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Figure 1. Overview of the proposed AIDE dataset for assistive driving perception. (a) illustrates four distinct perception views inside and
outside the vehicle. (b) illustrates multi-modal data annotations, including the driver’s face, body, posture, and gesture. (c) illustrates four
pragmatic driving recognition tasks concerning driver emotion, driver behavior, traffic context, and vehicle condition.

Abstract

Driver distraction has become a significant cause of se-
vere traffic accidents over the past decade. Despite the
growing development of vision-driven driver monitoring
systems, the lack of comprehensive perception datasets re-
stricts road safety and traffic security. In this paper, we
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§Corresponding author.

present an AssIstive Driving pErception dataset (AIDE) that
considers context information both inside and outside the
vehicle in naturalistic scenarios. AIDE facilitates holis-
tic driver monitoring through three distinctive character-
istics, including multi-view settings of driver and scene,
multi-modal annotations of face, body, posture, and ges-
ture, and four pragmatic task designs for driving under-
standing. To thoroughly explore AIDE, we provide exper-
imental benchmarks on three kinds of baseline frameworks
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via extensive methods. Moreover, two fusion strategies are
introduced to give new insights into learning effective multi-
stream/modal representations. We also systematically in-
vestigate the importance and rationality of the key com-
ponents in AIDE and benchmarks. The project link is
https://github.com/ydk122024/AIDE.

1. Introduction
Driving safety has been a significant concern over the

past decade [12, 34], especially during the transition of au-
tomated driving technology from level 2 to 3 [26]. Accord-
ing to the World Health Organization [58], there are ap-
proximately 1.35 million road traffic deaths worldwide each
year. More alarmingly, nearly one-fifth of road accidents
are caused by driver distraction that manifests in behav-
ior [53] or emotion [42]. As a result, active monitoring of
the driver’s state and intention has become an indispensable
component in significantly improving road safety via Driver
Monitoring Systems (DMS). Currently, vision is the most
cost-effective and richest source [69] of perception infor-
mation, facilitating the rapid development of DMS [15, 35].
Most commercial DMS rely on vehicle measures such as
steering or lateral control to assess drivers [15]. In contrast,
the scientific communities [20, 33, 37, 54, 59, 98] focus on
developing the next-generation vision-driven DMS to de-
tect potential distractions and alert drivers to improve driv-
ing attention. Although DMS-related datasets [1, 16, 28,
29, 31, 42, 44, 53, 59, 64, 73, 94] offer promising prospects
for enhancing driving comfort and eliminating safety haz-
ards [54], two serious shortcomings among them restrict the
progress and application in practical driving scenarios.

We first illustrate a comprehensive comparison of main-
stream vision-driven assistive driving perception datasets in
Table 1. Specifically, previous datasets [1, 20, 37, 53, 59,
73, 94, 97, 98] mainly concern the in-vehicle view to ob-
serve driver-centered endogenous representations, such as
anomaly detection [37], drowsiness prediction [20, 98], and
distraction recognition [1, 73, 94]. However, the equally im-
portant exogenous scene factors that cause driver distraction
are usually ignored. The driver’s state inside the vehicle is
frequently closely correlated with the traffic scene outside
the vehicle [61, 93]. For instance, the reason for an an-
gry driver to look around is most likely due to a traffic jam
or malicious overtaking [38]. Meanwhile, most smoking
or talking behaviors occur in smooth traffic conditions. A
holistic understanding of driver performance, vehicle con-
dition, and scene context is imperative and promising for
achieving more effective assistive driving perception.

Another shortcoming is that most existing datasets [16,
29, 37, 53, 59, 64] focus on identifying driver behavior
characteristics while neglecting to evaluate their emotional
states. Driver emotion plays an essential role in complex
driving dynamics as it inevitably affects driver behavior and

road safety [41]. Many researchers [3, 63] have indicated
that drivers with peaceful emotions tend to maintain the
best driving performance (i.e., normal driving). Conversely,
negative emotional states (e.g., weariness) are more likely
to induce distractions and secondary behaviors (e.g., doz-
ing off ) [30]. Despite initial progress in driving emotion
understanding works [13, 31, 42, 44], these inadequate ef-
forts only consider facial expressions and ignore the valu-
able clues provided by the body posture and scene con-
text [86, 87, 88, 89, 90, 91]. Most importantly, there are
no comprehensive datasets that simultaneously consider the
complementary perception information among driver be-
havior, emotion, and traffic context, which potentially limits
the improvement of the next-generation DMS.

Motivated by the above observations, we propose an As-
sIstive Driving pErception dataset (AIDE) to facilitate fur-
ther research on the vision-driven DMS. AIDE captures
rich information inside and outside the vehicle from sev-
eral drivers in realistic driving conditions. As shown in Fig-
ure 1, we assign AIDE three significant characteristics. (i)
Multi-view: four distinct camera views provide an expan-
sive perception perspective, including three out-of-vehicle
views to observe the traffic scene context and an in-vehicle
view to record the driver’s state. (ii) Multi-modal: di-
verse data annotations from the driver support comprehen-
sive perception features, including face, body, posture, and
gesture information. (iii) Multi-task: four pragmatic driv-
ing understanding tasks guarantee holistic assistive percep-
tion, including driver-centered behavior and emotion recog-
nition, traffic context, and vehicle condition recognition.

To systematically evaluate the challenges brought by
AIDE, we implement three types of baseline frame-
works using representative and impressive methods, which
involve classical, resource-efficient, and state-of-the-art
(SOTA) backbone models. Diverse benchmarking frame-
works provide sufficient insights to specify suitable net-
work architectures for real-world driving perception. For
multi-stream/modal inputs, we design adaptive and cross-
attention fusion modules to learn effectively shared repre-
sentations. Additionally, numerous ablation studies are per-
formed to thoroughly demonstrate the effectiveness of key
components and the importance of AIDE.

2. Related Work

2.1. Vision-driven Driver Monitoring Datasets

Vision-driven driver monitoring aims to observe features
from driver-related areas to identify potential distractions
through various assistive driving perception tasks. Accord-
ing to [59], existing datasets can be categorized as follows.
Hands-focused Datasets. Hand poses are an important ba-
sis for evaluating human-vehicle interaction in driving sce-
narios, as hands off the steering wheel are closely related to
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Table 1. Comparison of public vision-driven assistive driving perception datasets. The following symbols are used in the table. DBR:
driver behavior recognition; DER: driver emotion recognition; TCR: traffic context recognition; VCR: vehicle condition recognition; H:
the hours of videos; K/M: the number of images/frames; ∗: the number of video clips; N/A: information not clarified by the authors.

Dataset Views Classes Size Recording Conditions Scenarios Resolution Multimodal Annotations DBR DER TCR VCR Usage

SEU [97] 1 4 80 Car Induced 640 × 480 – " – – – Driver postures
Tran et al. [73] 1 10 35K Simulator Induced 640 × 480 – " – – – Safe driving, Distraction

Zhang et al. [94] 2 9 60H Simulator Induced 640 × 360 " " – – – Normal driving, Distraction
StateFarm [1] 1 10 22K Car Induced 640 × 480 – " – – – Normal driving, Distraction
AUC-DD [16] 1 10 14K Car Naturalistic 1920 × 1080 – " – – – Driver postures, Distraction

LoLi [64] 1 10 52K Car Naturalistic 640 × 480 " " – – – Driver monitoring, Distraction
Brain4Cars [27] 2 5 2M Car Naturalistic N/A " " – – – Driving maneuver anticipation
Drive&Act [53] 6 83 9.6M Car Induced 1280 × 1024 " " – – – Autonomous driving, Distraction

DMD [59] 3 93 41H Simulator, Car Induced 1920 × 1080 " " – – – Distraction, Drowsiness
DAD [37] 2 24 2.1M Simulator Induced 224 × 171 " " – – – Driver anomaly detection
DriPE [21] 1 – 10K Car Naturalistic N/A – – – – – Driver pose estimation
LBW [33] 2 – 123K Car Naturalistic N/A – – – – – Driver gaze estimation

MDAD [28] 2 16 3200∗ Car Naturalistic 640 × 480 " " – – – Driver monitoring, Distraction
3MDAD [29] 2 16 574K Car Naturalistic 640 × 480 " " – – – Driver monitoring, Distraction

DEFE [42] 1 12 164∗ Simulator Induced 1920 × 1080 – – " – – Driver emotion understanding
DEFE+ [44] 1 10 240∗ Simulator Induced 640 × 480 " – " – – Driver emotion understanding

Du et al. [13] 1 5 894∗ Simulator Induced 1920 × 1080 " – " – – Driver emotion understanding,
Biometric signal detection

KMU-FED [31] 1 6 1.1K Car Naturalistic 1600 × 1200 – – " – – Driver emotion understanding
MDCS [55] 2 4 112H Car Naturalistic 1280 × 720 " – " – – Driver emotion understanding

AIDE (ours) 4 20 521.64K Car Naturalistic 1920 × 1080 " " " " "
Driver monitoring, Distraction,
Driver emotion understanding,
Driving context understanding

many secondary behaviors (e.g., smoking). These datasets
generally provide annotated bounding boxes for the hands,
including CVRR-HANDS 3D [56], VIVA-Hands [10], and
DriverMHG [36]. Furthermore, Ohn-bar et al. [57] collect a
dataset of hand activity and posture images under different
illumination settings to identify the driver’s state.
Face-focused Datasets. The face and head provide valu-
able clues to observe the driver’s degree of drowsiness
and distraction [67]. There are several efforts that of-
fer eye-tracking annotations to estimate the direction of
the driver’s gaze and position of attention, such as Driv-
Face [11], DADA [18], and LBW [33]. Some multimodal
datasets [59, 94] utilize facial information as a complemen-
tary perceptual stream. Moreover, DriveAHead [66] and
DD-Pose [62] focus on fine-grained head analysis through
pose annotations of yaw, pitch, and roll angles.
Body-focused Datasets. Observing the driver’s body ac-
tions via the in-vehicle view has become a widely adopted
monitoring paradigm. These perceptual patterns from
the driver’s body contain diverse resources such as key-
points [21], RGB [73], infrared [64], and depth informa-
tion [37]. This technical route is first led by the State-
Farm [1] competition dataset, which contains behavioral
categories of safe driving and distractions. Since then,
numerous databases have been proposed to progressively
enrich body-based monitoring methods. These include
AUC-DD [16], Loli [64], MDAD [28], 3MDAD [29], and
DriPE [21]. More recently, some compounding efforts have
considered extracting additional information, such as vehi-
cle interiors [53], objects [59], and optical flow [94].

We show a specification comparison with the relevant as-
sistive driving perception datasets for the proposed AIDE.
As shown in Table 1, previous datasets either deal with spe-

cific perception tasks or only focus on driver-related charac-
teristics. In contrast, AIDE considers the rich context clues
inside and outside the vehicle and supports the collaborative
perception of driver behavior, emotion, traffic context, and
vehicle condition. AIDE is more multi-purpose, diverse,
and holistic for assistive driving perception.

2.2. Driving-aware Network Architectures

DMS-oriented models usually adopt network structures
that are convenient to deploy on-road vehicles. With ad-
vances in deep learning techniques [5, 6, 7, 8, 14, 32, 40, 45,
47, 48, 49, 70, 75, 76, 77, 78, 79, 80, 82, 83, 84, 92, 100],
most approaches that accompany datasets prioritize im-
plementing classical models. These widely accepted net-
work architectures include AlexNet [39], GoogleNet [71],
VGG [68], and ResNet [23] families. Meanwhile,
lightweight models with resource-efficient advantages are
also favored enough, such as MobileNet [25, 65] and Shuf-
fleNet [51, 96]. 3D-CNN models such as C3D [72], I3D [4],
and 3D-ResNet [22] have been implemented to capture
spatio-temporal features in video-based data. Several tai-
lored structures have also been presented to suit specific
data patterns [52, 94]. We fully exploit the classical,
lightweight, and SOTA baselines to implement extensive
experiments across various learning paradigms. The diverse
combinations of models for different input streams provide
valuable insights into the appropriate structure selection.

2.3. Driving-aware Fusion Strategies

Various fusion strategies are proposed to meet multi-
stream/modal input requirements in driving perception.
The mainstream fusion patterns are divided into data-level,
feature-level, and decision-level. For example, Ortega et
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Figure 2. Camera setup for AIDE in the real vehicle scenario. The
setup involves (a) exterior and (b) interior camera layouts.

al. [59] perform a data-level fusion of infrared and depth
frames based on pixel-wise correlation to achieve better
perception performance than unimodality. The common
feature-level fusion is based on feature summation or con-
catenation [81]. Moreover, Kopukl et al. [37] train a sepa-
rate model for each view from the driver and then achieve
decision-level fusion based on similarity scores. Here, we
introduce two fusion modules at the feature level to learn
effective representations among multiple feature streams.

3. The AIDE Dataset
3.1. Data Collection Specification

To tackle the lack of perceptually comprehensive driver
monitoring benchmarks, we collect the AIDE dataset under
the consecutive manual driving mode, which is essential for
the transition of automated vehicles from level 2 to 3 [26].
Camera Setup. The driving environment and camera lay-
out are shown in Figure 2. Specifically, the experimental
vehicle is used on real roads to capture rich information
about the interior and exterior of the vehicle. The primary
data source is four Axis cameras with 1920×1080 resolu-
tion. The frame rate is 15 frames per second, and the dy-
namic range is 120 dB. Concretely, a camera is mounted
in front of the vehicle’s each side mirror to produce a left
and right view capturing the traffic context. Meanwhile, the
front view camera is mounted in the dashboard’s centre to
observe the front scene. For the inside view, we record the
driver’s natural reactions from the side in a non-intrusive
way, with a clear perspective of the face, body, and hands in-
teracting with the steering wheel. The four connected cam-
eras are synchronized via the Precision Timing Protocol.
Collection Programme. Naturalistic driving data is col-
lected from several drivers with different driving styles and
habits to ensure the authenticity of AIDE. Unlike previous
efforts [28, 29, 53, 59] to force subjects to perform specific
tasks/training to induce distraction, our data is derived from
the most realistic driving performance of drivers who are
not informed in advance. The guideline aims to bridge the
driving reaction gap between the experimental domain and

Figure 3. The percentage of samples in each category for the four
driving perception tasks.

the realistic monitoring domain. In this case, each partici-
pant’s driving operation is conducted at different times on
different days to contain diverse driving scenarios. From
Figure 1, these scenario factors include distinct light inten-
sities, weather conditions, and traffic contexts, increasing
the challenge and diversity of AIDE.

3.2. Data Stream Recording and Annotation

Recorded Data Streams. Our AIDE has various infor-
mation types to provide rich data resources for different
downstream tasks, including face, body, and traffic con-
text (i.e., out-of-vehicle views) video data, and keypoint
information. As the duration of the different driving re-
actions varies, the raw video data from the four views are
first synchronously processed into 3-second short video
clips using the Moviepy Library. The processing facil-
itates the AIDE-based monitoring system to satisfy real-
time responses within a fixed span. For the inside view
of Figure 1(b), the face detector MTCNN [95] is utilized
to capture the driver’s facial bounding box. Meanwhile, the
pose estimator AlphaPose [17] is employed to obtain driver-
centred information, including the body bounding box, 2D
skeleton posture (26 keypoints), and gesture (42 keypoints).
We eliminate clips with missing results based on the above
detection to ensure data integrity. An additional operation
in the retained clips is applied to fill missing joints using
interpolation of adjacent frames.
Task Determination. Four pragmatic assistive driving
tasks are proposed to facilitate holistic perception. En-
dogenous Driver Behavior and Emotion Recognition (DBR,
DER) are adopted because these two tasks intuitively reflect
distraction/inattention [37, 42]. Exogenously, Traffic Con-
text Recognition (TCR) is considered since the scene con-
text provides valuable evidence for understanding driver in-
tention [61]. Also, we establish Vehicle Condition Recogni-
tion (VCR) as the driver’s state usually accompanies a tran-
sition in vehicle control [38]. These complementary tasks
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all benefit from the rich data resources from AIDE.
Label Assignment. The dataset annotation involves 12 pro-
fessional data engineers with bespoke training. The anno-
tation is performed blindly and independently, and we uti-
lize the majority voting rule to determine the final labels.
To adequately represent real driving situations, the behav-
ior categories consist of one safe normal driving and six
secondary activities that frequently cause traffic accidents.
For emotions, five categories that occur frequently and tend
to induce distractions in drivers are considered. Meanwhile,
six research experts in human-vehicle interaction are asked
to rate three traffic context categories and five vehicle con-
dition categories. Figure 1(c) displays each category from
the different tasks and provides a corresponding illustration.
Data Statistic. Eventually, we obtained 2898 data samples
with 521.64K frames. Each sample consists of 3-second
video clips from four views, where the duration shares a
specific label from each perception task. The inside clips
contain the estimated bounding boxes and keypoints on
each frame. AIDE is randomly divided into training (65%),
validation (15%), and testing (20%) sets without consider-
ing held-out subjects due to the naturalistic nature of data
imbalance. A stratified sampling is applied to ensure that
each set contains samples from all categories for different
tasks. Figure 3 shows the percentage of samples in each
category for each task.
Ethics Statement. All our materials adhere to ethical stan-
dards for responsible research practice. Each participant
signed a GDPR* informed consent which allows the dataset
to be publicly available for research purposes.

4. Assistive Driving Perception Framework
4.1. Model Zoo

To thoroughly explore AIDE, we introduce three types of
baseline frameworks to cover most driving perception mod-
eling paradigms via extensive methods. As Figure 4 shows,
our frameworks accommodate all available streams, includ-
ing video information of the face, body, and scene, as well
as keypoints of gesture and posture.
2D Pattern. Classical 2D ConvNets such as ResNet [23]
and VGG [68] have significantly succeeded in image-based
recognition. Here, we reuse them with minimal change. For
processing a clip, the hidden features of sampled frames
are extracted simultaneously and then aggregated by a 1D
convolutional layer. For the skeleton keypoints, we design
Multi-Layer Perceptrons (MLPs) with GeLU [24] activation
to perform feature extraction. Meanwhile, a Spatial Embed-
ding (SE) is also added to provide location information.
2D + Timing Pattern. This pattern aims to introduce an
additional sequence model after 2D ConvNets to learn tem-
poral representations. As a result, a Transformer Encoder

* https://gdpr-info.eu/
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Figure 4. Our assistive driving perception framework pipeline.

(TransE) [74] is employed to refine the hidden features
among sampled frames and then aggregated by a temporal
convolutional layer. Furthermore, we augment a Temporal
Embedding (TE) for the MLPs to maintain the temporal dy-
namics of the gesture and posture modalities.
3D Pattern. The 3D network structures directly model hi-
erarchical representations by capturing spatio-temporal in-
formation. We consider various impressive models, includ-
ing 3D-ResNet [22], C3D [72], I3D [4], SlowFast [19],
and TimeSFormer [2]. Furthermore, the 3D versions
of lightweight networks such as MobileNet-V1/V2 [25,
65] and ShuffleNet-V1/V2 [96, 51], which are resource-
efficient for DMS, are also considered. In this case, we
introduce the remarkable ST-GCN [85] to process the skele-
ton sequences via multi-level spatio-temporal graphs.

4.2. Feature Fusion and Learning Strategies

How to effectively fuse the multi-stream/modal features
extracted by the above candidate networks is crucial for di-
verse perception tasks. To this end, we propose two sophis-
ticated feature-level fusion modules to learn valuable shared
representations among multiple features.
Adaptive Fusion Module. Modality heterogeneity leads to
distinct features contributing differently to the final predic-
tion. The adaptive fusion module aims to assign dynamic
weights to target features Fta ∈ {hf ,hb,hg,hp,hs} from
the face, body, gesture, posture, and scene based on their
importance. Specifically, we design one shared query vec-
tor q ∈ Rd×1 to obtain the attention values ψta as follows:

ψta = qT · tanh(Wta · Fta + bta), (1)

where Wta ∈ Rd×d and bta ∈ Rd×1 are learnable param-
eters. Immediately, the attention values ψta are normalized
with the softmax function to obtain the final weights:

γta =
exp(ψta)∑

ta∈{f,b,g,p,s} exp(ψta)
. (2)

The process provides optimal fusion weights for each fea-
ture to highlight the powerful features while suppressing the
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Table 2. Comparison results of baseline models in three distinct patterns on the AIDE for four tasks. In each pattern, the best results
are marked in bold, and the second-best results are marked underlined. The following abbreviations are used. Res: ResNet [23]; MLP:
multi-layer perception; SE: spatial embedding; TE: temporal embedding; TransE: transformer encoder [74]; PP: pre-training on the
Places365 [99] dataset; CG: coarse-grained.

Pattern Backbone DER DBR TCR VCR IDFace Body Gesture Posture Scene CG-Acc CG-F1 Acc F1 CG-Acc CG-F1 Acc F1 Acc F1 Acc F1

2D

Res18 [23] Res34 MLP+SE MLP+SE PP-Res18 [99] 71.08 67.54 69.05 63.06 74.84 74.92 63.87 59.52 88.01 86.63 78.16 77.27 (1)
Res18 Res34 MLP+SE MLP+SE Res34 73.23 70.47 71.26 68.71 75.37 75.58 65.35 63.29 83.74 81.28 77.12 75.23 (2)
Res34 Res50 MLP+SE MLP+SE Res50 72.62 68.75 69.68 64.83 73.01 72.75 59.77 54.64 80.13 74.47 71.26 69.53 (3)

VGG13 [68] VGG16 MLP+SE MLP+SE VGG16 73.15 70.25 70.72 67.11 74.71 74.61 63.65 58.12 82.77 80.42 77.94 76.29 (4)
VGG16 VGG19 MLP+SE MLP+SE VGG19 71.23 67.79 69.31 64.67 72.66 72.73 62.34 57.33 83.58 80.67 75.13 73.96 (5)

2D +
Timing

Res18+TransE Res34+TransE MLP+TE MLP+TE PP-Res18+TransE 73.28 71.29 70.83 67.14 76.44 76.86 67.32 64.45 90.54 89.66 79.97 77.94 (6)
Res18+TransE Res34+TransE MLP+TE MLP+TE Res34+TransE 75.37 74.68 72.65 70.96 76.35 76.77 67.08 64.11 86.63 84.87 78.46 76.51 (7)
Res34+TransE Res50+TransE MLP+TE MLP+TE Res50+TransE 72.89 69.06 70.24 65.65 74.28 74.32 63.54 59.91 82.57 77.29 73.69 72.26 (8)

VGG13+TransE VGG16+TransE MLP+TE MLP+TE VGG16+TransE 74.55 73.45 71.12 69.58 76.37 76.81 67.15 64.27 85.13 83.34 78.58 76.77 (9)
VGG16+TransE VGG19+TransE MLP+TE MLP+TE VGG19+TransE 72.57 68.39 69.46 64.75 73.71 73.48 65.48 61.71 85.74 83.95 77.91 76.05 (10)

3D

MobileNet-V1 [25] MobileNet-V1 ST-GCN ST-GCN MobileNet-V1 74.71 73.47 72.23 69.61 75.04 75.26 64.20 61.48 88.34 86.95 77.83 75.69 (11)
MobileNet-V2 [65] MobileNet-V2 ST-GCN ST-GCN MobileNet-V2 70.27 66.54 68.47 62.58 70.28 69.98 61.74 54.74 86.54 82.38 78.66 76.78 (12)
ShuffleNet-V1 [96] ShuffleNet-V1 ST-GCN ST-GCN ShuffleNet-V1 75.21 74.44 72.41 70.82 76.19 76.36 68.97 67.13 90.64 89.98 80.79 79.66 (13)
ShuffleNet-V2 [51] ShuffleNet-V2 ST-GCN ST-GCN ShuffleNet-V2 74.38 73.42 70.94 69.53 73.56 73.78 64.04 61.75 89.33 87.54 78.98 77.52 (14)

3D-Res18 [22] 3D-Res34 ST-GCN ST-GCN 3D-Res34 73.07 70.23 70.11 65.15 78.16 78.35 66.52 64.57 88.51 87.26 81.12 79.71 (15)
3D-Res34 3D-Res50 ST-GCN ST-GCN 3D-Res50 70.61 67.10 69.13 62.95 71.26 71.01 63.05 57.97 87.82 84.86 79.31 76.87 (16)
C3D [72] C3D ST-GCN ST-GCN C3D 66.35 62.04 63.05 57.06 73.57 73.64 63.95 60.36 85.41 80.44 77.01 74.84 (17)
I3D [4] I3D ST-GCN ST-GCN I3D 71.43 68.05 70.94 65.99 74.38 74.36 66.17 61.35 87.68 84.78 79.81 78.66 (18)

SlowFast [19] SlowFast ST-GCN ST-GCN SlowFast 75.17 74.24 72.38 70.77 75.53 75.73 61.58 59.41 86.86 84.66 78.33 76.66 (19)
TimeSFormer [2] TimeSFormer ST-GCN ST-GCN TimeSFormer 76.52 74.92 74.87 72.56 73.73 73.91 65.18 63.24 92.12 91.81 78.81 76.91 (20)

Table 3. Configuration for input streams. C: channels; F: frames;
H: height; W: width; K: keypoint number; P: human number.

Stream Modality Configuration

Face RGB 3 (C)×16 (F)×64 (H)×64 (W)
Body RGB 3 (C)×16 (F)×112 (H)×112 (W)

Gesture Skeleton Keypoint 3 (C)×16 (F)×42 (K)×1 (P)
Posture Skeleton Keypoint 3 (C)×16 (F)×26 (K)×1 (P)
Scene RGB 3 (C)×64 (F)×224 (H)×224 (W)

weaker ones. The final representation Zfin ∈ Rd is ob-
tained by the weighted summation:

Zfin =
∑

ta∈{f,b,g,p,s}

γta ⊙ Fta. (3)

Cross-attention Fusion Module. The core idea of this
module is to learn pragmatic representations via fine-
grained information interaction. We utilize cross-attention
to achieve potential adaption from the concatenated source
feature Fso = [hf ,hb,hg,hp,hs] ∈ R5d to the target fea-
tures Fta to reinforce each target feature effectively. In-
spired by the self-attention [74], we embed Fta into a space
denoted as Qta = BN (Fta)WQta , while embedding Fso

into two spaces denoted as Gso = BN (Fso)WGso
and

Uso = BN (Fso)WUso
, respectively. WQta

∈ Rd×d,
{WGso

, WUso
} ∈ R5d×5d are embedding weights and

BN means the batch normalization. Formally, the cross-
attention feature interaction is expressed as follows:

Fso→ta = softmax(QtaGT
so)Uso ∈ Rd. (4)

Subsequently, the forward computation is expressed as:

Zta = BN(Fta) + Fso→ta, (5)
Zta = fδ(Fta) +Zta, (6)

where fδ(·) is the feed-forward layers parametrized by δ,
and Zta ∈ {Zf ,Zb,Zg,Zp,Zs} ∈ Rd. The reinforced

target features Zta are concatenated to get the final repre-
sentation Zfin ∈ Rd via dense layers.

Finally, four fully connected layers with the task-specific
number of neurons are introduced after Zfin.
Learning Strategies. The standard cross-entropy losses are
adopted as Lk

task = − 1
n

∑n
i=1 y

k
i · logŷki for the four classi-

fication tasks, where yki is the ground truth of the k-th task
and n is the number of samples in a batch. The total loss
is computed as Ltotal =

∑4
k=1 λkLk

task, where λk is the
trade-off weight. To seek a suitable balance among multi-
ple tasks, we introduce the dynamic weight average [46] to
adaptively update the weight λk of each task at each epoch.

5. Experiments
5.1. Data Processing

The input streams are selected from uniform temporal
position sampling in synchronized video clips and skele-
ton sequences, resulting in every 16-frame sample for face,
body, gesture, and posture data. To learn the scene seman-
tics efficiently, we merge the sampled clips from the four
whole views to produce each 64-frame scene data. Each
sample is flipped horizontally and vertically with a 50% ran-
dom probability for data augmentation. For the left-right-
hand keypoints, we create a link between joints #94 and
#115 to form an overall gesture topology for processing by
a single ST-GCN [85]. The detailed input configurations for
the different streams in each sample are shown in Table 3.

5.2. Implementation Details

Experimental Setup. The whole framework is built on the
PyTorch-GPU [60] using four Nvidia Tesla V100 GPUs.
The AdamW [50] optimizer is adopted for network opti-
mization with an initial learning rate of 1e-3 and a weight
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Table 4. Experimental results for different streams/modalities.
Only weighted F1 scores are reported due to similar results to Acc.

Stream/Modality DER DBR TCR VCR

Face Body Gesture Posture Scene F1 F1 F1 F1

" 66.41 51.07 48.51 41.69
" 63.93 62.38 55.47 50.01

" 52.21 57.97 50.74 58.26
" 65.52 63.15 55.28 47.32

" 49.75 45.68 86.33 75.84

" " 67.34 62.93 59.05 52.97
" " " 67.88 65.42 65.18 64.40
" " " " 70.27 66.84 73.63 67.54
" " " " " 70.82 67.13 89.98 79.66

decay of 1e-4. For a fair comparison, the uniform batch
size and epoch across models are set to 16 and 30, respec-
tively. The output dimension d of all models is converted
to 128 by minor structural adjustments. In practice, all the
hyper-parameters are determined via the validation set. Our
cross-attention fusion module is the default fusion strategy.
Evaluation Metric. We measure recognition performance
by classification accuracy (Acc) and weighted F1 score
(F1). Considering the demand for practicality [38] in DMS,
we provide three-category evaluations of polar emotions
and two-category evaluations of abnormal behaviors in the
main comparison. Please refer to the supplementary for the
new taxonomy. The corresponding metrics are the coarse-
grained accuracy (CG-Acc) and the F1 score (CG-F1).

5.3. Experimental Results and Analyses

Main Performance Comparison. As shown in Table 2,
we comprehensively report the comparison results of dif-
ferent baseline models combined in the three learning pat-
terns. The following are some key observations. (i) The
overall performance (Acc/F1) of the DER, DBR, TCR, and
VCR tasks approaches only around 72%, 67%, 89%, and
79%, respectively, which still leaves considerable improve-
ment room. (ii) The results in 3D and 2D + Timing pat-
terns are generally better than those in 2D for all four tasks,
demonstrating that considering temporal information can
help improve perception performance. This makes sense
as sequential modeling captures the rich dynamical clues
among frames. For instance, the TransE-based Experiment
(9) shows a significant gain of 3.50% and 6.15% in Acc and
F1 on the DBR task compared to its 2D version (4). (iii) In
the 3D pattern, resource-efficient model combinations can
also achieve competitive or even better results compared to
dense structures, as in Experiments (11, 13). This finding
inspires researchers to consider the performance-efficiency
trade-off when selecting suitable DMS models. (iv) Ex-
periments (1, 6) reveal that the rich scene semantics in the
Places365 dataset [99] facilitates capturing valuable context
prototypes from the pre-trained backbone, leading to better
performance on the TCR and VCR tasks.
Importance of Distinct Streams/Modalities. To investi-

Table 5. Experimental results for different perception tasks. “2DT”
means “2D + Timing” pattern. “w/o” stands for the without.

Config Pattern DER DBR TCR VCR
Acc F1 Acc F1 Acc F1 Acc F1

Full Tasks
2D 71.26 68.71 65.35 63.29 83.74 81.28 77.12 75.23

2DT 70.83 67.14 67.32 64.45 90.54 89.66 79.97 77.94
3D 74.87 72.56 65.18 63.24 92.12 91.81 78.81 76.91

w/o DER
2D - - 63.13 60.96 84.55 81.79 77.07 75.16

2DT - - 65.08 62.72 90.20 89.27 79.86 77.85
3D - - 63.47 61.35 91.86 90.74 78.85 76.94

w/o DBR
2D 70.29 67.44 - - 80.92 78.66 74.58 72.92

2DT 68.03 64.58 - - 87.22 86.51 77.51 75.67
3D 72.54 69.62 - - 89.61 89.37 76.42 74.55

w/o TCR
2D 71.23 68.67 64.42 62.36 - - 76.72 74.60

2DT 70.95 67.22 65.18 62.33 - - 77.54 75.46
3D 74.61 72.28 65.15 63.19 - - 78.02 76.15

w/o VCR
2D 71.43 69.17 63.24 63.15 83.65 81.14 - -

2DT 70.79 67.02 66.11 63.04 91.23 90.28 - -
3D 74.57 72.18 64.76 62.75 92.04 91.75 - -

gate the impact of distinct streams/modalities, we conduct
experiments using the performance-balanced combination
(13) with increasing inputs. Table 4 shows the following in-
teresting findings. (i) For isolated inputs, the scene stream
provides the most beneficial visual clues for determining
traffic context and vehicle condition. The body and pos-
ture modalities are more competitive on the DER and DBR
tasks, indicating that bodily expressions can convey criti-
cal intent information. The observation is consistent with
psychological research [9, 89]. (ii) With the progressive in-
crease in information channels, various driver-based char-
acteristics contribute to emotion and behavior understand-
ing. (iii) The body and posture streams bring meaningful
gains of 10.54% and 8.45% to the TCR task compared to
the preceding one, showing that driver attributes are poten-
tially related to the traffic context. For example, drivers usu-
ally change their gait during traffic jam to perform irrelevant
operations [43]. (iv) The gesture modality promisingly im-
proves the VCR task’s result by 11.43% compared to the
preceding one. A reasonable interpretation is that vehicle
states highly correlate with specific hand motions, e.g., the
two hands generally cross when the vehicle is turning.
Necessity of Different Perception Tasks. In Table 5, we
select the Experiments (2, 6, 20) to verify the necessity
of different perception tasks in the three patterns. Each
task is removed separately to observe the performance vari-
ation of the other tasks. We have the following insights.
(i) When all four tasks are present simultaneously, the best
overall results are achieved across different patterns, con-
firming that these tasks can synergistically achieve holis-
tic perception. (ii) The interaction between the DER and
DBR tasks is more significant, implying a solid mapping
between driver-based representations. For instance, nega-
tive emotional states (e.g., anxiety) are more likely to induce
secondary behaviors (e.g., looking around) and cause acci-
dents [30]. (iii) The DBR task offers valuable average gains
of 2.88%/2.74% and 2.46%/2.31% for the TCR and VCR
tasks regarding Acc/F1, respectively, indicating a beneficial
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(a) Driver emotion recognition (b) Driver behavior recognition (c) Traffic context recognition (d) Vehicle condition recognition

Figure 5. Confusion matrices for the best model performance from the four tasks.

Table 6. Experimental results for multiple views and different fu-
sion strategies. “w/o” stands for the without.

Config DER DBR TCR VCR
Acc Acc Acc Acc

Full Framework 70.11 66.52 88.51 81.12

Effectiveness of Multiple Views

w/o Inside View 68.08 64.41 88.54 80.64
w/o Front View 69.85 65.67 76.80 76.72
w/o Left View 70.11 66.48 84.39 71.43

w/o Right View 70.06 66.55 85.26 72.55

Impact of Different Fusion Strategies

Adaptive Fusion Module (ours) 70.20 65.36 88.57 80.34
Feature Summation 66.85 64.53 85.19 77.56

Feature Concatenation 68.33 64.79 87.05 78.02

correlation between the driver’s state inside the vehicle and
the traffic scene outside.
Effectiveness of Multiple Views. From Table 6 (top), we
employ the Experiment (15) to evaluate the effectiveness of
multiple views. (i) We find that the DER and DBR tasks
benefit mainly from the inside view, as the interior scene
provides necessary recognition clues, such as driver-related
information and vehicle internals. The inside view brings
gains (Acc) of 2.03% and 2.11% for driver emotion and
behavior understanding, respectively. (ii) The three out-
of-vehicle views provide indispensable contributions to the
TCR and VCR tasks, as they contain perceptually critical
traffic context semantics. (iii) The multi-view setting of
AIDE achieves an overall better performance across tasks
via complementary information sources.
Impact of Fusion Strategies. We explore the impact of
different fusion strategies in Table 6 (bottom). (i) Our adap-
tive fusion achieves a noteworthy performance compared to
the default cross-attention fusion, indicating that both fu-
sion paradigms are superior and usable. (ii) Feature sum-
mation and concatenation may introduce redundant infor-
mation leading to poor results and sub-optimal solutions.
Analysis of Confusion Matrices. For the different clas-
sification perception tasks, Figure 5 shows the confusion
matrices under the best results in each task to analyze the
performance of each class. (i) Due to the interference of
the long-tail distribution (Figure 3), some head classes are

usually confused with other classes, such as “peace” from
the DER task in Figure 5(a) and “forward moving” from the
VCR task in Figure 5(d). Moreover, the sparse tail samples
lead to inadequate learning of class-specific representations,
such as “dozing off ” from the DBR task in Figure 5(b).
These phenomena are inevitable because the driver remains
safely driving for long periods of time in most naturalistic
scenarios. (ii) In Figure 5(c), “traffic jam” creates evident
confusion with the other classes. The possible reason is that
the rich information from distinct out-of-vehicle views un-
intentionally exaggerates the scene context clues.

6. Conclusion and Discussion

In this paper, we present the AssIstive Driving pErcep-
tion Dataset (AIDE) to facilitate the development of next-
generation Driver Monitoring Systems (DMS) in a percep-
tually comprehensive manner. With its multi-view, multi-
modal, and multi-tasking advantages, AIDE achieves ef-
fective collaborative perception among driver emotion, be-
havior, traffic context, and vehicle condition. In this case,
we evaluate extensive model combinations and compo-
nent ablations in three pattern frameworks to systematically
demonstrate the importance of AIDE.

AIDE potentially provides a valuable resource for study-
ing distinct driving recognition tasks with imbalanced data.
Furthermore, we empirically suggest that future research
could be considered as follows: (i) Mining causal effects
among driving dynamics inside and outside the vehicle to
disentangle data distribution gaps in different tasks. (ii)
Developing unified resource-efficient structures to achieve
performance-efficiency trade-offs in the pragmatic DMS.
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