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Abstract

Skeleton sequence representation learning has shown
great advantages for action recognition due to its promis-
ing ability to model human joints and topology. However,
the current methods usually require sufficient labeled data
for training computationally expensive models. Moreover,
these methods ignore how to utilize the fine-grained de-
pendencies among different skeleton joints to pre-train an
efficient skeleton sequence learning model that can gen-
eralize well across different datasets. In this paper, we
propose an efficient skeleton sequence learning framework,
named Skeleton Sequence Learning (SSL). To comprehen-
sively capture the human pose and obtain discriminative
skeleton sequence representation, we build an asymmet-
ric graph-based encoder-decoder pre-training architecture
named SkeletonMAE, which embeds skeleton joint sequence
into graph convolutional network and reconstructs the
masked skeleton joints and edges based on the prior human
topology knowledge. Then, the pre-trained SkeletonMAE
encoder is integrated with the Spatial-Temporal Represen-
tation Learning (STRL) module to build the SSL frame-
work. Extensive experimental results show that our SSL
generalizes well across different datasets and outperforms
the state-of-the-art self-supervised skeleton-based methods
on FineGym, Diving48, NTU 60 and NTU 120 datasets.
Moreover, we obtain comparable performance to some fully
supervised methods. The code is avaliable at https:
//github.com/HongYan1123/SkeletonMAE.

1. Introduction
Human action recognition has attracted increasing atten-

tion in video understanding [83, 7, 45, 60, 39], due to its

wide applications [2, 14, 61, 51, 52, 86, 44] in human-
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Figure 1: Traditional MAE usually uses random mask-

ing strategy to reconstruct skeleton, which tends to ignore

action-sensitive skeleton regions. Differently, our proposed

SkeletonMAE reconstructs the masked skeleton joints and

edges based on the prior human topology knowledge, to ob-

tain a comprehensive perception of the action.

computer interaction, intelligent surveillance security, vir-

tual reality, etc. In terms of visual perception [24], even

without appearance information, humans can identify ac-

tion categories by only observing the motion of joints. Un-

like RGB videos [3, 14, 13], the skeleton sequences only

contain the coordinate information of the key joints of the

human body [84], which is high-level, light-weighted, and

robust against complex backgrounds and various conditions

including viewpoint, scale, and movement speed [11, 69].

Additionally, with the development of human pose estima-

tion algorithms [8, 1, 85], the localization method of human

joints (i.e., key points) has made great progress and it is

feasible to obtain accurate skeleton sequences. At present,

the existing 2D pose estimation method is more accurate

and more robust than the 3D pose estimation methods [11].

In Figure 1 (a), we visualize 2D poses estimated with HR-

Net [67] for two action classes on FineGym dataset [59]. It

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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can be seen that the 2D poses can accurately capture human

skeletons and motion details.

Due to the promising ability to model multiple granu-

larities and large variations in human motion, the skeleton

sequence is more suitable to distinguish similar actions with

subtle differences than the RGB data. To capture discrim-

inative spatial-temporal motion patterns, most of the exist-

ing skeleton-based action recognition methods [11, 83, 5]

are fully supervised and usually require large amounts of

labeled data for training elaborate models, which is time-

consuming and labor-intensive. To mitigate the problem

of limited labeled training data, self-supervised skeleton-

based action recognition methods [31, 18, 65] have attracted

increasing attention recently. Some contrastive learning

methods [31, 18] adopted data augmentation to generate

pairs of positive and negative samples, but they rely heavily

on the number of contrastive pairs. With the popularity of

the encoder-decoder [64, 48], some methods [91, 65] recon-

structed the masked skeleton sequence by link reconstruc-

tion to encourage the topological closeness following the

paradigm of graph encoder-decoder. However, these meth-

ods are usually good at link prediction and node clustering

but are unsatisfactory in node and graph classifications. For

accurate action recognition, the fine-grained dependencies

among different skeleton joints (i.e., graph classifications)

are essential. Therefore, previous self-supervised learning-

based methods tend to ignore the fine-grained dependen-

cies among different skeleton joints, which restricts the gen-

eralization of self-supervised skeleton representation. As

shown in Figure 1 (b)-(c), the arm joints and edges are es-

sential to discriminate between these two similar actions.

Different from the randomly masking strategy of MAE [20],

our masking strategy is action-sensitive and reconstructs

specific limbs or body parts that dominate the given ac-

tion class. Our SkeletonMAE utilizes prior human topology

knowledge to guide the reconstruction of the masked skele-

ton joints and edges to achieve a comprehensive perception

of the joints, topology, and action.

To address the aforementioned challenges, we pro-

pose an efficient skeleton sequence representation learn-

ing framework, named Skeleton Sequence Learning (SSL).

To fully discover the fine-grained dependencies among

different skeleton joints, we build a novel asymmet-

ric graph-based encoder-decoder pre-training architecture

named SkeletonMAE that embeds skeleton joint sequences

in Graph Convolutional Network (GCN). The Skeleton-

MAE aims to reconstruct the masked human skeleton joints

and edges based on prior human topology knowledge so

that it can infer the underlying topology of the joints and

obtain a comprehensive perception of human action. To

learn discriminative spatial-temporal skeleton representa-

tion, the pre-trained SkeletonMAE encoder is integrated

with the Spatial-Temporal Representation Learning (STRL)

module to learn spatial-temporal dependencies. Finally, the

SSL is fine-tuned on action recognition datasets. Extensive

experimental results on FineGym, Diving48, NTU 60 and

NTU 120 show that our SSL generalizes well across dif-

ferent datasets and outperforms the state-of-the-art methods

significantly. Our contributions are summarized as follows:

• To comprehensively capture human pose and obtain

discriminative skeleton sequence representation, we

propose a graph-based encoder-decoder pre-training

architecture named SkeletonMAE, that embeds skele-

ton joint sequence into GCN and utilize the prior hu-

man topology knowledge to guide the reconstruction

of the underlying masked joints and topology.

• To learn comprehensive spatial-temporal dependen-

cies for skeleton sequence, we propose an efficient

skeleton sequence learning framework, named Skele-

ton Sequence Learning (SSL), which integrates the

pre-trained SkeletonMAE encoder with the Spatial-

Temporal Representation Learning (STRL) module.

• Extensive experimental results on FineGym, Div-

ing48, NTU 60 and NTU 120 datasets show

that our SSL outperforms the state-of-the-art self-

supervised skeleton-based action recognition methods

and achieves comparable performance compared with

the state-of-the-art fully supervised methods.

2. Related Work

Action Recognition. One of the most challenging tasks

for action recognition is to distinguish similar actions from

subtle differences [40, 41, 42]. Recently, some challeng-

ing action recognition datasets like FineGym [59], Div-

ing48 [34], NTU RGB+D 60 [58] and NTU RGB+D 120

[37] are proposed. These datasets contain a large num-

ber of challenging actions that require discriminative and

fine-grained action representation learning. For example, in

FineGym [59], an action is divided into action units, sub-

actions, or phases, and the model is required to distinguish

between “split leap with 1 turn” and “switch leap with 1

turn”. The higher inter-class similarity and a new level

of granularity in the fine-grained setting make it a chal-

lenging task, which makes coarse-grained backbones and

methods [14, 2, 71, 79] struggle to overcome. To tackle

the more challenging fine-grained action recognition task,

most of the existing works [50, 33] are fully supervised

and consider fine-grained actions as distinct categories and

supervise the model to learn action semantics. However,

collecting and labeling these fine-grained actions is time-

consuming and labor-intensive, which limits the generaliza-

tion of a well-trained model to different datasets. To utilize

unlabeled data, we propose a graph-based encoder-decoder

pre-training architecture named SkeletonMAE.
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Skeleton-based Action Recognition. Due to the promis-

ing ability to model multiple granularities and large varia-

tions in human motion, the skeleton data is more suitable for

the aforementioned action recognition task than the RGB

data [4]. Early skeleton-based action recognition methods

are usually handcrafted, exploiting the geometric relation-

ship of skeleton joints [47, 73, 76, 74], which greatly limits

the feature representation of skeletons. Benefiting from the

advantages of deep learning, some methods [95, 62, 63] uti-

lized RNNs as the basic model, Du et al. [10] presented a

pioneering work based on hierarchical RNNs. But RNNs

easily suffer from vanishing gradients [21]. Inspired by

the booming Graph Convolutional Networks (GCN) [28],

Yan et al. [83] proposed a spatial-temporal graph convolu-

tional network to learn the spatial and temporal pattern from

skeleton data. However, their manually defined topology is

arduous to model the relations among joints in underlying

topology. Chen et al. [5] proposed a channel-wise topol-

ogy graph convolution, which models channel-wise topol-

ogy with a refinement method. Duan et al. [11] proposed

a PoseConv3D model that relies on a 3D heatmap volume

instead of a graph sequence as the base representation of

human skeletons. Different from previous methods that

required large amounts of labeled data for training elabo-

rate models, we utilize unlabeled skeleton sequences to pre-

train a graph-based encoder-decoder named SkeletonMAE

to comprehensively capture human pose and obtain discrim-

inative skeleton sequence representation.

Self-supervised Learning for Skeleton Sequence. To

learn more effective representation for unlabeled skeleton

data, self-supervised learning [43] has achieved inspiring

progress recently. For contrastive learning approaches, AS-

CAL [55] and SkeletonCLR [31] applied momentum en-

coders for contrastive learning with single-stream skeleton

sequences. AimCLR [18] used an extreme data augmenta-

tion strategy to add additional hard contrastive pairs. Most

contrastive learning methods adopt data augmentation to

generate positive and negative pairs, but they rely heavily

on the number of contrastive pairs. For generative learn-

ing approaches, LongT GAN [91] proposed the encoder-

decoder to reconstruct masked input sequence skeletons.

Based on the LongT GAN, P&C [65] strengthened the en-

coder and weakened the decoder for feature representation.

Wu et al. [80] proposed a spatial-temporal masked auto-

encoder framework for self-supervised 3D skeleton-based

action recognition. Colorization [87] used three pairs of

encoder-decoder frameworks to learn spatial-temporal fea-

tures from skeleton point clouds. Due to the limitation

of the reconstruction criterion, previous generative meth-

ods usually fail to fully discover the fine-grained spatial-

temporal dependencies among different skeleton joints. In

our SkeletonMAE, we utilize the prior human topology

knowledge to infer the skeleton sequence and obtain a com-

prehensive perception of the action.

3. Methodology
In this section, we introduce the details of Skeleton Se-

quence Learning (SSL), which contains two parts: 1) pre-

training SkeletonMAE and 2) fine-tuning on downstream

datasets based on the pre-trained SkeletonMAE.

3.1. Pre-training SkeletonMAE

In this section, we introduce graph-based asymmetric

encoder-decoder pre-training architecture SkeletonMAE, to

learn human skeleton sequence representations without su-

pervision. Since Graph Isomorphism Network (GIN) [82]

provides a better inductive bias, it is more suitable for learn-

ing more generalized self-supervised representation [22].

Therefore, we adopt GIN as the backbone of SkeletonMAE.

Besides, we evaluate different backbones of SkeletonMAE

in Table 4, including GIN [82], GCN [28], and GAT [72].

3.1.1 SkeletonMAE Structure

Inspired by the effective representation learning by masked

autoencoder (MAE) in NLP [9], image recognition [20],

and video recognition [70], we focus on the human skeleton

sequence and build an asymmetric graph-based encoder-

decoder pre-training architecture named SkeletonMAE that

embeds skeleton sequence and its prior topology knowledge

in GIN. The SkeletonMAE is implemented following the

paradigm of graph generative self-supervised learning.

We follow the joint label of the Kinetics Skeleton dataset

[60]. Specifically, as Figure 2(d) shown, we divide all

N = 17 joints into R = 6 local regions according to the

natural parts of the body: V0, ...,V5. Notably, compared

to the randomly masking strategy from MAE [20] to se-

lect skeleton joints, our masking strategy is action-sensitive

and reconstructs specific limbs or body parts that dominate

the given action class. Then, we mask these skeleton re-

gions and make the SkeletonMAE reconstruct the masked

joint features and their edges based on the adjacent joints.

By reconstructing the masked skeleton joints and edges, the

SkeletonMAE can infer the underlying topology of joints

and obtain a comprehensive perception of the action.

As shown in Figure 2, the SkeletonMAE is an asym-

metric encoder-decoder architecture, which includes an en-

coder and a decoder. The encoder consists of LD GIN lay-

ers that map the input 2D skeleton data to hidden features.

The decoder, which consists of only one GIN layer, recon-

structs the hidden features under the supervision of the re-

construction criterion. According to the prior human skele-

ton knowledge that the human skeleton can be represented

as a graph with joints as vertices and limbs as edges, we for-

mulate the human skeleton as the following graph structure.
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Figure 2: The details of our skeleton sequence pre-training architecture SkeletonMAE. (a) We build a GIN-based asymmetric

encoder-decoder structure, to reconstruct joint features to enhance action representation ability. (b) The GIN-based encoder

structure contains LD GIN neural network layers, to learn the joint representation spatially. (c) The decoder consists of one

GIN layer, which uses the hidden features from the encoder as the input and reconstructs the original input joint features. (d)

Partition the joints in the skeleton sequence according to the natural structure of the human body. 5 joints {V0 : Head}, 4

joints {V1 : Torso}, 2 joints {V2 : Left arm,V3 : Right arm,V4 : Left leg,V5 : Right leg} .

The skeleton sequence of two-dimensional coordinates

of N human skeleton joints and T frames is pre-processed

in the following way. Specifically, we embed all skeleton

joints and their topology into a structure G, the skeleton

structure and the joint feature are fused to obtain a joint

sequence matrix S ∈ R
N×T×2. And then the S is linearly

transformed to S ∈ R
N×T×D with learnable parameters.

We empirically set T and D to 64. For each skeleton frame

X ∈ R
N×D from S, let G = (V,A,X) denote a skeleton,

where V = {v1, v2, ......, vN} is the node set that contains

all skeleton joints, N = |V| is the number of joints. The

number of joints is N = 17. A ∈ {0, 1}N×N
is an adja-

cency matrix, where Ai,j = 1 if joints i and j are physically

connected, otherwise 0. The feature of vi is represented as

xi ∈ R
1×D. And GE , GD denote the GIN encoder and the

GIN decoder, respectively.

3.1.2 Skeleton Joints Masking and Reconstruction

Since the prior human skeleton topology A is embedded

(Figure 2) and we specify the aggregation of joints in Sec-

tion 3.1.1. Inspired by the GraphMAE [22] that randomly

reconstructs the masked graph nodes, our SkeletonMAE re-

constructs the masked skeleton feature X based on the prior

skeleton topology, rather than reconstructing graph struc-

ture A [68, 17] or reconstructing both structure A and fea-

tures X [57, 53].

To mask skeleton joint features, we randomly select one

or more joint sets from V = {V0, ...,V5}, which consists

of a subset V ⊆ V for masking. For the human skeleton

sequence, each joint communicates with some of its adja-

cent joints to represent the specific action class. Therefore,

it is not feasible to mask all joint sets for all action classes.

Then, each of their features is masked with a learnable mask

token vector [MASK] = x[M] ∈ R
D. Thus, the masked

joint feature xi for vi ∈ V in the masked feature matrix X
can be defined as xi = x[M] if vi ∈ V , otherwise xi = xi.

We set X ∈ R
N×D as the input joint feature matrix of the

SkeletonMAE, and each joint feature in X can be defined as

xi =
{
x[M],xi

}
, i = 1, 2, · · · , N . Therefore, the masked

skeleton sequence can be formulated as G = (V,A,X) and

the objective of SkeletonMAE is to reconstruct the masked

skeleton features in V given the partially observed joint fea-

tures X with the input adjacency matrix A. The process of

SkeletonMAE reconstruction is formalized as:{
H = GE(A,X), H ∈ R

N×Dh

Y = GD(A,H), Y ∈ R
N×D , (1)

where H and Y denote the encoder output and the decoder

output, respectively. The objective of SkeletonMAE can be

formalized as minimizing the divergence between X and Y.

3.1.3 Reconstruction Criterion

The common reconstruction criterion for masked auto-

encoders is a mean squared error (MSE) in image and

video tasks. However, for skeleton sequence, the multi-

dimensional and continuous nature of joint features makes

MSE hard to achieve promising feature reconstruction be-

cause the MSE is sensitive to dimensionality and vector

norms of features [15]. Inspired by the observation [16]

that the l2-normalization in the cosine error maps vectors to

a unit hyper-sphere and substantially improves the training

stability, we utilize the cosine error as the reconstruction.

To make the reconstruction criterion focus on harder

ones among imbalanced easy-and-hard samples [22], we

use the Re-weighted Cosine Error (RCE) for SkeletonMAE.

The RCE is based on the intuition that we can down-weigh
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easy samples’ contribution in training by scaling the cosine

error with a power of β ≥ 1. For predictions with high

confidence, their corresponding cosine errors are usually

smaller than 1 and decay faster to zero when the scaling fac-

tor β > 1. Formally, given the original feature X ∈ R
N×D

and the reconstructed output Y ∈ R
N×D, the RCE is de-

fined as:

LRCE =
∑
vi∈V

(
1

|V| −
xT
i · zi∣∣V| × ‖xi

∥∥× ‖zi‖
)β , (2)

which represents the average of the similarity gap between

the reconstructed feature and the input feature over all

masked joints. And β is set to 2 in our work.

By training the SkeletonMAE to reconstruct the skele-

ton sequence, the pre-trained SkeletonMAE can compre-

hensively perceive the human skeleton structure and obtain

discriminative action representation. After pre-training, the

SkeletonMAE can be elegantly embedded into the Skeleton

Sequence Learning (SSL) framework for fine-tuning.

3.2. Fine-tuning for Skeleton Action Recognition

To evaluate the SkeletonMAE’s generalization ability

for skeleton action recognition, we build a complete skele-

ton action recognition model named Skeleton Sequence

Learning (SSL), based on the pre-trained SkeletonMAE.

To capture multiple-person interaction, we integrate two

pre-trained SkeletonMAE encoders to build the Spatial-

Temporal Representation Learning (STRL) module, as

shown in Figure 3(b)-(c). The entire SSL consists of an

M -layer STRL model and a classifier. The SSL model is fi-

nally fine-tuned on skeleton action recognition datasets with

cross-entropy loss to recognize actions.

3.2.1 Spatial-Temporal Representation Learning

The STRL contains two pre-trained SkeletonMAE encoders

for Spatial Modeling (SM). The input of SM is skeleton se-

quence S. The output of SM is connected with the input by

1× 1 convolution for residual connection (Figure 3 (b)).

As shown in Figure 3 (c), the input skeleton sequence

S ∈ R
N×T×D is firstly added with the learnable temporal

position embedding PE to obtain the skeleton sequence fea-

ture H
(l)
t ∈ R

P×N×D(l)

. To model multiple human skele-

ton interactions, we obtain two individual features (P = 2)

for two persons H
(l)
t,0 ∈ R

N×D(l)

and H
(l)
t,1 ∈ R

N×D(l)

from

H
(l)
t . Here, we take the joint feature of the 0-th person as

an example, the operation of the 1-th person is implemented

similarly. We send the joint representation H
(l)
t,0 and prior

knowledge of the joint Ã into the SM module,

SM(H
(l)
t,0) = Repeat(SP(GE

(
Ã,H

(l)
t,0

)
);N)⊕H

(l)
t,0,

(3)

SkeletonMAE-
Encoder

SkeletonMAE-
Decoder

Reconstructed Skeleton

(a) Pre-training SkeletonMAE (b) Spatial Modeling

Hidden feature

(a)

(c) Skeleton Sequence Learning

Joint Adjacency Edge Tuned Frozen

Input skeleton sequence S

t=0 t=Tt=14t=9 t=11t=4 t=7… … … … … …

Masked Joints

Classifier

Action Label

SSL(c)

STRL

Original Skeleton Sequence S

(b)

SumPooling

Repeat

SkeletonMAE-
Encoder

PE PE

SM SM

SM

Figure 3: The pipeline of Skeleton Sequence Learning

(SSL). (a) During pre-training, we build an encoder-decoder

module named SkeletonMAE that embeds skeleton joints

and its prior topology knowledge into GIN and recon-

structs the underlying masked joints and topology. (b) The

SM consists of the pre-trained SkeletonMAE encoder. (c)

We integrate SM structures to build the M -layer Spatial-

Temporal Representation Learning (STRL) model and then

conduct end-to-end fine-tuning.

where GE is the SkeletonMAE encoder, SP(·) denotes the

sum-pooling, Repeat(·;N) means repeating the single joint

into N joints representations after sum-pooling and then

connect it with the H
(l)
t,0 residual to get the global joint rep-

resentation SM(H
(l)
t,0). In this way, the SM module can ob-

tain global information through a single joint representa-

tion, and constrain some joint features through all joint rep-

resentations. Similarly, SM(H
(l)
t,1) is obtained in the same

way. As shown in Figure 3(c), we get the joint features

SM(H
(l)
t ) that contains the action interaction bewtween the

0-th person and the 1-th person. According to the update

rules of graph convolution [28], we can obtain H
(l+1)
t from

H
(l)
t in a multi-layer GCN. For more details, please refer

to the Supplementary in Section D. The final skeleton se-

quence representation is defined as follows:

H
(l+1)
t = σ

(
SM(H

(l)
t )W(l)

)
. (4)

where W(l) denotes the trainable weight matrix in the lth

layer, σ(·) denotes the ReLU activation function. Then, we

adopt the widely-used multi-scale temporal pooling [5, 38]

to get the final output. Finally, a classifier consisting of

MLP and softmax predicts the action class.
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4. Experiments
All experiments are conducted with a single modality

(2D pose) and evaluated on the corresponding train/test sets.

4.1. Datasets

We evaluate our SSL on four benchmark datasets Fin-

eGym [59], Diving48 [34], NTU RGB+D 60 [58] and

NTU RGB+D 120 [37] in the mainstream skeleton action

recognition task. For all datasets except FineGym, we fol-

low the pre-processing protocol provided by [11] to ob-

tain the skeleton sequence from the 2D pose estimator.

The pre-processing adopts a Top-Down approach for pose

extraction, where the detector is Faster-RCNN [56] with

ResNet50 backbone and the pose estimator is HRNet [67]

pre-trained on COCO-keypoint [36]. To make a fair com-

parison, we added pixel noise to the joint during training,

making the original joint confidence rate unreliable, thus

we do not use the originally fixed threshold.

FineGym is a large-scale fine-grained action recognition

dataset for gymnastic videos, which contains 29K videos

of 99 fine-grained gymnastics action classes, which re-

quires action recognition methods to distinguish different

sub-actions in the same video. In particular, it provides tem-

poral annotations at both action and sub-action levels with a

three-level semantic hierarchy. We follow the method [11]

to extract the skeleton data from the 2D pose estimator.

NTU RGB+D 60 and 120. NTU RGB+D is a large-scale

skeleton-based action recognition dataset, where NTU 60

contains 56,880 skeleton sequences and 60 action classes.

NTU 120 has 114,480 skeleton sequences and 120 action

categories. The action samples are captured from 155 dif-

ferent camera viewpoints. The subjects in NTU 120 are in

a wide range of age distribution (from 10 to 57) and from

different cultural backgrounds (15 countries), which brings

very realistic variation to the quality of actions. The NTU

60 and 120 datasets have a large amount of variation in sub-

jects, views, and backgrounds.

Diving48 is a challenging fine-grained dataset that focuses

on complex and competitive sports content analysis. It is

formed of over 18k video clips from competitive dive cham-

pionships that are distributed over 48 fine-grained classes

with minimal biases. The difficulties of the dataset lie in

that actions are similar and differ in body parts and their

combinations which require the model to capture details and

motion in body parts and combine them to perform classifi-

cation. We report the accuracy on the official train/test split.

4.2. Implementation Details

In this paper, our SkeletonMAE is optimized by the

Adaptive Moment Estimation (Adam) with the initial learn-

ing rate as 1.5e−4 and the PReLU is the activation function.

Method Modality Mean Acc. (%)

Fully Supervised
I3D [2] RGB 64.4

ST-S3D [81] RGB 72.9

TSN [77] RGB+Flow 79.8

TRNms [93] RGB+Flow 80.2

TSM [35] RGB+Flow 81.2

GST-50 [46] RGB 84.6

MTN [30] RGB 88.5

LT-S3D [81] RGB 88.9

TQN [90] RGB+Text 90.6

PYSKL [11] Skeleton 93.2

PYSKL [11] RGB+Skeleton+Limb 95.6
Unsupervised Pre-train
SaL [49] RGB 42.7

TCC [12] RGB 45.6

GTA [19] RGB 49.5

CARL [3] RGB 60.4

SSL (ours) Skeleton 91.8

Table 1: The comparison with the state-of-the-art unsuper-

vised pre-train and supervised methods on FineGym.

The batch size is 1024 and the training epoch is 50. At the

fine-tuning stage, we use the Stochastic Gradient Descent

(SGD) with momentum (0.9) and adopt the warm-up strat-

egy for the first 5 epochs. The total fine-tuning epochs are

110. The learning rate is initialized to 0.1 and is divided

by 10 at the 90 epoch and the 100 epoch. And we employ

0.1 for label smoothing. We use a large batch size of 128 to

facilitate training our attention mechanism and enhancing

the model’s perception for all human action classes. Both

our pre-training and fine-tuning models are implemented by

PyTorch [54], and our SSL is trained on a single NVIDIA

GeForce RTX 2080Ti GPU. For more details of implemen-

tation, please refer to the Supplementary in Section A.

Pre-training and Fine-tuning Setting. For each dataset,

the SkeletonMAE encoder is pre-trained with unlabeled

data from the training set. Then, we load the learned pa-

rameter weights to fine-tune the SSL model.

Evaluation Metrics. To make a fair comparison, we fol-

low previous methods [11, 3, 18] and report the Mean Top-

1 accuracy(%) on FineGym dataset and Top-1 accuracy(%)

on Diving48, NTU 60, and NTU 120 datasets.

4.3. Downstream Evaluation

For a fair comparison, we compare SSL with other mod-

els without pre-training on large-scale action datasets, e.g.,
Kinetics [27] or Sports1M [26]. The comparison results on

FineGym, NTU 60 & 120, and Diving48 datasets are shown

in Table 1, Table 2, and Table 3, respectively.

Results on FineGym Dataset. In Table 1, our SSL with

skeleton input outperforms most of the fully supervised
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Method Backbone Supervision Joint Number 2D Skeleton
NTU 60 NTU 120

X-sub (%) X-view (%) X-sub (%) X-set (%)

ST-GCN [83] GCN Fully Supervised 25 � 81.5 88.3 - -

AS-GCN [32] GCN Fully Supervised 25 � 86.8 94.2 - -

2s-AGCN [60] GCN Fully Supervised 25 � 88.5 95.1 82.9 84.9

Shift-GCN [6] GCN Fully Supervised 25 � 90.7 96.5 85.9 87.6

MS-G3D [45] GCN Fully Supervised 25 � 91.5 96.2 86.9 88.4

CTR-GCN [5] GCN Fully Supervised 25 � 92.4 96.8 88.9 90.6
PYSKL [11] CNN Fully Supervised 17 � 93.7 96.6 86.0 89.6

SkeletonCLR [31] ST-GCN Unsupervised Pre-train 25 � 82.2 88.9 73.6 75.3

CrosSCLR [31] ST-GCN Unsupervised Pre-train 25 � 86.2 92.5 80.5 80.4

Wu et al. [80] STTFormer Unsupervised Pre-train 25 � 86.6 92.9 76.8 79.1

AimCLR [18] ST-GCN Unsupervised Pre-train 25 � 86.9 92.8 80.1 80.9

3s-PSTL [94] ST-GCN Unsupervised Pre-train 25 � 87.1 93.9 81.3 82.6

Colorization [87] DGCNN Unsupervised Pre-train 25 � 88.0 94.9 - -

SSL(ours) STRL Unsupervised Pre-train 17 � 92.8(↑ 4.8) 96.5(↑ 1.6) 84.8(↑ 3.5) 85.7(↑ 3.1)

Table 2: The comparison with state-of-the-art unsupervised pre-train and supervised methods on NTU 60 and NTU 120

datasets. ‘ ’ means the method with the second-best performance under unsupervised pre-training.

Method Pre-train GFLOPs Acc.(%)

Fully Supervised
TSN [34] ImageNet - 16.8

TRN [25] ImageNet - 22.8

P3D [46] ImageNet - 32.4

C3D [46] ImageNet - 34.5

CorrNet [46] - 74.8 35.5

CorrNet-R101 [75] ImageNet 187.3 38.2

MG-TEA-ResNet50 [92] ImageNet - 39.5

GSM [66] ImageNet 107.4 40.3

TSM-R50 [29] ImageNet 153.8 41.6

TMF [78] ImageNet - 42.2

Unsupervised Pre-train
RESOUND-C3D [34] K400 - 16.4

Jenni et al. [23] K400 - 29.9

SSL (ours) Diving48 42.8 34.1

Table 3: The comparison with the unsupervised pre-train

and supervised methods on the Diving48 dataset.

methods and achieves the best performance among unsu-

pervised pre-train methods with RGB input. For the same

input modality, our performance is lower than the fully su-

pervised method PYSKL[11] (with the skeleton as input)

by about 1.4%, because the PYSKL adopts stacks of visual

heatmaps of skeleton joints as input while we only use hu-

man skeleton coordinates. This validates the promising dis-

criminative ability of our skeleton sequence representation.

Results on NTU 60 and NTU 120 Datasets. In Table 2,

for NTU 60 X-sub and NTU 60 X-view, compared with un-

supervised pre-train methods, our SSL outperforms the cur-

rent state-of-the-art method Colorization [87] by 4.8% and

1.6%, respectively. Our SSL is also competitive compared

with fully supervised methods, outperforming the first six

fully supervised methods on NTU 60 X-sub. For NTU 120

X-sub and NTU 120 X-set, our SSL outperforms the pre-

vious best-unsupervised pre-train method 3s-PSTL [94] by

3.5% and 3.1%, respectively. Our SSL is superior compared

with some fully supervised methods on NTU 120 X-sub and

NTU 120 X-set. These results show that our SSL can learn

discriminative skeleton representation from large-scale ac-

tion recognition datasets due to the promising generaliza-

tion ability of our SkeletonMAE.

Results on Diving48 Dataset. Our SSL with skeleton in-

put outperforms some fully supervised methods. Although

our SSL is not pre-trained on additional large-scale pre-

training action datasets in Table 3, it still achieves compet-

itive performance among unsupervised pre-train methods.

This validates that our pre-training model SkeletonMAE

can learn discriminative skeleton sequence representation.

The results on FineGym and Diving48 validate that our

SkeletonMAE has a promising ability to enhance the fea-

ture representation of skeleton sequence by comprehen-

sively perceiving the underlying topology of actions, and

the SSL can learn discriminative action representation.

4.4. Ablation Studies

In this section, we analyze the contributions of essential

components and hyper-parameters of our model. Note that

unless otherwise specified, all experiments are verified on

the FineGym dataset with masking body sub-region 3.

Whether to load pre-trained model or not. To explore

the effectiveness of loading the pre-trained SkeletonMAE

encoder, we find that the accuracy is 86.3 without load-
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LD Mean Acc.

1 89.6

2 90.7

3 91.2
4 90.9

(a)

Method Mean Acc.

GraphCL [89] 86.5

JOAO [88] 88.7

Ours(SkeletonMAE) 91.2
(b)

# Masked Body Part 0 1 2 3 4 5

GAT [72] 86.8 88.1 88.9 89.5 89.4 90.0

GCN [28] 87.6 88.9 89.3 90.6 89.5 90.5

GIN [82] 88.6 89.5 90.2 91.2 90.3 91.2
(c)

Table 4: (a) Mean accuracy of using the different number of

GIN layers in SkeletonMAE encoder. (b) Comparison re-

sults with the contrastive learning method as the pre-trained

encoder. (c) The results of using different backbones in

SkeletonMAE under each masked body part are compared.

ing the pre-trained SkeletonMAE encoder (randomly ini-

tialized weights). As Table 5(a) shows, loading the pre-

trained model is always better than not loading it. This vali-

dates that our SkeletonMAE can learn more comprehensive

and generalized representations for unlabeled fine-grained

actions by reconstructing the skeleton joint features.

GIN layers in SkeletonMAE. Table 4(a) shows the per-

formance of using different GIN layers in the SkeletonMAE

encoder. The performance is the best when LD = 3.

Comparison with contrastive learning methods. To

verify the superior ability of our SkeletonMAE when con-

ducting skeleton sequence pre-training, we compare our

SkeletonMAE with different contrastive learning methods

GraphCL and JOAO. As shown in Table 4(b), our Skele-

tonMAE achieves the best performance. Besides, we vi-

sually compare the action representations of SkeletonMAE

and GraphCL by PCA, as shown in Figure 4(a) and Fig-

ure 4(b). Compared to GraphCL, the skeleton representa-

tion of our SkeletonMAE appears to have a larger inter-class

variance and smaller intra-class variance. This validates that

our SkeletonMAE can comprehensively capture the human

pose and obtain discriminative skeleton sequence represen-

tation. We observe similar patterns in all other classes but

visualize only five categories for simplicity.

Backbones and masked body parts in SkeletonMAE.
As shown in Table 4(c), we show the accuracy of our

SSL with different SkeletonMAE backbones and different

masked body parts in SkeletonMAE. It can be seen that

GIN is always better than both GAT and GCN under the

same masked body part. This is because that GIN provides

a better inductive bias for graph-level applications. Thus, it

is more suitable for learning more generalized skeleton rep-

resentations. Additionally, we can see that masking body

sub-regions 3 and 5 are both optimal across all backbones,

M 1 2 3 4

Mean Acc. 89.1(↑2.8) 90.6(↑4.3) 91.2(↑4.9) 91.0(↑4.7)

(a)

# Masked Joints Number 5 9 12 15

Ratio of Mask Joints 30% 50% 70% 90%

Accuracy of SSL 89.7 90.3 89.9 90.1

Masked Body Part

High 91.8

(V3,V5)

91.2

(V0,V3,V5)

91.0

(V1,V2,V3,

V4,V5)

90.8

(V0,V1,V2,

V3,V5)

Low 91.1

(V2,V4)

90.1

(V0,V1)

91.0

(V1,V2,V3,

V4,V5)

90.2

(V0,V1,V3,

V4,V5)

(b)

Table 5: (a) Results of four SSL variants. ↑ represents the

accuracy improvement relative to the random initialization

of SkeletonMAE in SSL. (b) The comparison of our body

part based masked and the random masked strategies. V0-

V5: Head, Torso, Left arm, Right arm, Left leg, Right leg.

which demonstrates the importance of reconstruction of hu-

man limbs in action recognition.

Variants of SSL. To evaluate whether our pre-trained

SkeletonMAE is effective across different skeleton action

recognition models, we set the different number of STRL

layers (M = 1, 2, 3, 4) to obtain four variants of the SSL.

As shown in Table 5(a), all SSL variants outperform the

random initialization of SkeletonMAE in SSL, which val-

idates our body part masking strategy indeed improves the

discriminative ability of skeleton feature by learning action-

sensitive visual concepts. Additionally, three-layer STRL

is the best due to the good compromise between efficiency

and computational cost. Moreover, it also validates that our

SkeletonMAE generalizes well across different models.

Skeleton Masked Strategy. In Table 5(b), our masked

body part strategy is fairly compared with the random

masked strategy under the same masked joint conditions.

Our method is better than the random mask method across

all settings. As mentioned in Section 3.1.1, our masking

strategy is action-sensitive and reconstructs specific limbs

or body parts that dominates the given action class and is

suitable for real-world skeleton-based action recognition.

From Table 5, we can see that SSL effectively learns mean-

ingful representations that encode the spatial relationships

between joints, enabling the capture of crucial information

about the structure and configuration of human movement.

This notable achievement can be attributed to the integra-

tion of prior knowledge about the human body through pre-

training the SkeletonMAE. We report results on the ntu 60

dataset in Supplementary Section E.

Transferability of the SkeletonMAE across datasets.
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(a) (b) (c)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: (a) and (b) are 2d-PCA of SkeletonMAE and

GraphCL as pre-trained encoder representations. We ran-

domly select five action classes for 2d-PCA visualization,

(c) Confusion matrix for fine-grained action recognition.

As shown in Figure 5(a), we pre-train SkeletonMAE on the

FineGym dataset and then fine-tune it on NTU 60 X-sub

and NTU 120 X-sub datasets. Compared with the method

that uses the same dataset for pre-training and fine-tuning,

our SkeletonMAE achieves better performance across all

masked strategies when conducting dataset transfer. This

shows that the SkeletonMAE can learn generalized skeleton

representation and effectively transfer the strong represen-

tation ability to other datasets.

4.5. Visualization Analysis

Figure 6 shows the reconstruction process of the skele-

ton sequence by SkeletonMAE. From the same frame, the

difference between the reconstructed skeleton sequence and

the original skeleton sequence is slight, but overall the hu-

man body structure is reserved. This shows that the Skele-

tonMAE has good spatial representation learning ability.

Moreover, SSL effectively captures the temporal evolution

and distinguishing characteristics of actions by capturing

the relationships between consecutive joint positions and

poses. This highlights the positive impact of the multi-scale

temporal dependence incorporated within the STRL mod-

ule. Figure 4(c) shows that our SSL works well for fine-

grained action recognition tasks on the FineGym dataset.

More visualization results are in Supplementary Section C.

5. Conclusion

In this paper, we propose an efficient skeleton sequence

learning framework SSL, to learn discriminative skeleton-

based action representation. To comprehensively capture

the human pose and obtain skeleton sequence represen-

tation, we propose a graph-based encoder-decoder pre-

training architecture, SkeletonMAE, that embeds skeleton

joint sequence into GCN and utilize the prior human topol-

ogy knowledge to guide the reconstruction of the under-

lying masked joints and topology. Extensive experimental

results show that our SSL achieves SOTA performance on

four benchmark skeleton-based action recognition datasets.

In our future work, we will build a multi-level feature re-

finement module to identify ambiguous skeleton actions.

Figure 5: (a) The accuracies with mask body part of 0-5

on the NTU 60 X-sub dataset, and (b) the accuracies on the

NTU 120 X-sub dataset. ‘*’ means SkeletonMAE encoder

pre-trained on the FineGym dataset.

t=0 t=2 t=16 t=18t=12 t=14t=8 t=10t=4 t=6

(a) Orginal joint

(b) Masked joint

(c) Reconstructed joint

Figure 6: Visualization results for skeleton sequence of

“aerial walkover forward” on FineGym. (a) The input skele-

ton sequence. (b) Masked skeleton sequence (masked parts

are 3 and 5). (c) Reconstructed skeleton sequence.
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