-Cyclist, and 100,000 Vehicle-Pedestrian interaction
scenarios. We allocate 70% of these segments as the train-
ing set and 30% as the Validation set.

5.2. Metrics

Following [7], we evaluate and compare performances
using minimum Average Displacement Error (minADE),
minimum Final Displacement Error (minFDE), Miss Rate
(MR), and mean Average Precision (mAP).

For N road agents, our model predicts T future way-
points yn,t whose groundtruth is ȳn,t where n ∈ {1, ..., N}
and t ∈ {1, ..., T}.
minADE. Calculate L2 norm between ȳn,t and yn,t:

minADE =
1

T ×N
min

N∑
n=1

T∑
t=1

||ȳn,t − yn,t||2 (6)

minFDE. Evaluating the minADE at the final time step T .
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Table 3. Trajectory prediction results on the INT2/Waymo Dataset. The in-domain and cross-domain validation results are shown.

Interaction Type Train Set Valid Set Marginal Conditional
minADE ↓ mFDE ↓ MR ↓ mAP ↑ minADE ↓ mFDE ↓ MR ↓ mAP ↑

Waymo Waymo 1.70 3.45 0.23 0.3 N/A 5.49 0.55 0.18

Vehicle-Vehicle (V)

Rush-hour Rush-hour 2.21 4.70 0.33 0.21 1.72 3.36 0.27 0.18
Non-rush-hour Rush-hour 2.34 4.84 0.34 0.19 1.80 3.53 0.28 0.18
Non-rush-hour Non-rush-hour 2.54 5.38 0.37 0.20 1.87 3.71 0.29 0.18

Rush-hour Non-rush-hour 2.49 5.44 0.37 0.19 1.87 3.77 0.30 0.18

Vehicle-Cyclist (V / C)

Rush-hour Rush-hour 2.94 / 3.34 6.22 / 6.94 0.48 / 0.60 0.10 / 0.08 2.85 / 2.95 5.92 / 5.88 0.51 / 0.56 0.05 / 0.06
Non-rush-hour Rush-hour 2.92 / 3.30 6.19 / 6.83 0.48 / 0.59 0.11 / 0.07 2.88 / 3.19 6.04 / 6.52 0.52 / 0.60 0.06 / 0.05
Non-rush-hour Non-rush-hour 3.09 / 3.51 6.65 / 7.47 0.47 / 0.58 0.13 / 0.07 3.02 / 3.28 6.20 / 6.82 0.49 / 0.59 0.05 / 0.04

Rush-hour Non-rush-hour 3.22 / 3.75 6.94 / 8.01 0.50 / 0.62 0.10 / 0.06 3.10 / 3.18 6.35 / 6.50 0.50 / 0.56 0.06 / 0.04

Vehicle-Pedestrian (V / P)

Rush-hour Rush-hour 4.30 / 1.22 10.12 / 2.05 0.68 / 0.22 0.10 / 0.35 2.64 / 1.53 5.27 / 2.87 0.47 / 0.34 0.11 / 0.13
Non-rush-hour Rush-hour 4.07 / 1.30 9.60 / 2.30 0.68 / 0.27 0.05 / 0.24 2.90 / 1.63 5.85 / 3.15 0.51 / 0.37 0.10 / 0.11
Non-rush-hour Non-rush-hour 4.30 / 1.28 10.09 / 2.23 0.69 / 0.26 0.08 / 0.27 2.77 / 1.70 5.41 / 3.34 0.47 / 0.37 0.09 / 0.12

Rush-hour Non-rush-hour 5.22 / 1.44 12.33 / 2.56 0.78 / 0.32 0.05 / 0.17 2.77 / 1.58 5.50 / 3.04 0.47 / 0.35 0.09 / 0.12

minFDE =
1

N
min

N∑
n=1

||ȳn,T − yn,T ||2 (7)

Miss Rate (MR). A predicted waypoint is a miss or match
to a target waypoint. It is a match if the differences in x and
y coordinates between prediction and target waypoints are
both smaller than the thresholds λx and λy .

ȳn,t − yn,t = (∆xn,t,∆yn,t) (8)
M(ȳn,t, yn,t) = (|∆xn,t| < λx) ∧ (|∆yn,t| < λy) (9)

where λx and λy are dynamic thresholds that depend on the
velocities and time:

(λx, λy) = (λx
t ϕ(vx), λ

y
tϕ(vy)) (10)

where vx and vy are the velocity in x and y directions re-
spectively; and

ϕ(v) =
1 + max(0,min(1, v−l

L−l ))

2
(11)

where L and l are equals 11 m/s and 1.4 m/s, respectively.
For all of the K pairs of predicted and groundtruth way-

points:

MR = 1−
∑K

k=1 1[M(ȳk, yk)]

K
(12)

Mean average precision (mAP). Mean Average Precision
(mAP) is the mean value of Average Precisions (APs):

mAP = AP i (13)

where i ∈ {forward, left, right, turn left, turn right, left u-
turn, right u-turn, no movement}. The AP calculates the
area beneath the precision-recall curve by employing con-
fidence score thresholds ek and utilizes MR to distinguish
between true positives and false positives. At most one true
positive can be assigned to each groundtruth. After assign-
ing the prediction with the highest confidence to one ground
truth, other predictions for that groundtruth are all consid-
ered false positives.

5.3. Baseline method

We use the state-of-the-art method M2I [39] as the base-
line method. M2I consists of three modules: a relation pre-
diction module that predicts whether an agent is an influ-
encer of a reactor (who yields to influencer), a marginal
trajectory predictor that predicts the future trajectories in-
dependently without considering the potential interactions
among agents, and a conditional trajectory predictor that
takes both relation and marginal trajectory into considera-
tion and predicts the trajectory for reactors.

We train the M2I models under 6 different settings:
vehicle-vehicle rush-hour, vehicle-vehicle non-rush-hour,
vehicle-cyclist rush-hour, vehicle-cyclist non-rush-hour,
vehicle-pedestrian rush-hour and vehicle-pedestrian non-
rush-hour. In each setting, we need to train three compo-
nents proposed in [39]: relation predictor, marginal trajec-
tory predictor, and conditional trajectory predictor.

For each of the components, we train 30 epochs with
an initial learning rate equaling 0.001. We use the Adam
optimizer with a weight decay of 0.3. The learning rate is
dropped every 5 epochs. Our models are trained to predict
future 80 frames (8 s) using 11 past frames (1.1 s).

During inference, we first use the relation predictor to
predict the relations between agent pairs. Then, we pro-
duce the predicted marginal trajectories by marginal pre-
dictor. Finally, we predict the conditional trajectories using
relations and marginal trajectories.

5.4. Experiments

Quantitative Results. Trajectory prediction results are
shown in Tab. 3. For different interaction types, we show
the validation results for each kind of agents separately. The
in-domain and cross-domain validation results on Waymo
Open Motion and our split dataset are compared.

Firstly, the M2I model performs worse on our dataset
than on Waymo Open Motion, which demonstrates the chal-
lenges brought by the large scale and diverse interaction of
INT2. Secondly, cross-domain validation on INT2 leads to
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Figure 7. Qualitative results of M2I on our INT2 dataset.

significantly different results. For ease of comparison, the
cross-domain validation results are bolded. In the third and
fourth rows of Vehicle-Pedestrian, it can be observed that
the cross-domain validation results are significantly lower
than the in-domain validation results in marginal prediction,
though the scenes are the same. But in conditional predic-
tion, the validation results of cross-domain pedestrians are
obviously better than the in-domain results. We believe that
humans respond differently (more conservatively or aggres-
sively) to interactions during rush-hour periods and non-
rush-hour periods when they act in different roles (Vehicle,
Cyclist, or Pedestrian) at intersections. How to effectively
leverage the different domain features to alleviate the do-
main mismatch problem while obtaining accurate trajectory
prediction results will be an interesting line of research.

Qualitative Results. In Fig. 7, we visualize the predic-
tion results of M2I on the Vehicle-Vehicle interactions of
our dataset. From left to right, we show the results of the
model training and evaluate on in-domain or cross-domain
scenarios (“Non-rush-hour Rush-hour”means the model is
trained on non-rush-hour scenarios and validated on rush-
hour scenarios). The results are consistent with our quanti-
tative results.

Based on Fig. 7a, e, c, and g, when the training and val-
idation data belong to the same domain, the predicted tra-
jectories align with the ground truth in terms of direction.
However, the predicted trajectories of the model trained on
non-rush-hour scenarios tend to be longer and more diver-
gent compared to those of the model trained on rush-hour
scenarios. We attribute this to the more aggressive driving
behavior of humans on non-rush-hour scenes.

From Fig. 7b, f, d, and h, it can be observed that when
the training and validation data come from cross-domain,
there is a notable deviation between the predicted results
and the ground truth. Overall, a consistent pattern emerges:
models trained on non-rush-hour scenarios tend to exhibit
more aggressive behavior, as demonstrated by Fig. 7b with
a greater number of paths and Fig. 7f with higher speeds
and more direction choices. Conversely, models trained on
rush-hour datasets tend to adopt a more cautious approach,
as illustrated by Fig. 7d with slower predicted speeds, and in
Fig. 7h, there are partial instances of conservative straight-
line trajectories.

6. Conclusion
This paper presents a new interactive trajectory predic-

tion dataset named INT2, which is short for INTeractive
trajectory prediction at INTersections. INT2 has three no-
table features: high quality, large scale and rich information.
The high-quality 3D agent box trajectories are credited to a
multi-sensor setup and an offline detection and fusion al-
gorithm stack. The scale of INT2 is not only much larger
than Waymo Open Motion but also longer in each seg-
ment. INT2 also contains rich information including var-
ious agents, vectorized maps and traffic light signals. Cap-
turing data at intersections allows us to bypass the impact of
the map and clearly define two domains: rush-hour and non-
rush-hour. We systematically evaluate several cross-domain
settings using the state-of-the-art interactive trajectory pre-
diction method, pointing to interesting observations.
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