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Abstract

We present a Multimodal Interlaced Transformer (MIT)
that jointly considers 2D and 3D data for weakly supervised
point cloud segmentation. Research studies have shown that
2D and 3D features are complementary for point cloud seg-
mentation. However, existing methods require extra 2D an-
notations to achieve 2D-3D information fusion. Consider-
ing the high annotation cost of point clouds, effective 2D
and 3D feature fusion based on weakly supervised learning
is in great demand. To this end, we propose a transformer
model with two encoders and one decoder for weakly su-
pervised point cloud segmentation using only scene-level
class tags. Specifically, the two encoders compute the self-
attended features for 3D point clouds and 2D multi-view
images, respectively. The decoder implements interlaced
2D-3D cross-attention and carries out implicit 2D and 3D
feature fusion. We alternately switch the roles of queries
and key-value pairs in the decoder layers. It turns out
that the 2D and 3D features are iteratively enriched by
each other. Experiments show that it performs favorably
against existing weakly supervised point cloud segmenta-
tion methods by a large margin on the S3DIS and Scan-
Net benchmarks. The project page will be available at
https://jimmy15923.github.io/mit_web/.

1. Introduction

Point cloud segmentation offers rich geometric and se-

mantic information of a 3D scene, thereby being essen-

tial to many 3D applications, such as scene understand-

ing [5, 10, 16, 26, 36], augmented reality [2, 35], and au-

tonomous driving [7, 8, 13]. However, developing reliable

models is time-consuming and challenging due to the need

for vast per-point annotations and the difficulty in capturing

detailed semantic clues from textureless point clouds.

Research efforts have been made to address the afore-

mentioned issues. Several methods are proposed to derive

point cloud segmentation models using various weak su-

pervisions, such as sparsely labeled points [24, 33, 58, 65],
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Figure 1: Overview of the Multimodal Interlaced

Transformer (MIT). The input includes a 3D point cloud,

multi-view 2D images, and class-level tags of a scene. Our

method is a transformer model with two encoders and one

decoder. The two encoders compute features for 3D voxel

tokens and 2D view tokens, respectively. The decoder con-

ducts interlaced 2D-3D attention and carries out 2D and 3D

feature fusion. In its odd layers, 3D voxels serve as queries

and are enriched by the semantic features of 2D views, act-

ing as key-value pairs. In the even layers, the roles of 3D

voxels and 2D views switch: 2D views are described by ad-

ditional 3D geometric features.

bounding box labels [9], subcloud-level annotations [54],

and scene-level tags [40, 61]. These weak annotations are

cost-efficient and can significantly reduce the annotation

burden. On the other hand, recent studies [19, 20, 23, 32,

41, 52, 53, 62] witness the remarkable success of 2D vision,

and utilize 2D image features to enhance the 3D recognition

task. They show promising results because 2D detailed tex-

ture clues are well complementary to 3D geometry features.

Although 2D-3D fusion is effective, current methods re-

quire extra annotation costs for 2D images. To the best

of our knowledge, no prior work has explored fusing 2D-

3D features under extremely weak supervision, where only

scene-level class tags of the 3D scene are given. It is chal-

lenging to derive a segmentation model that leverages both

2D and 3D data under scene-level supervision, as no per-

point/pixel annotations or per-image class tags are avail-
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able to guide the learning process. Furthermore, existing

2D-3D fusion methods require camera poses or depth maps

to establish pixel-to-point correspondences, adding extra

burdens on data collection and processing. In this work,

we address these difficulties by proposing a Multimodal

Interlaced Transformer (MIT) that works with scene-level

supervision and can implicitly fuse 2D, and 3D features

without camera poses and depth maps.

Our MIT is a transformer model with two encoders and

one decoder, and can carry out weakly supervised point

cloud segmentation. As shown in Figure 1, the input to

our method includes the 3D point cloud, multi-view images,

and scene-level tags of a scene. The two encoders utilize

the self-attention mechanism to extract the features of the

3D point cloud and the 2D multi-view images, respectively.

The decoder computes the proposed interlaced 2D-3D at-

tention and can implicitly fuse the 2D and 3D data.

Specifically, one encoder is derived for 3D feature ex-

traction, where the voxels of the input point cloud yield the

data tokens. The other encoder is for 2D multi-view images,

where images serve as data tokens. Also, the multi-class to-

kens [57] are included to match the class-level annotations.

The encoders capture long-range dependencies and aggre-

gate class-specific features for their respective modalities.

The decoder comprises 2D-3D interlaced layers, and is

developed to fuse 2D and 3D features, where the corre-

spondences between 3D voxels and 2D views are implic-

itly computed via cross-attention. In odd layers of the de-

coder, 3D voxels are enriched by 2D image features, while

in even layers, 2D views are augmented by 3D geometric

features. Specifically, in each odd layer, each 3D voxel

serves as a query, while 2D views act as key-value pairs.

Through cross-attention, a query is a weighted combination

of the values. Together with residual learning, this query

(3D voxel) is characterized by the fused 3D and 2D fea-

tures. In each even layer, the roles of 3D voxels and 2D

views switch: 3D voxels and 2D views become key-value

pairs and queries, respectively. This way, 2D views are de-

scribed by the augmented 2D and 3D features.

By leveraging multi-view information without extra an-

notation effort, our proposed MIT effectively fuses the 2D

and 3D features and significantly improves 3D point cloud

segmentation. The main contribution of this work is three-

fold. First, to the best of our knowledge, we make the first

attempt to fuse 2D-3D information for point cloud segmen-

tation under scene-level supervision. Second, we enable

this new task by presenting a new model named Multimodal

Interlanced Transformer (MIT) that implicitly fuses 2D-3D

information via interlaced attention, which does not rely on

camera pose information. Besides, a contrastive loss is de-

veloped to align the class tokens across modalities Third,

our method performs favorably against existing methods on

the large-scale ScanNet [11] and S3DIS [3] benchmarks.

2. Related Work

Weakly supervised point cloud segmentation. This task

aims at learning a point cloud segmentation model using

weakly annotated data, such as sparsely labeled points [16,

18, 27, 28, 30, 33, 43, 45, 47, 49, 56, 58, 65, 66], box-level la-

bels [9], subcloud-level labels [54, 61] and scene-level la-

bels [24, 40]. Significant progress has been made in the

setting of using sparsely labeled points: The state-of-the-

art methods [18, 33, 63] show comparable performances

with supervised ones. These methods usually utilize self-

supervised pre-training [16,33], graph propagation [33,47],

and contrastive learning [28, 66] to derive the models. De-

spite the effectiveness, they require at least one annotated

point for each category in a scene. Hence, it is not straight-

forward to extend these methods to work with scene-level

or subcloud-level annotations.

In this work, we aim to develop a segmentation method

based on a more challenging setting of using scene-level

annotations. The literature about point cloud segmenta-

tion with scene-level annotations is relatively rare. Yang et
al. [61] derive a transformer by applying multiple instance

learning to paired point clouds. However, their performance

is much inferior to fully supervised methods. Kweon and

Yoon [24] leverage 2D and 3D data for point cloud seg-

mentation by introducing additional image-level class tags,

which require extra annotation efforts. Our method com-

pensates for the lack of point-level or pixel-level anno-

tations by integrating additional 2D features while using

scene-level annotation only.

2D and 3D fusion for point cloud applications. Given

the accessible or syntheticable [23] 2D images in most 3D

dataset, research studies [14,17,19,20,23,24,29,32,41,46,

52,53,55,59,60,62,64] explore 2D data to enhance 3D ap-

plications. Hu et al. [19] and Robert et al. [41] construct

a pixel-point mapping matrix to fuse 2D and 3D features

for point cloud segmentation. Despite the effectiveness,

existing methods rely on camera poses and/or depth maps

to build the correspondences between the 2D and 3D do-

mains. In contrast, our method learns a transformer with in-

terlaced 2D-3D attention, enabling the implicit integration

of 2D and 3D features without the need for camera poses or

depth maps.

Query and key-value pair swapping. Cross-attention is

widely used in the transformer decoder. It captures the de-

pendency between queries and key-value pairs. Umam et
al. [48] and Lim et al. [21] swap queries and key-value

pairs for point cloud decomposition and generation, respec-

tively. Different from their methods working with data in

a domain, our method generalizes query and key-value pair

swapping to cross-domain feature fusion. In addition, we

develop a contrastive loss for 2D and 3D feature alignment.
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Figure 2: An overview of our Multimodal Interlaced Transformer (MIT) for weakly supervised point cloud segmentation. It

is a transformer-based model with two encoders, f̃3D and f̃2D, for modality-specific feature extraction and one decoder, fd,

for feature fusion. The 2D and 3D pooled features, ŝ2D and ŝ3D, are added to each learnable position embedding (ẑ2D and

ẑ3D), and further prepended with the class tokens and passed through the encoders to obtain self-attended features, F2D and

F3D. The predicted class scores for each modality are obtained through average pooling and class-aware layers.

3. Proposed Method

We present the proposed method in this section. We first

give the problem statement in Section 3.1. Then, we specify

the developed MIT with an encoder-decoder architecture in

Section 3.2 and Section 3.3. Finally, the implementation

details are provided in Section 3.4.

3.1. Problem Statement

We are given a set of N point clouds as well as their

corresponding RGB multi-view images and the class tag

annotations, i.e., {Pn, Vn,yn}Nn=1, where Pn denotes the

nth point cloud, Vn represents the multi-view images, and

yn is the class-level labels. Note that Pn, Vn, and yn are

acquired from the same scene. Without loss of generality,

we assume that each point cloud consists of M points, i.e.,

Pn = {pnm}Mm=1, where each point pnm ∈ R
6 is rep-

resented by its 3D coordinate and RGB color. The RGB

multi-view images are grabbed in the same scene as Pn,

and consist of a set of T images, i.e., Vn = {vnt}Tt=1. Each

image vnt ∈ R
H×W×3 is of resolution H ×W with RGB

channels. The class tags of Pn, i.e., yn ∈ {0, 1}C , are a

C-dimensional binary vector storing which categories are

present, where C is the number of categories of interest.

With the weakly annotated dataset {Pn, Vn,yn}Nn=1, we

aim to derive a model for point cloud segmentation that

classifies each point of a testing cloud into one of the C
categories. Note that in this weakly supervised setting, nei-

ther points nor pixels are labeled, and camera poses are un-

available, making it challenging to enhance 3D point cloud

segmentation by incorporating additional 2D features due

to the absence of point/pixel supervision and explicit corre-

spondences between 2D pixels and 3D points. Furthermore,

as multi-view images share the same scene-level class tag,

the lack of individual class tag annotation for each view im-

age may lead to an inaccurate semantic understanding of

each image.

Method overview. Figure 2 illustrates the network archi-

tecture of MIT, which comprises two transformer encoders,

f̃3D and f̃2D, and one decoder fd. The two encoders extract

features for 3D point clouds and 2D multi-view images, re-

spectively. The decoder is developed for 2D-3D feature fu-

sion, which utilizes cross-attention to connect 2D and 3D

data implicitly. They are elaborated in the following.

3.2. Transformer Encoders

3D point cloud feature extraction. A 3D backbone f3D,

e.g., MinkowskiNet [10] or PointNet++ [38], is applied to

extract the point embedding s3D ∈ R
M×D for all M points

of a point cloud P . Like WYPR [31], we perform su-

pervoxel partition using an unsupervised off-the-shelf algo-

rithm [25]. The 3D coordinates of P are fed into a coor-

dinate embedding module femb, which is composed of two

1 × 1 convolution layers with ReLU activation, to get the

positional embedding z3D ∈ R
M×D, where D is the em-

bedding dimension. We aggregate both the point features

and point positional embedding through supervoxel aver-

age pooling [33], producing the supervoxel features ŝ3D ∈
R

S×D and pooled positional embedding ẑ3D ∈ R
S×D,

where S is the number of the supervoxels in P . The su-

pervoxel features are added to the positional embedding.

To learn the class-specific representation for fitting the

scene-level supervision, we prepend C learnable class to-

kens [57] c3D ∈ R
C×D with S supervoxel tokens. Total

(C + S) tokens are fed into the transformer encoder f̃3D.
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Figure 3: The architecture of an interlaced block. The mul-

tilayer perceptron with residual learning is not present for

simplicity but is used in the block.

Through the self-attention mechanism, the dependencies of

the class and supervoxel tokens are captured, producing the

self-attended 3D features F3D ∈ R
(C+S)×D.

2D multi-view images feature extraction. A 2D back-

bone network f2D, e.g. ResNet [15], is employed to extract

image features s2D ∈ R
T×H′×W ′×D, where H ′ = H/32

and W ′ = W/32. We apply global average pooling to im-

age features s2D along the spatial dimensions. The pooled

image features ŝ2D ∈ R
T×D are added to the learnable po-

sitional embedding ẑ2D ∈ R
T×D, producing T view tokens.

Analogous to 3D feature extraction, another transformer

encoder f̃2D is applied to C class tokens c2D ∈ R
C×D

and T view tokens, obtaining the self-attended 2D features

F2D ∈ R
(C+T )×D.

Encoder optimization. During training, we consider a

point cloud P and its associated T multi-view images {vt}
and scene-level label y. The 2D and 3D self-attended fea-

tures F2D and F3D are compiled as specified above. We

conduct the multi-label classification losses [40, 57] for op-

timization.

For 3D attended features F3D ∈ R
(C+S)×D, we divide

it into C class tokens F c
3D ∈ R

C×D and S supervoxel to-

kens F s
3D ∈ R

S×D. For the class tokens F c
3D, the C class

scores are estimated by applying average pooling along the

feature dimension. The multi-label classification loss Lc
3D is

computed based on the estimated class scores and the scene-

level ground-truth labels y. For the supervoxel tokens F s
3D,

we introduce a class-aware layer [44], i.e., a 1× 1 convolu-

tion layer with C filters, which maps the supervoxel tokens

F s
3D into the class activation maps (CAM) F̃ s

3D ∈ R
S×C .

The estimated class scores are obtained by applying global

average pooling to F̃ s
3D along the dimension of supervoxels.

The multi-label classification loss Ls
3D is computed based

on the class scores and label y. The loss for the 3D modal-

ity is defined by L3D = Lc
3D+Ls

3D. For the self-attended 2D

features F2D ∈ R
(C+T )×D of the C class tokens and T view

tokens, the 2D loss is similarly defined by L2D = Lc
2D+Lt

2D.

In sum, both encoders are derived in a weakly-supervised

manner using the objective function

Lenc = L2D + L3D. (1)

3.3. Transformer Decoder

The two encoders produce self-attended 3D features F3D

of C + S tokens and 2D features F2D of C + T tokens, re-

spectively. We propose a decoder that performs interlaced

2D-3D cross-attention for feature fusion. The decoder fd
in Figure 2 is a stack of R interlaced blocks. Each inter-

laced block is composed of two successive decoder layers,

as shown in Figure 3. In the first layer of this block, 3D to-

kens are enriched by 2D features, while in the second layer,

2D tokens are enriched by 3D features.

In the odd/first layer (the blue-shaded region in Figure 3),

the C + S tokens in F3D serve as the queries, while the

C + T tokens in F3D act as the key-value pairs. Through

scaled dot-product attention [50], the cross-modal attention

matrix A ∈ R
(C+S)×(C+T ) (the yellow-shaded region) is

computed to store the consensus between the 3D tokens

and 2D tokens. As we focus on exploring the relation-

ships between 3D tokens and merely 2D view tokens in

this layer, we ignore the attention values related to the 2D

class tokens in A. Specifically, only the query-to-view at-

tention values Aq2v ∈ R
(C+S)×T (green dots in Figure 3)

are considered. This is implemented by applying submatrix

extraction to the attention matrix A and the value matrix

V ∈ R
(C+T )×D, i.e., Aq2v = A[1 : C + S,C + 1: C + T ]

and Vd = V [C + 1: C + T, : ].

After applying the softmax operation to Aq2v , we per-

form matrix multiplication between the query-to-view at-

tention matrix Aq2v and the masked value matrix Vd. This

way, each query (3D token) is a weighted sum of the val-

ues (2D view tokens). Together with a residual connection,

the resultant 3D tokens F3̂D are enriched by 2D features. It

turns out that implicit feature fusion from 3D features to 2D

features is carried out without using annotated data.

In the even/second layer (the green-shaded region in Fig-

ure 3), the roles of F3̂D and F2D switch: The former serves

as the key-value pairs while the latter yields the queries.

After a similar procedure, the resultant 2D tokens F2̂D ∈
R

(C+T )×D are augmented with 3D information. F2̂D and

F3̂D are the output of the interlaced block. By stacking R
interlaced blocks, the proposed decoder is built to fuse 2D

and 3D features iteratively.

Decoder optimization. In the last interlaced block, the

2D class scores and 3D class scores can be estimated by

applying average pooling to the corresponding class tokens.

The multi-label classification losses for 2D L2̃D and 3D L3̃D

data can be computed between the ground truth and the es-

timated class scores.
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To mine additional supervisory signals, we employ

contrastive learning on the class-to-class attention matrix

Ac2c = A[1 : C, 1: C] ∈ R
C×C . Though the 2D class

tokens and 3D class tokens attend to respective modali-

ties, they share the same class tags. Hence, the attention

value between a pair of class tokens belonging to the same

class should be larger than those between tokens of differ-

ent classes, which can be enforced by the N-pair loss [39].

We employ this regularization in all attention matrices in

the decoder layers

Lcon =
1

2R

2R∑

r=1

C∑

i=1

− log
Ar

ii∑C
j=1 A

r
ij

+
1

2R

2R∑

r=1

C∑

j=1

− log
Ar

jj∑C
i=1 A

r
ij

,

(2)

where Ar is the attention matrix in the rth decoder layer.

The objective function of learning the decoder is

Ldec = L2̃D + L3̃D + αLcon, (3)

where α is a positive constant.

3.4. Implementation Details

The proposed method is implemented in PyTorch.

ResNet-50 [15] pre-trained on ImageNet [42] serves as the

2D feature extractor while MinkowskiNet [10] works as the

3D feature extractor in the experiments. The numbers of

heads, encoder layers, interlaced blocks, embedding dimen-

sion, and the width of FFN in the transformer are set to 4,

3, 2, 96, and 96, respectively. 16 multi-view images are

randomly sampled for each scene. The model is trained on

eight NVIDIA 3090 GPUs with 500 epochs. The batch size,

learning rate, and weight decay are set to 32, 10−2, and

10−4, respectively. We use AdamW [22] as the optimizer.

The weight α for Lcon is set to 0.5.

Inference. Given a point cloud P for inference, we feed

it into our 3D encoder for feature extraction. The 3D CAM

F̃ s
3D ∈ R

S×C , i.e., the segmentation result, is then obtained

by passing the extracted features into the class-aware layer,

as specified in Section 3.2. In MCTformer [57], 3D CAM

can be further refined by the class-to-voxel attention maps

Ac2s ∈ R
C×S from the last K transformer encoder layers,

where K = 3. The refined 3D CAM is obtained through

element-wise multiplication between CAM and the atten-

tion maps: F = F̃ s
3D � Ac2s, where � denotes Hadamard

product. In addition, we consider the class-to-voxel atten-

tion maps in the interlaced decoder, if multi-view images

are provided, which can be extracted from all the even lay-

ers, producing another refined 3D CAM F̂ . Finally, the seg-

mentation results can be obtained by applying the element-

wise max operation to F and F̂ .

We followed the common practice in [6,33,40,54,58,61]

to generate pseudo-segmentation labels by running infer-

ence on the training set. Then use a segmentation model,

e.g. Res U-Net [16], to train on the pseudo labels with high

confidence, i.e. over 0.5, and derive the segmentation model

with 150 epochs. No further post-processing is applied.

4. Experimental Results
This section evaluates the proposed method. We begin

by introducing the datasets and evaluation metrics. The

competing methods are then presented and compared. Fi-

nally, we present ablation studies for each proposed com-

ponent and analysis of our method.

4.1. Datasets and Evaluation Metrics

The experiments were conducted using two large-scale

point cloud datasets with multi-view images, S3DIS [3]

and ScanNet [11]. S3DIS [3] contains 272 scenes from

six indoor areas. A total of 70,496 RGB images are col-

lected. Each scene is represented by a point cloud with

3D coordinates and RGB values. Each point and pixel

is labeled with one of 13 categories. Following previous

works [37, 38, 40, 51, 58], area 5 is taken as the test scene.

ScanNet [11] includes 1,201 training scenes, 312 validation

scenes, and 100 test scenes with 20 classes. Over 2.5 mil-

lion RGB images are collected. Following [19], we sample

one image out of every twenty to avoid redundancy in im-

age selection. The mean intersection over Union (mIoU) is

employed as the evaluation metric for both datasets.

4.2. Competing Methods and Comparisons

We compare our MIT with competing weakly supervised

point cloud segmentation and 2D-3D feature fusion meth-

ods.

4.2.1 Point Cloud Segmentation Method Comparison

We compare our proposed method to state-of-the-art meth-

ods for segmenting point clouds with scene-level supervi-

sion. We also consider methods utilizing different super-

vision signals and extra data as input. To begin with, we

present the fully supervised methods [10, 38, 41, 53] for

point cloud segmentation as they suggest potential perfor-

mance upper bounds. Next, we show the methods [24,

33, 63] that employ various types of weak labels. Finally,

we compare the segmentation methods [40,54,61] utilizing

scene-level labels that indicate whether each class appears

in the scene.

Table 1 reports the mIoU results of the competing meth-

ods using different types of supervision or extra input data,

such as RGB images, camera poses, or depth maps. Exist-

ing methods that fuse 2D images with 3D data have demon-

strated superior performance compared to 3D-only meth-
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Method Sup.
Extra inputs ScanNet S3DIS

RGB Pose Depth Val Test Test

MinkUNet [10] F . - - - 72.2 73.6 65.8

DeepViewAgg [41] F . � � - 71.0 - 67.2

SemAffiNet [53] F . � � � - 74.9 71.6

OTOC [33] P. - - - - 59.4 50.1

Yu et al. [63] P. � � � - 63.9 -

Kweon et al. [24] S.+ I. � � - 49.6 47.4 -

MPRM [54] S. - - - 24.4 - 10.3

MIL-Trans [61] S. - - - 26.2 - 12.9

WYPR [40] S. - - - 29.6 24.0 22.3

MIT (3D-only) S. - - - 31.6 26.4 23.1

MIT (Ours) S. � - - 35.8 31.7 27.7

Table 1: Quantitative results (mIoU) of several point-cloud

segmentation methods with diverse supervisions and input

data settings on the ScanNet and S3DIS datasets. “Sup.”

indicates the type of supervision. “F .” represents full an-

notation. “P.” gives sparsely labeled points. “S.” denotes

scene-level annotation. “I.” implies image-level annota-

tion.

ods. However, the reliance on camera poses or depth maps

limits their applicability. In contrast, our MIT can benefit

from 2D images without such requirements, enhancing its

generalizability.

By using efficient scene-level annotation, our MIT with

3D data only (the blue-shaded region in Figure 2) shows

comparable results to the state-of-the-art weakly supervised

method [40], demonstrating the effectiveness of transformer

encoder with the multi-class token [57]. The proposed in-

terlace decoder further enhances the performance of the

MIT with 3D-only data by incorporating the 2D image in-

formation. Without introducing extra annotation costs, our

method with 2D-3D fusion outperforms the existing meth-

ods by a large margin on both the ScanNet and S3DIS

datasets. This result demonstrates once again that 2D and

3D data are complementary. More importantly, the pro-

posed method is capable of utilizing their complementarity

in a weakly supervised manner.

Kweon et al. [24] also confirms the effectiveness of com-

bining 2D-3D data. However, their method requires non-

negligible extra annotation costs on the images. According

to [4, 61], their method incurs more than five times the an-

notation cost required for scene-level annotation and even

more than the sparsely labeled points setting.

We summarize the advantages of the scene-level setting

in three aspects: 1) Efficiency: Scene-level supervision is

much more efficient to collect than other weak supervision

types. According to [40, 61], the labeling cost of sparse

points (1% of points in ScanNet) is more than ten times

higher than our scene-level setting. 2) Generalization: Our

method based on scene-level supervision can be extended

to other forms of weak supervision. Section 4.3.2 evaluates

our method trained with diverse weak supervision types. 3)

Method Fusion Pose Depth mIoU

MIL-Trans [61] MLP � - 25.6

MIL-Trans [61] BPM [19] � � 25.9

MIT MLP � - 32.6

MIT BPM [19] � � 32.4

MIT Interlaced - - 35.8

MIT Interlaced � � 37.1

Table 2: Quantitative results (mIoU) of our method (inter-

laced decoder) and competing methods with different 2D-

3D fusion strategies on the ScanNet validation set using

scene-level annotations.

Potential: Existing weakly supervised point cloud segmen-

tation methods focus on the sparse-point supervision set-

ting and achieve performances almost as good as fully su-

pervised ones. Therefore, working with lower annotation

costs, such as scene-level tags, shows potential and is worth

exploring. Our method effectively carries it out by utilizing

information from unlabeled images.

4.2.2 2D-3D Fusion Method Comparison

As far as we are aware, our MIT is the first attempt at explor-

ing 2D-3D fusion without poses, and the model is derived

through scene-level supervision. Hence, there is no exist-

ing fusion method for performance comparison. To evaluate

our method, we explore two approaches for 2D-3D feature

fusion. First, we design a baseline method using a sim-

ple multi-layer perceptron for 2D-3D fusion. For each 3D

voxel, we locate the nearest 2D pixel and concatenate the

3D feature with the 2D feature, followed by a 1×1 convolu-

tion to perform 2D-3D feature fusion. Second, we employ

the bidirectional projection module [19] for 2D-3D fusion,

which utilizes the pixel-to-point link matrix to fuse the 2D-

3D features.

We apply the 2D-3D fusion methods on a weakly

supervised point cloud segmentation method, MIL-

transformer [61], as well as our proposed method. Ta-

ble 2 provides the mIoU results of the competing 2D-3D

fusion methods. Our proposed interlaced decoder achieves

superior results compared to the two competing 2D-3D fu-

sion methods. More importantly, the interlaced decoder im-

plements 2D-3D fusion without using poses or depths and

performs even better when camera information is available

(more details in Section 4.3.2 and supplementary materials).

Our interlaced decoder offers the following advantages.

Multi-view aggregation: The view quality differs in differ-

ent views of the same 3D point, such as occlusion, or no 2D-

3D correspondence. Through the attention mechanism, the

decoder learns how to effectively aggregates the multi-view

information based on the semantic information. Global at-
tention: The decoder can capture long-range dependencies,

982



Floor Wall Cabinet Bed Chair Sofa Door Window Bookshelf Picture Un-annotated

Counter Desk Curtain Refrigerator Bathtub Shower
curtain Toilet Sink Table Other

furniture

Input Ground Truth MIT (3D-only) Our MIT Our MIT

Figure 4: Qualitative results on the ScanNet dataset with scene-level supervision. The colored boxes highlight the differences

between our MIT and MIT with 3D data only, and their corresponding views are shown on the right with outlines of the same

color. For each view, the tags at the top indicate the results of the multi-label classification.

i.e., the receptive field is the whole scene. Low overhead:

The computational bottleneck of the decoder lies in cross-

attention, whose complexity is linear to N2D ×N3D, where

N2D and N3D are the numbers of 2D and 3D tokens, re-

spectively. Since we cast each 2D view into a token via

global average pooling, N2D = C + T , where C is the

number of classes and T is the number of 2D views. As

shown in Table 4, we can achieve good results by giving

T = 16 views; hence N2D can be small. To summarize, the

proposed interlaced decoder introduces an acceptable cost

but provides multi-view aggregation with global attention.

Moreover, our interlaced decoder can further enrich features

in 2D and 3D domains for better 3D segmentation.

4.2.3 Qualitative Results

Figure 4 shows the qualitative results of our MIT with and

without using the complementary 2D data. By utilizing both

3D and 2D data, our method achieves promising segmenta-

tion results without using any point-level supervision. With

the help of detailed texture features in the 2D image, our

method is able to classify objects with very similar geomet-

ric shapes, for example, door and wall. Take the second row

of Figure 4 as an example; MIT successfully segments the

points belonging to the door by cooperating with the cor-

rect prediction from our 2D view (marked in blue), while

the 3D only MIT fails to locate the points of the door, by

only considering geometric and color features.

In addition, the category co-occurrence issue could hin-

der the optimization of the model with 3D data only. Since

optimization is based on scene-level labels, it is difficult

to learn discriminative features for those co-occurring cat-

egories. As demonstrated in the second and third rows of

Figure 4, MIT (3D-only) often fails to classify the chairs

and tables since these categories often co-occur in a scene.

In contrast, our method leverages multi-view information

during training. As each view only captures a small part of

the scene, the issue of category co-occurrence could be alle-
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Query Key-Value MCT Interlaced Lcon mIoU

- - 26.1

- - � 31.6

3D 2D � 33.7

3D 2D � � 35.4

2D 3D � � 35.2

3D 2D � � � 35.8

Table 3: The mIoU performance of different combinations

of proposed components on the validation set of the Scan-

Net dataset. “Query” and “Key-Value” denote the input to

the decoder. “MCT” and “Interlaced” are the multi-class to-

kens encoder and decoder architectures respectively. Lcon

denotes the contrastive loss on the class tokens.

viated, resulting in better segmentation performance. With

the proposed interlaced decoder, the network can learn more

corresponding features between view and voxel under weak

supervision. Additionally, the data tokens with position em-

bedding and class tokens with contrastive loss facilitate the

linking of views and voxels.

4.3. Ablation Studies and Performance Analysis

To evaluate the effectiveness of the proposed compo-

nents, we perform ablation studies and analyze their perfor-

mance. We present ablation studies to evaluate the impacts

of the proposed components and provide performance anal-

ysis.

4.3.1 Contributions of Components

To evaluate the effectiveness of each proposed component,

we first construct the baseline by considering only 3D data

and utilizing class activation maps [54,58]. Then, we assess

the contributions of each component, including the multi-

class token transformer encoder (MCT), the interlaced de-

coder (Interlaced), and the N-pair loss (Lcon), by succes-

sively adding each one to the baseline. In addition, we eval-

uate the roles for 2D and 3D, as query and key-value pairs,

by switching them. The result of the standard transformer

decoder is also reported (the third row of Table 3) by tak-

ing 3D as query and 2D as key-value. Table 3 illustrates

the performance when using different combinations of the

proposed modules and loss. The results validate that each

component contributes to the performance of our method.

4.3.2 Performance Analysis

We discuss the extension of the proposed method and eval-

uate our method with different parameters and synthesized

images in the following.

Number of views 4 16 32 64

mIoU 29.7 32.7 30.9 31.2

Table 4: Performance with different numbers of views on

the mIoU of pseudo labels on the ScanNet.

R interlaced blocks 1 2 3 4

mIoU 31.4 32.7 32.1 32.4

Table 5: Performance with different numbers of interlaced

blocks on the mIoU of pseudo labels on the ScanNet.

Extension with known poses and depths. When cam-

era poses, and depth maps are available, the correspondence

between 3D world coordinates and 2D pixels can be estab-

lished. Therefore, we can explicitly construct the position

correlation between 2D views and 3D voxels. To this end,

we first generate the 3D world coordinate maps for each

view by following Yu et al. [63]. All the 3D coordinate

maps are fed into the coordinate embedding module femb

to obtain positional embedding, which is then added to the

2D image features. Through explicit positional information

between the 2D view and 3D voxel, we can further boost

performance, as shown in the last row of Table 2.

Analysis of parameters. We explore the influence of the

number of 2D views and interlaced blocks by evaluating

the quality of pseudo labels on the training set. Table 4

shows the performance of our MIT with different numbers

of views used in the transformer. We found that perfor-

mance is stable when given a sufficient number of views, as

also reported in [19]. Table 5 presents the performance by

altering the number of the proposed interlaced blocks. The

results indicate that stacking two interlaced blocks performs

the best while being saturated by adding more blocks.

Experiments with virtual image rendering. Among the

limitations of our method is the need for multi-view 2D

images within the 3D dataset. A potential solution would

be the virtual view rendering of the 3D data. Several stud-

ies [23, 34] suggest that synthesized images can further im-

prove 3D segmentation performance. With the help of vir-

tual view rendering [23], our method still achieves compet-

itive results (34.3% mIoU on ScanNet validation set) using

the synthesized RGB images.

Extensions to other weak supervisions. Thanks to the

flexibility of the transformer, our method can be easily

adapted to other weakly supervised settings, such as ad-

ditional image-level labels, subcloud-level annotation, or

sparsely labeled points.
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Scene Scene+Image Subcloud 20pts

mIoU 35.8 45.4 46.8 61.9

label effort < 1 min 5 min 3 min 2 min

Table 6: The mIoU performance of our MIT and its average

annotation time per scene of different weak supervisions on

ScanNet.

For the extra image-label annotation, it provides the class

tag indicating the existing object category within each view

image. Several methods [1, 44] are proposed to derive a 2D

segmentation model based on this supervision and achieve

promising results. Our method can easily train on image-

level supervision by computing the multi-label classifica-

tion loss on each image token.

Regarding the subcloud-level annotation, it sequentially

crops a sphere point cloud from the scene and labels the

existing objects within the sphere. This type of supervi-

sion alleviates the severe class imbalance issue in scene-

level supervision. Our approach can be directly trained on

subcloud-level supervision by considering the correspond-

ing multi-view images in the subcloud.

For the setting with sparsely labeled points [33, 61], we

can calculate the cross entropy loss on the self-attended

voxel features F̂3D and the labeled points. Furthermore, we

note that the sparsely labeled 3D points can be projected

onto the 2D image pixels, generating 2D pixel annotation.

In spite of this, we do not explore this operation in our ex-

periments and leave it for future research.

Table 6 shows the performance of our method under dif-

ferent types of weak supervision and the corresponding an-

notation cost. While scene-level annotation is the most

efficient [61], its performance has room for improvement.

The extra image-level labels can improve the performance

of scene-level supervision but introduce additional burdens

due to the large number of view images in each scene. Ac-

cording to [4], the image-level labels cost 20 seconds per

image. In line with [24], which utilized 17 multi-view im-

ages in their setting, we used 16 images per scene, resulting

in an additional five-minute annotation time. Even though

both image-level and subcloud-level supervision types do

not require point-level annotation, they could require more

annotation efforts due to the large number of views and sub-

clouds that need to be annotated. Sparsely labeled points,

on the other hand, may perform better with less annotation

effort.

Our approach can work effectively with diverse weak su-

pervision, allowing for flexible savings in annotation costs.

More importantly, our MIT shows promising results by us-

ing the most efficient scene-level supervision, while other

weakly supervised methods cannot be straightforwardly ap-

plied in this scenario.

3D Backbone 2D Backbone mIoU

ResUNet-18 ResNet-50 32.7

ResUNet-18 ResNet-101 33.1

ResUNet-34 ResNet-101 32.9

Table 7: Performance with different backbones on the mIoU

of pseudo labels on the ScanNet.

Experiments with different backbones. Table 7 pro-

vides the performance (pseudo-label quality in mIoU) of

our method on ScanNet with different 2D and 3D back-

bones, including different versions of 2D ResNet and 3D

ResUNet. Our method’s performance is consistent across

different backbones.

5. Conclusion
This paper presents a multimodal interlaced transformer,

MIT, for weakly supervised point cloud segmentation. Our

method represents the first attempt at 2D and 3D informa-

tion fusion with scene-level annotation. Through the use

of the proposed interlaced decoder, which performs im-

plicit 2D-3D feature fusion via cross-attention, we are able

to effectively fuse 2D-3D features without using camera

poses or depth maps. Our MIT achieves promising per-

formance without using any point-level or pixel-level an-

notations. Furthermore, we develop class token consistency

to align the multimodal features. MIT is end-to-end train-

able. It has been extensively evaluated on two challenging

real-world large-scale datasets. Experiments show that our

method performs favorably against existing weakly super-

vised methods. We believe MIT has the potential to en-

hance other recognition tasks that involve both 2D and 3D

observations, in an efficient manner.

Discussion and future work. Our current method has

not utilized the spatial information conveyed in the images

since global average pooling is applied to the image fea-

tures. We attempted to flatten image features instead of us-

ing global average pooling to obtain patch tokens, similar

to [12, 32], but achieved inferior results. One possible rea-

son is that a large number of patch tokens introduces noise

under scene-level supervision. A solution to this issue can

achieve joint 2D-3D segmentation with weak supervision,

which could be an interesting area for future research.
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