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Abstract

Contrastive Language-Image Pre-training (CLIP) has
significantly boosted the performance of various vision-
language tasks by scaling up the dataset with image-text
pairs collected from the web. However, the presence of in-
trinsic noise and unmatched image-text pairs in web data
can potentially affect the performance of representation
learning. To address this issue, we first utilize the OFA
model to generate synthetic captions that focus on the im-
age content. The generated captions contain complemen-
tary information that is beneficial for pre-training. Then, we
propose an Adaptive Language-Image Pre-training (ALIP),
a bi-path model that integrates supervision from both raw
text and synthetic caption. As the core components of ALIP,
the Language Consistency Gate (LCG) and Description
Consistency Gate (DCG) dynamically adjust the weights
of samples and image-text/caption pairs during the train-
ing process. Meanwhile, the adaptive contrastive loss
can effectively reduce the impact of noise data and en-
hances the efficiency of pre-training data. We validate
ALIP with experiments on different scales of models and
pre-training datasets. Experiments results show that ALIP
achieves state-of-the-art performance on multiple down-
stream tasks including zero-shot image-text retrieval and
linear probe. To facilitate future research, the code and pre-
trained models are released at https://github.com/
deepglint/ALIP.

1. Introduction
With the development of mobile networks and social

platforms, there has been an explosion in the production
of image-text pairs on a massive scale [3, 13]. This un-
precedented abundance of data has laid a solid foundation
for vision-language pre-training [32, 15]. Through image-
text alignment on large-scale data, the Contrastive Lan-
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Figure 1. Examples from the YFCC15M dataset to illustrate the
mismatched (left) and matched (right) image-text pairs. The syn-
thetic caption is generated from the OFA [37] model. The raw text
description “Leisure Sunday” is less aligned with the raw image in
the left sample, while the synthetic caption “A woman sitting on a
step reading a book” is a more accurate representation.

guage–Image Pre-training (CLIP) method [32] has demon-
strated huge success in multi-modal learning. Specifically,
CLIP learns two separate unimodal encoders for image and
text using a contrastive loss, one of the most effective losses
for representation learning [36, 14, 5, 7]. Nevertheless, the
negative impact of the noise in the web-crawled data has
been largely overlooked, shadowed by the performance gain
achieved from scaling up the training data [31, 1].

To facilitate research on large-scale multi-modal models,
LAION400M [34] and LAION5B [33] were released, com-
prising 400 million and 5 billion image-text pairs respec-
tively, which were filtered using the CLIP model. How-
ever, the current offline filtering approach results in a sub-
stantial loss of training data, as the original dataset con-
tains 5 billion image-text pairs. Furthermore, this ap-
proach may introduce biases due to the limited represen-
tation power of the pre-trained model used for filtering.
Despite efforts to curate data for high-quality image-text
pairs (e.g., LAION [34, 33] and YFCC100M [35]), noisy
and poorly-aligned pairs still exist in existing image-text
datasets, which can potentially impact the performance of
representation learning.

In Fig. 1, we present two samples from YFCC15M. The
raw text of the right sample (“Drink beer”) is correct and
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matches the content in the image, while the raw text of
the left sample (“Leisure Sunday”) is too abstract and does
not exactly match the concrete visual signals of the image.
To alleviate the influence of the noisy and poorly-aligned
image-text pairs, BLIP [19] bootstraps the captions with
an online captioner generating synthetic captions and an
online filter removing the noisy ones, while momentum-
based methods (e.g., ALBEF [20] and PSD [2]) employs
soft labels computed using embeddings from a moving
average momentum model. However, these filtering and
momentum-based methods require additional computation
costs and memory consumption.

In this paper, we first employ the OFA [37] model to
generate synthetic captions that are consistent with the im-
age content. Specifically, the OFA [37] model is guided
by the prompt “What does the image describe” to generate
synthetic captions. Compared with the raw texts in Fig. 1,
the synthetic captions “A woman sitting on a step reading a
book” and “A bunch of green cans of beer parked in front
of a building” provide additional as well as reliable descrip-
tions, such as object information (book, cans), attribute in-
formation (green), action information (sitting, parked), and
spatial relationship (in front of), which can be used to en-
hance the representation learning.

Given the normalized embedding features of the im-
age, raw text, and synthetic caption, we propose an Adap-
tive Language-Image Pre-training (ALIP) method, a bi-path
model that integrates raw text supervision and synthetic
caption supervision. As the core components of ALIP,
the Language Consistency Gate (LCG) and the Descrip-
tion Consistency Gate (DCG) are designed to dynamically
adjust the weights of samples and image-text/caption pairs
during the training process. The LCG considers the con-
sistency between raw text and synthetic caption to identify
the high-quality sample, while the DCG considers the con-
sistency of image-text or image-caption to adjust the con-
trastive pair loss. The adaptive contrastive loss influenced
by the above weights substantially reduces the impact of
noise data and enhances the efficiency of pre-training data.
Extensive experiments show that ALIP achieves state-of-
the-art performance on multiple downstream tasks includ-
ing zero-shot image-text retrieval and linear probe. Ex-
periment results on different model sizes and pre-training
datasets also prove the strong robustness of the ALIP. The
main contributions of this paper are summarized as follows:

• We propose a bi-path model that integrates raw text
supervision and synthetic caption supervision. Based
on the similarity triplet between image, text, and cap-
tion, the proposed method can dynamically adjust
the weights of samples and image-text/caption pairs
through the language consistency gate and description
consistency gate.

• Based on the adaptive weights, we design the adap-

tive contrastive loss, which can effectively reduce the
impact of noise data and improve the pre-training data
efficiency.

• We conduct extensive experiments and prove that
ALIP achieves state-of-the-art performance on multi-
ple downstream tasks including zero-shot image-text
retrieval and linear probe task.

2. Related Work
Image-Language Pre-training. Image-language pre-
training aims to improve the performance of downstream
vision and language tasks by pre-training the model on
large-scale image-text pairs. The milestone work CLIP [32]
has attracted unprecedented attention for its impressive
zero-shot recognition ability and excellent transfer abil-
ity. Recently, a number of improved methods based on
CLIP have been proposed. For more effective training,
SLIP [25] significantly improves performance by combin-
ing self-supervised learning and CLIP pre-training. De-
CLIP [21] explores self-supervision and cross-modal multi-
view supervision in the million-scale vision-language pre-
training. FILIP [39] learns fine-grained representation for
patches in the images and words in the sentences. Uni-
CLIP [18] improves data efficiency by integrating con-
trastive losses defined across multiple domains into a sin-
gle universal space. HiCLIP [12] equips both the visual and
language branches in CLIP with hierarchy-aware attention
which significantly improves the cross-modal alignment. In
this paper, we propose an Adaptive Image-Language Pre-
training (ALIP) method to effectively utilize raw text super-
vision guided by synthetic captions.
Noise Alleviation for Contrastive Pre-training. Large-
scale contrastive pre-training [32, 15, 34, 33] typically re-
quires dataset sizes of hundreds of millions to billions level.
Despite the performance gain obtained by scaling up the
training data, the noisy web text is sub-optimal for image-
language pre-training. Nevertheless, the cleaning strategy
applied to these large-scale data is primitive (e.g., remov-
ing samples with short or non-English captions) or biased
(e.g., filtering samples based on alignment scores from ex-
isting models) [6]. To reduce the adverse effects of noisy
image-text pairs in the training data, ALBEF [20] and
PSD [2] use soft labels computed using embeddings from a
moving average momentum model. However, momentum-
based approaches are infeasible for large-scale training due
to the increased computation and memory consumption.
LiT [40] shows that when a well pre-trained vision encoder
is adopted, it is better to lock the vision encoder to protect
vision representations from being corrupted by noisy lan-
guage supervision. However, LiT lacks the ability to align
complex text to a fully-trained image encoder, thus under-
performing on the multi-modal task, cross-modal retrieval.
BLIP [19] uses the bootstrapped image-grounded text en-
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coder to filter out noisy captions, but the captioner and filter
models need to be finetuned on the COCO dataset before-
hand, and these models also increase the overall number of
parameters of the model.

In contrast to the previous work, we introduce synthetic
captions to alleviate the influence of noise in large-scale
vision-language pre-training. Our method can dynamically
adjust the weights of samples and image-text pairs through
the language consistency gate and description consistency
gate. Meanwhile, the adaptive contrastive loss can effec-
tively reduce the impact of noise data and improve the pre-
training data efficiency. Our approach is a cheaper alter-
native since it does not require us to run the expensive on-
line model throughout the training as synthetic captions can
be pre-computed and stored offline. In addition, we take
advantage of all training samples with adaptive weights in-
stead of directly filtering out image-text pairs.

3. Methodology
In this section, we first introduce the model architecture

of the proposed method (Sec. 3.1). Then, we delineate the
Language Consistency Gate (LCG) and Description Con-
sistency Gate (DCG) in Sec. 3.2 and 3.3. Lastly, we explain
the training objectives of the proposed adaptive contrastive
loss for vision-language representation learning (Sec. 3.4).

3.1. ALIP Architecture

The primary focus of this paper is on the task of
contrastive image-text pre-training. Different from the
image-text pairs used in CLIP [32], we adopt the off-
the-shelf OFAbase [37] model to generate a synthetic
caption for each image by applying the prompt “What
does the image describe?”. This method results in a
dataset D = {(Xi, Ti, Ci)}Ni=1 comprising of image-
text-caption triplets. Next, we train a dual encoder
model Φ = {Φimage,Φtext/caption}, where Φimage rep-
resents the image encoder, and Φtext/caption denotes the
shared text/caption encoder. We use the shorthand x =
Φimage(X)/ ∥Φimage(X)∥, t = Φtext(T )/ ∥Φtext(T )∥, and
c = Φcaption(C)/ ∥Φcaption(C)∥ to denote the l2 normalized
embeddings of image, text, and caption, respectively, for an
image-text-caption triplet (X,T,C).

Large vision and language datasets such as YFCC100M
[35] and LAION [21] have collected a large number of
image-caption pairs from the web, which makes them a
good fit for large-scale contrastive pre-training. However,
these datasets lack semantic-based curation and can con-
tain unilateral or irrelevant raw texts. Moreover, the auto-
matically generated captions can be also noisy or lack fine
granularity[19]. Fig. 3 shows some examples of the web
raw text T and the synthetic caption C. Each box in the fig-
ure represents a sample that includes an image along with its
corresponding text and caption descriptions. To mitigate the

negative impact of such noise during training, our approach
takes into account the similarities between the image, text,
and caption triplet.

As illustrated in Fig. 2, we propose an Adaptive
Language-Image Pre-Training (ALIP) approach to make
full use of data and reduce the impact of noise. Using
the l2 normalized triplet embeddings x, t, and c of im-
age, text, and caption, we can calculate three types of
similarities: (1) the similarity between raw text and syn-
thetic caption Stc = t ∗ c, (2) the similarity between im-
age and raw text Sxt = x ∗ t, and (3) the similarity be-
tween synthetic caption and image Sxc = x ∗ c. Based
on the triplet similarities, we design two gate functions,
Language Consistency Gate (LCG) and Description Con-
sistency Gate (DCG). More specifically, the LCG predicts a
sample weight based on the similarity between raw text em-
bedding and synthetic caption embedding (Stc). Besides,
the DCG computes the image-description weights based on
the consistency between the image and text/caption (Sxt

and Sxc). Finally, these weights are fed into the adaptive
contrastive loss to reduce the impact of noise.

3.2. Language Consistency Gate
In ensemble learning, confidence in the prediction can

be increased when two independent inferences have arrived
at the same prediction [22]. Inspired by this, we boost the
label confidence of a training sample when the similarity
between the raw text and synthetic caption is high. To fa-
cilitate the accurate assessment of language labels, we in-
troduce a historical average similarity metric Htc, which is
dynamically updated during the training process as follows:

Htc = m ∗Htc + (1−m) ∗ S̄tc, (1)

where m is the momentum and S̄tc denotes the average of
Stc. As both raw text and synthetic caption are explaining
the same image, samples with a similarity score Stc higher
than the historical average similarity threshold Htc will be
considered as high-quality samples with reliable language
labels. By contrast, samples with a lower similarity score
are considered as low-quality samples with unreliable lan-
guage labels. To distinguish these two kinds of training
samples, we design a sample weight W s and the calcula-
tion of W s is given by the following equation:

W s =

{
exp((Stc −Htc) ∗ γs), Stc ≤ Htc

1, Stc > Htc

, (2)

where γs is a hyper-parameter, and W s is constrained to
the range of (0, 1]. Consequently, the LCG assigns a lower
weight to low-quality samples, reducing the influence of un-
matched image-text or image-caption pairs.

3.3. Description Consistency Gate

While the language consistency gate can identify high-
quality training samples, it is important to note that some
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Figure 2. The overall architecture of the proposed Adaptive Language-Image Pre-training (ALIP) method, a bi-path model with triplet
input of raw text, synthetic caption, and image. The language consistency gate and description consistency gate are designed to dynamically
adjust the weights of samples and image-text/caption pairs during training.

Figure 3. Examples of the web raw text T and the synthetic caption
C can be categorized into four situations. Green and red dotted
boxes are used to indicate high-quality and low-quality samples,
where green descriptions are considered correct and red descrip-
tions are considered incorrect.

low-quality samples, as illustrated in Fig. 3, can still have
well-matched image-text or image-caption pairs that are
beneficial for representation learning. To fully utilize the
pre-training data, we propose the description consistency
gate, which computes the image-text pair weight W t and
the image-caption pair weight W c for each training image.

Due to the considerable discrepancy between raw text
and synthetic caption (which is discussed in Sec. 4.3), we
separately record the historical image-text pair similarity
Hxt and the historical image-caption pair similarity Hxc,
which are updated dynamically as follows:

Hxt = m ∗Hxt + (1−m) ∗ S̄xt,

Hxc = m ∗Hxc + (1−m) ∗ S̄xc,
(3)

where the S̄xt and S̄xc denote the average similarity of the
image-text and image-caption pairs. Based on the similarity
scores and historical image-text or image-caption pair sim-
ilarity, the description consistency gate computes the pair
weights W t and W c.

W t =

{
exp((Sxt −Hxt) ∗ γp), W s < 1

1, W s = 1

W c =

{
exp((Sxc −Hxc) ∗ γp), W s < 1

1, W s = 1

(4)

The pair weight W t and W c share a common hyper-
parameter γp. When W s = 1, the training sample is con-
sidered to be high-quality and both W t and W c are set to
1. However, when W s < 1, W t will be larger than 1 if
Sxt > Hxt, and W c will be larger than 1 if Sxc > Hxc.
One noteworthy benefit of introducing W t and W c is that
they are capable of precisely exploiting high-quality image-
text or image-caption pairs from low-quality samples.

3.4. Adaptive Contrastive Loss
CLIP [32] utilizes the InfoNCE loss [27] for multi-modal

alignment. Given a mini-batch D = {(xi, ti)}Ni=1 of image-
text feature embeddings, the multi-modal InfoNCE objec-
tive is defined as,

LNCE = −
N∑
i=1

log ex
⊤
i ti/τ∑

j e
x⊤
i tj/τ

+ log
ex

⊤
i ti/τ∑

j e
x⊤
j ti/τ

 , (5)
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(a) W s (b) W t (c) W c

Figure 4. Visualization of different weights during training. Sample weight Ws and raw image-text pair weight Wt exhibit an obvious
decrease. The reduction in image-caption pair weight Wc is relatively minor due to the superior consistency in generated captions.

where τ is the temperature parameter. Even though the In-
foNCE loss has achieved huge success in language-vision
pre-training, when learning from large-scale noisy web
data, the uniform weighting of all training samples can lead
to adverse effects on representation learning.

In this paper, we propose an adaptive contrastive loss that
incorporates additional sample weight and pair weight into
the InfoNCE loss. By dynamically adjusting the sample and
pair weights during the training process, the adaptive loss
can significantly reduce the impact of noise. Specifically,
given a mini-batch D = {(xi, ti, ci)}Ni=1 of image-text-
caption feature embeddings, the adaptive contrastive loss
Lxt and Lxc between the image-text pair and image-caption
pair are defined by the following formula:

Lxt = −
N∑
i=1

W s
i W

t
i

log ex
⊤
i ti/τ∑

j e
x⊤
i tj/τ

+ log
ex

⊤
i ti/τ∑

j e
x⊤
j ti/τ

 ,

Lxc = −
N∑
i=1

W s
i W

c
i

log ex
⊤
i ci/τ∑

j e
x⊤
i cj/τ

+ log
ex

⊤
i ci/τ∑

j e
x⊤
j ci/τ

 ,

(6)

where W s
i is calculated by the language consistency gate,

and W t
i and W c

i are computed by the description consis-
tency gate. Finally, the overall loss function of our ALIP is
defined by combining the bi-path contrastive loss LALIP =
Lxt +Lxc. Fig. 4 illustrates the variation of weights during
the training process. ALIP is capable of effectively adjust-
ing the weights to mitigate the impact of noise.

4. Experiments
4.1. Experimental Settings

Pre-training Datasets. We train our model on the
YFCC15M dataset, which is a subset of YFCC100M [35]
filtered by DeCLIP [21]. To further verify the effectiveness
and generalizability of ALIP, we randomly select subsets of
10M and 30M from the LAION400M dataset [34] and con-
duct a series of experiments with different model sizes and

pre-training data scales.
Downstream Datasets. Following recent works [25, 39,
18], we evaluate the effectiveness of our approach in
zero-shot image-text retrieval tasks on the Flickr30K [29]
and MSCOCO [30] benchmarks. Besides, consistent
with HiCLIP [12], we report the linear probe perfor-
mance over 10 datasets and the zero-shot classification
performance over 11 datasets, including CIFAR10 & CI-
FAR100 [17], Food101 [4], Oxford Pets [28], Flow-
ers102 [26], SUN397 [38], Stanford Cars [16], DTD [8],
Caltech101 [11], FGVC Aircraft [24], and ImageNet [10].
Implementation Details. We employ OFAbase to generate
synthetic captions. The image encoder and text encoder in
ALIP follow the same architecture as in CLIP [32]. We use
AdamW [23] as the optimizer with an initial learning rate
of 0.001 and a weight decay of 0.2. Consistent with CLIP,
we set β1 to 0.9 and β2 to 0.98 to improve training stabil-
ity. The input image size is 224 × 224, and the input text
sequence length is truncated or padded to 77. The tempera-
ture parameter τ is initialized to 0.07. To ensure a fair com-
parison with baselines, we train ALIP for 32 epochs with a
batch size of 4096 on 16 NVIDIA V100 GPUs.

4.2. Experimental Results

We compare ALIP with state-of-the-art approaches by
using YFCC15M. Following HiCLIP [12], We report the
performance of ALIP in zero-shot text-image retrieval, lin-
ear probe, and zero-shot classification, respectively.
Zero-shot Image-text Retrieval. In Tab. 1, we present
a comparison of our method with state-of-the-art ap-
proaches in zero-shot image-text retrieval on Flickr30k
and MSCOCO. Our proposed ALIP achieves new state-
of-the-art results on all evaluation metrics. Specifically,
ALIP achieves 46.8%/29.3% I2T/T2I retrieval Recall@1 on
MSCOCO, which is 8.1%/5.4% higher than HiDeCLIP and
12.6%/8.7% higher than HiCLIP. Similarly, ALIP demon-
strates significant improvements of 18.2% to 35.6% and
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Table 1. Zero-shot image-text retrieval on the test splits of Flickr30k and MSCOCO. All models are pre-trained on YFCC15M, and ALIP
creates new state-of-the-art results on all the metrics.

TEXT RETRIEVAL IMAGE RETRIEVAL
FLICKR30K MSCOCO FLICKR30K MSCOCO

METHOD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-VIT-B/32[32] 34.9 63.9 75.9 20.8 43.9 55.7 23.4 47.2 58.9 13.0 31.7 42.7
SLIP-VIT-B/32 [25] 47.8 76.5 85.9 27.7 52.6 63.9 32.3 58.7 68.8 18.2 39.2 51.0
DECLIP-VIT-B/32 [21] 51.4 80.2 88.9 28.3 53.2 64.5 34.3 60.3 70.7 18.4 39.6 51.4
UNICLIP-VIT-B/32 [18] 52.3 81.6 89.0 32.0 57.7 69.2 34.8 62.0 72.0 20.2 43.2 54.4
HICLIP-VIT-B/32 [12] - - - 34.2 60.3 70.9 - - - 20.6 43.8 55.3
HIDECLIP-VIT-B/32 [12] - - - 38.7 64.4 74.8 - - - 23.9 48.2 60.1

ALIP-VIT-B/32 70.5 91.9 95.7 46.8 72.4 81.8 48.9 75.1 82.9 29.3 54.4 65.4

Table 2. Linear probe performance on 10 downstream datasets. ALIP achieves higher average accuracy with an improvement of 1.4∼9.2%.
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CLIP-VIT-B/32[32] YFCC15M 86.5 64.7 69.2 64.6 90.6 66.0 24.9 61.3 79.1 23.1 63.0
DECLIP-VIT-B/32 [21] YFCC15M 89.2 69.0 75.4 72.2 94.4 71.6 31.0 68.8 87.9 27.6 68.7
HICLIP-VIT-B/32 [12] YFCC15M 89.5 71.1 73.5 70.6 91.9 68.8 30.8 63.9 84.8 27.4 67.2
HIDECLIP-VIT-B/32 [12] YFCC15M 88.1 70.7 77.6 75.5 95.6 72.2 36.0 70.1 90.0 32.6 70.8

ALIP-VIT-B/32 YFCC15M 94.3 77.8 75.8 76.0 95.1 73.3 33.6 71.7 88.5 36.1 72.2

14.1% to 25.5% on Flickr30K. The performance improve-
ment is mainly attributed to the more robust image de-
scription supervision as ALIP can dynamically adjust the
weights of samples and image-text/caption pairs to reduce
the impact of noise.
Linear Probe. Following the same evaluation setting as
CLIP, we freeze the ALIP model and only train a logistic
regression classifier. In Tab. 2, we report our linear probe
performance on 10 downstream datasets by referring to Hi-
CLIP [12]. Compared with the baseline methods, our ALIP
yields an improvement of 1.4% to 9.2% on average, and it
surpasses HiCLIP on all datasets and HiDeCLIP on 5 out
of 10 datasets. Although ALIP does not exhibit superior
performance to HiDeCLIP in half of the datasets, the per-
formance gaps are marginal. Remarkably, compared with
HiDeCLIP, ALIP observes a significant performance boost
of 6.2%, 7.1%, and 3.5% on the CIFAR10, CIFAR100, and
Aircraft datasets, respectively. The performance improve-
ment demonstrates that ALIP can effectively enhance the
representation power in instance discrimination.
Zero-shot Classification. We also present our performance
on 11 zero-shot classification benchmarks. The prompt
templates and class names used for evaluation are consis-
tent with HiCLIP [12] and SLIP [25]. As shown in Tab 3,
ALIP achieves substantial improvement only on CIFAR10
and CIFAR100, but it still lags behind HiDeCLIP in terms
of zero-shot accuracy. This performance gap is mainly due
to the coarse-grained synthetic captions generated by the

(a) Zero-shot text retrieval (b) Zero-shot classification

Figure 5. Ablation on the parameters γs and γp. (a) is the zero-shot
text retrieval Recall@1 on MSCOCO. (b) is the average zero-shot
classification accuracy on 11 datasets.

OFA model. For instance, the OFA model can only recog-
nize the presence of flowers in an image and can not identify
the specific species of flower. Besides, ALIP aims to reduce
the impact of noisy image-text pairs, and it does not fully
account for the hierarchical nature of fine-grained seman-
tics, as does HiDeCLIP.

4.3. Ablation Study

Ablation on Adaptive Weights. To further explore the
effectiveness of the sample weight and image-text/caption
pair weight, we perform ablation experiments based on the
zero-shot image-text retrieval task. The retrieval Recall@1
for I2T/T2I on Flickr30K and MSCOCO is presented in
Tab. 4. Our results indicate that both the sample weight
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Table 3. zero-shot classification performance on 11 downstream datasets.
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CLIP-VIT-B/32[32] YFCC15M 63.7 33.2 34.6 20.1 50.1 35.7 2.6 15.5 59.9 1.2 32.8 31.8
SLIP-VIT-B/32 [25] YFCC15M 50.7 25.5 33.3 23.5 49.0 34.7 2.8 14.4 59.9 1.7 34.3 30.0
FILIP-VIT-B/32 [39] YFCC15M 65.5 33.5 43.1 24.1 52.7 50.7 3.3 24.3 68.8 3.2 39.5 37.2
DECLIP-VIT-B/32 [21] YFCC15M 66.7 38.7 52.5 33.8 60.8 50.3 3.8 27.7 74.7 2.1 43.2 41.3
DEFILIP-VIT-B/32 [9] YFCC15M 70.1 46.8 54.5 40.3 63.7 52.4 4.6 30.2 75.0 3.3 45.0 44.2
HICLIP-VIT-B/32 [12] YFCC15M 74.1 46.0 51.2 37.8 60.9 50.6 4.5 23.1 67.4 3.6 40.5 41.8
HIDECLIP-VIT-B/32 [12] YFCC15M 65.1 39.4 56.3 43.6 64.1 55.4 5.4 34.0 77.0 4.6 45.9 44.6

ALIP-VIT-B/32 YFCC15M 83.8 51.9 45.4 30.7 54.8 47.8 3.4 23.2 74.1 2.7 40.3 41.7

(a) (b) (c)

Figure 6. Linear probe performance comparison between ALIP and CLIP on 27 downstream datasets. (a) ALIP-ViT-B/32 vs. CLIP-ViT-
B/32 on LAION10M; (b) ALIP-ViT-B/16 vs. CLIP-ViT-B/16 on LAION10M; (c) ALIP-ViT-B/32 vs. CLIP-ViT-B/32 on LAION30M.

Table 4. Ablation on the sample weight W s and image-
text/caption pair weights W t and W c. All models are pre-trained
on YFCC15M.

WEIGHT FLICKR30K MSCOCO
METHODS W s W t W c I2T T2I I2T T2I

ALIP-VIT-B/32 × × × 68.7 48.1 45.1 27.9
ALIP-VIT-B/32 ✓ × × 69.8 49.1 45.8 29.1
ALIP-VIT-B/32 × ✓ × 69.5 49.4 45.6 29.3
ALIP-VIT-B/32 × × ✓ 68.9 48.3 45.3 28.7
ALIP-VIT-B/32 ✓ ✓ ✓ 70.5 48.9 46.8 29.3

Table 5. The influence of the caption model in the linear probe and
zero-shot classification tasks.

METHOD
CAPTION
MODEL

LINEAR PROBE
AVG

ZERO-SHOT
AVG

ALIP-VIT-B/32 OFAbase 72.2 41.7
ALIP-VIT-B/32 OFAlarge 72.3 42.0

and image-text pair weight improved retrieval performance.
Additionally, the improvements are more significant when
applying W t alone than applying W c, indicating that raw
texts have weaker description consistency.
Ablation on the Parameters γs and γp. The parameters
γs and γp directly affect the sample weight and pair weight.
In Fig. 5, we show the zero-shot text retrieval Recall@1
on MSCOCO and the average zero-shot classification accu-
racy on 11 downstream datasets under different parameter

settings. When γs = 2 and γp = 2, ALIP achieves the best
performance on both zero-shot text retrieval and zero-shot
classification tasks.

Ablation on Different Capacity of Caption Model. Given
the significance of synthetic captions in this study, we inves-
tigate the impact of captions generated by different sizes of
the OFA model on downstream tasks. Specifically, in ad-
dition to OFAbase, we employ the OFAlarge model which
has 470M parameters to generate synthetic captions on the
YFCC15M dataset. Then, we train the ALIP-ViT-B/32 and
evaluate the average accuracy of linear probe and zero-shot
classification on 10 and 11 datasets. The experiment re-
sults are presented in Tab. 5, it is worth noting that de-
spite the OFAlarge model having 2.5 times the parameters
of OFAbase, it only yields a marginal improvement 0.1% on
linear probe and 0.4% on zero-shot classification. Addition-
ally, we provide some examples of synthetic captions gen-
erated by OFAbase and OFAlarge in the supplementary ma-
terial. While the synthetic captions generated by OFAlarge

are of higher quality, they still remain coarse-grained de-
scriptions.

Analysis of Raw Text and Synthetic Caption. To examine
the distinctions between synthetic captions and raw texts,
we conduct a statistical analysis of the token counts and
use the CLIP ViT-L/14 model to compute the distribution
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Table 6. The linear probe and zero-shot classification performance of CLIP-ViT-B/32 trained on LAION10M.

METHOD
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Linear probe:
CLIP-VIT-B/32 Raw text-image 91.2 74.8 66.9 71.0 63.0 89.5 71.1 68.5 40.3 84.7 72.1
CLIP-VIT-B/32 Synthetic caption-image 90.7 71.9 65.1 68.6 63.8 88.2 39.5 68.3 40.3 85.5 68.2

zero-shot classification:
CLIP-VIT-B/32 Raw text-image 78.5 49.3 42.0 42.5 28.6 40.8 39.9 23.7 73.2 4.4 42.3
CLIP-VIT-B/32 Synthetic caption-image 57.1 21.1 9.9 8.3 4.8 10.8 2.8 9.2 39.5 1.0 16.5

(a) Distribution of similarity (b) Distribution of token num

Figure 7. We conduct a statistical analysis of raw text and synthetic
caption on YFCC15M. (a) is the image-text/caption similarity dis-
tribution; (b) is the token number distribution of the raw texts and
synthetic captions.

of similarity between raw and synthetic image-text pairs.
As illustrated in Fig. 7, in comparison to raw texts, syn-
thetic captions demonstrate a higher average similarity and
more compact similarity distribution. Additionally, we ob-
serve that the number of tokens in the synthetic caption is
predominantly concentrated between 10 and 15, which is
significantly lower than in raw text.

To better investigate the performance disparities between
synthetic caption and raw text in downstream tasks, based
on LAION10M, we train CLIP-B/32 on raw and synthetic
image-text pairs respectively. We present the linear probe
and zero-shot classification performance in Tab. 6. Com-
pared with the CLIP-B/32 trained on the raw image-text
pairs, the CLIP-B/32 trained on the synthetic caption-image
pairs achieves similar or better linear probe performance on
all the datasets except Cars. However, the zero-shot results
reveal a significant deficiency of synthetic captions in zero-
shot classification task. This is mainly due to the coarse
granularity of the synthetic captions, which also explains
the inferior performance of ALIP in Tab. 3.
Effectiveness across Different Pre-training Datasets.
In addition to YFCC15M, we conduct experiments
on randomly selected subsets of 10M and 30M from
LAION400M. For a more comprehensive comparison, we
report the linear probe performance on 27 downstream
datasets. As illustrated in Fig. 6, ALIP significantly im-
proves the performance on different models and pre-training

Figure 8. Class activation maps for ALIP and CLIP on different
classes from ImageNet.

datasets. Specifically, the ALIP-ViT-B/32 models pre-
trained on LAION10M and LAION30M outperform the
CLIP-ViT-B/32 models on 23 and 24 datasets, respectively.
Additionally, when training a larger model, the ALIP-ViT-
B/16 model surpasses the CLIP-ViT-B/16 model on 23
datasets. The experimental results demonstrate that ALIP
exhibits robustness and extensibility. Please refer to the sup-
plementary material for more detailed experimental results.

As shown in Fig. 8, we compare the class activation
maps of ALIP and CLIP on different classes from Ima-
geNet. Here, we use the class label as the textual tokens. As
can be seen, ALIP is superior in aligning the image patches
and textual tokens. For instance, CLIP only focuses on the
body of the rabbit, but ALIP is able to also capture the ears.
These results highlight the potential of ALIP to enhance the
performance of image-text retrieval tasks.

5. Conclusion
In this paper, we introduce a bi-path adaptive contrastive

learning model, which includes the language consistency
gate and description consistency gate. Specifically, LCG
and DCG can adjust the weights of samples and image-
text/caption pairs during training, thus effectively reduc-
ing the impact of the noisy or unaligned language descrip-
tion. Our method shows superior performance with dif-
ferent models and pre-training datasets on different down-
stream tasks. We hope our work could bring insights into
exploiting the language-image pre-training model.
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