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Abstract

In vision-language modeling, image token removal is an
efficient augmentation technique to reduce the cost of en-
coding image features. The CLIP-style models, however,
have been found to be negatively impacted by this tech-
nique. We hypothesize that removing a large portion of
image tokens may inadvertently destroy the semantic in-
formation associated to a given text description, resulting
in misaligned paired data in CLIP training. To address
this issue, we propose an attentive token removal approach,
which retains a small number of tokens that have a strong
semantic correlation to the corresponding text description.
The correlation scores are dynamically evaluated through
an EMA-updated vision encoder. Our method, termed at-
tentive mask CLIP, outperforms original CLIP and CLIP
variant with random token removal while saving the train-
ing time. In addition, our approach also enables efficient
multi-view contrastive learning. Experimentally, by train-
ing ViT-B on YFCC-15M dataset, our approach achieves
43.9% top-1 accuracy on ImageNet-1K zero-shot classi-
fication, 62.7/42.1 and 38.0/23.2 I2T/T2I retrieval accu-
racy on Flickr30K and MS COCO, outperforming SLIP by
+1.1%, +5.5/+0.9, and +4.4/+1.3, respectively, while be-
ing 2.30× faster. An efficient version of our approach runs
1.16× faster than the plain CLIP model, while achieving
significant gains of +5.3%, +11.3/+8.0, and +9.5/+4.9 on
these benchmarks, respectively. Code will be release in
https://github.com/microsoft/A-CLIP.

1. Introduction
Large-scale vision-language pre-training models, such

as CLIP [28] and ALIGN [16], have demonstrated remark-

able capabilities in zero-shot image classification and multi-

modal retrieval. However, these models typically require

a large amount of training data, which raises the training

*Equal contribution. †This work was done during internship in MSRA.

Methods
Training

Time

GPU

Memory

IN 1K Flickr30K MS COCO

0-shot I2T/T2I I2T/T2I

CLIP 1.00× 14G 37.6 51.4/32.6 27.9/17.6

SLIP 2.67× 30G 42.8 57.2/41.2 33.6/21.9

MaskCLIP 1.56× 16G 42.7 60.0/38.8 34.1/21.2

A-CLIP 1.16× 14G 43.9 62.7/42.1 38.0/23.2
A-CLIP-eff 0.86× 13G 42.9 62.7/40.6 37.4/22.5

1 The full training wall clock time and GPU memory footprint are mea-

sured on the same device. We report the training cost relative to the

original CLIP [28].

Table 1: We compare our attentive mask CLIP (A-CLIP)

with CLIP [28], SLIP [27] and MaskCLIP [7]. A-CLIP out-

performs CLIP by +6.3%, +11.3/+9.5 and +10.1/+5.6 on

Imagenet-1K [30] zero-shot classification, Flickr30K [39]

and MS COCO [23] I2T/T2I retrieval. An efficient

variant termed A-CLIP-eff outperforms CLIP by +5.3%,

+11.3/+8.0, and +9.5/+4.9 on these benchmarks, while re-

ducing the training time to 0.86×.
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Figure 1: Attentive mask vs. random mask. Left part is the

attentive mask applied CLIP training process, and right part

is random mask applied. Here we use ViT-B16 model from

A-CLIP’s visual encoder to generate above masked images

with patch size of 32× 32 and 25% mask ratio. The image

and alt-text are sampled from YFCC-100M [32].

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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cost. For instance, CLIP is trained on 400 million image-

text pairs, and ALIGN uses more than 1 billion paired data.

This raises the need for more efficient language-image pre-

training methods.

This paper aims to improve the efficiency of CLIP train-

ing by introducing an efficient image augmentation ap-

proach called “image token removal”. This approach drops

a large portion of image tokens, thereby reducing the com-

putation in the image encoder. It has been shown to be ef-

fective in masked image modeling [13, 35, 26, 15, 31] when

combined with vision Transformer architectures [8]. Thus,

we seek to introduce this approach into CLIP training to

improve its efficiency.

However, previous work has shown that dropping tokens

randomly can harm CLIP performance [9, 19]. This is also

evidenced in our own experiments (see Table 2). Specifi-

cally, we observe a -2.6% top-1 accuracy drop on ImageNet

zero-shot classification when we randomly remove 50% to-

kens in each image. The underlying reason for this issue is

that the process of removing tokens may mistakenly elimi-

nate semantic content that is pertinent to the alt-text, leading

to inaccurate image-text pairs for CLIP training.

To mitigate this issue, we propose an attentive token re-

moval strategy, as shown in Figure 1. The fundamental idea

is to retain a small set of image tokens that are more closely

related to the corresponding text description while discard-

ing those that are irrelevant. Concretely, we encode all im-

age tokens into a latent space and then calculate the cor-

relation scores between each image-token feature and the

text feature extracted by the CLIP’s text encoder. We in-

vestigate several strategies for selecting image tokens using

correlation scores and conclude that retaining these image

tokens that are most semantically related to the text descrip-

tion yields the best performance. The correlation scores are

computed by using the exponential moving average (EMA)

version of the vision encoder. Specifically, we use the atten-

tion weights of the [CLS] token of the visual encoder as the

correlation scores. We also find that using the averaged at-

tention weights of all layers performs better. Figure 4 shows

the selected tokens, which correlate well with the associated

text semantics.

The efficiency of the proposed token removal approach

allows us to construct multiple masked views from an im-

age while keeping the training as efficient as the original

CLIP, e.g., 2 masked views with a token removal ratio of

50%. The random cropping strategy adds certain stochas-

tic effects to different masked views, enabling the applica-

tion of an auxiliary contrastive loss between the augmented

views in addition to the plain CLIP loss. In fact, as has been

shown in SLIP [27, 7], the auxiliary task facilitates the CLIP

training. We consider both SimCLR [3] and SimSiam [4]

methods for the auxiliary contrastive learning task. It is

worth noting that the EMA branch can be naturally treated

as another view, and we also apply an online-to-EMA con-

trastive or consistency loss and use the formulation from

BYOL [12] for this purpose.

The proposed approach is called A-CLIP, which intro-

duces only 16% computational overhead in comparison to

the plain CLIP. It is also 2.30× and 1.34× faster than pre-

vious CLIP improvements that also include multiple views

and additional self-supervised losses, while being more ef-

fective. Using ViT-B and the YFCC-15M [32, 28] dataset,

the A-CLIP framework achieves 43.9% top-1 accuracy on

ImageNet-1K [30] zero-shot classification(see Table 1).

Additionally, it achieves 62.7/42.1 and 38.0/23.2 I2T/T2I

retrieval accuracy on Flickr30K [39] and MS COCO [23],

respectively, which is +1.1%, +5.5/+0.9, and +4.4/+1.3
higher than the SLIP method, and +1.2%, +2.7/+3.3, and

+3.9/+2.0 higher than the MaskCLIP method.

Also note the training cost of our approach can be fur-

ther reduced by using a lower resolution input for the EMA

network, i.e., 2x lower reduced resolution. This has lit-

tle affect on the accuracy of correlation score computing,

while marginally reduce the efficacy of online-to-EMA con-

trastive loss. This strategy will reduce the EMA computa-

tion by more than 4×, resulting in an efficient variant that is

even 1.16× faster than the plain CLIP model, and is signifi-

cantly more accurate. We refer to this more efficient variant

as A-CLIP-eff.

2. Related Work
Contrastive language-image pre-training An important

goal of computer vision is to interpret visual signals using

language that humans can understand. While the field has

long used image classification tasks to learn visual repre-

sentations which connect visual signals to semantics, recent

works, such as CLIP [28] and ALIGN [16], suggest a new

way to connect visual signals with linguistic semantics by

contrasting image-language pairs. In this visual-language

contrastive learning framework, the training data is more

scalable as billions of image-alt-text pairs can be easily

collected from the internet. At present, CLIP has become

a mainstream visual learning method that not only learns

transferable representations but also connects visual signals

to arbitrary semantics. There have been extensive follow-up

studies [20, 11, 38, 27, 7, 34, 37] to improve the effective-

ness by sacrificing training efficiency. Our method aims to

improve CLIP pre-training while improving both effective-

ness and efficiency.

Masking tokens for efficient computation Vision Trans-

formers [8, 25] process images as sequences of patch to-

kens and perform encoding computation on these tokens. A

masking strategy that removes certain tokens from an im-

age can significantly speed up the computation of the image

encoder. Dynamic ViTs [29, 33] learn to remove tokens
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for efficient image classification. Masked autoencoder [13]

randomly masks 75% of tokens, which significantly speeds

up self-supervised visual representation pre-training based

on masked image modeling.

This paper extends the idea of token masking to speed up

the CLIP training process. Instead of using random mask-

ing like masked image modeling, we propose an attentive

masking method that removes only semantically meaning-

less tokens, thereby alleviating the issue of noisy pairing

between image tokens and text descriptions in the random

masking strategy caused by incorrectly discarded semantic

content.

Comparison with a concurrent work FLIP [22] Similar

to our approach, there is concurrent work called FLIP [22],

which also employs token masking to accelerate CLIP train-

ing. However, FLIP uses a random masking strategy like

MAE [13], and achieves inferior zero-shot accuracy than

when trained with full images, while keeping the batch size

and using the ViT-B model.

Our approach improves upon FLIP in several ways.

First, we propose an attentive masking strategy for CLIP

training that significantly outperforms the random masking

baseline. This is especially crucial for CLIP, as its target

heavily relies on semantic texts, while random masking can

work well with MIM that do not have explicit semantic su-

pervision. Second, we introduce multiple masked image

views into our framework, enabling us to conveniently in-

corporate auxiliary pre-text tasks, such as image-to-image

contrast learning. By reducing computation through mask-

ing, our approach does not increase computation compared

to the plain CLIP model using full images, while improving

the pre-trained representations.

With these techniques, our approach achieves signifi-

cant accuracy improvements over the original CLIP model

on both zero-shot image classification and multi-modal re-

trieval. In contrast, FLIP only achieves comparable per-

formance to the original CLIP model, even with additional

training tricks. Also note that some of the findings in FLIP,

particularly on scaling experiments and hyper-parameter

tuning such as larger batch sizes and base learning rate tun-

ing, complement to our approach. Together, these findings

provide readers with a more complete view of using mask-

ing for CLIP training.

Masking for data augmentation Token masking is not

only more efficient, but also serves as a form of data

augmentation for visual representation learning. Studies

have shown that masking augmentation performs well in

instance-based contrastive learning [1, 35, 17, 26]. While

not our primary focus, we demonstrate that attentive mask-

ing for CLIP training also benefits from its data augmen-

tation property, as reflected in the increasing accuracy with

Figure 2: A illustration of computing attentive masks for

multiple image views. For different image views, we per-

form score map computation once using an EMA version of

the visual encoder (Ev) on the original image or the mini-

mum enclosing area of all image views. Then for each im-

age view, a bilinear sampling approach is adopted to gener-

ate the selection score for each image token. The masking

is performed based on the selection scores.

a longer scheduler where saturation is observed using full

images as in Table 4.

Combining CLIP with other representation learning
methods Our method is also related to recent approaches

that combine CLIP with other pre-text tasks to improve rep-

resentation learning [27]. For example, SLIP [27] combines

CLIP with image-to-image contrastive learning [14, 3],

while MaskCLIP [7] combines CLIP with masked image

modeling [2, 13, 36, 24]. These approaches have shown

to learn stronger representations, but at the cost of higher

training requirements.

In contrast, our method introduces the task of image-

to-image contrastive learning without incurring additional

training costs. The attentive mask generated by an EMA

network on the full image constitutes another view of the

image, enabling us to add an auxiliary task of image-to-

image contrastive learning with minimal additional cost.

Moreover, the masking strategy allows us to introduce more

masked views with minimal computation cost, facilitating

the application of richer image-to-image tasks in training

and further improving representation learning. Our frame-

work can also naturally incorporate masked image model-

ing, as we use a masked image input, which is a direction

for future work.

3. Method
3.1. A Brief Review of CLIP

CLIP [28] is a visual representation learning approach

that uses a large amount of image-to-text pairs. The training

task treats each image and its associated alt text as a positive

pair and pairs of this image to all other alt-texts as negative.

For all possible pairs within a batch, the method applies an

InfoNCE-like loss to classify them as positive or negative.
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The CLIP model shows well connecting images to arbitrary

language semantics and achieves remarkably strong zero-

shot image recognition accuracy on benchmarks. Its learned

representation also performs very well when fine-tuned on

various down-stream tasks [21].

Specifically, the CLIP method independently applies a

visual encoder Ev and a language encoder El on each im-

age and each alt-text, respectively. In this paper, the visual

and language encoders are instantiated as a Vision Trans-

former [8] and a standard language Transformer [6]. For the

vision Transformer, a learnable [CLS] token is prepended

to the image tokens to represent the entire image. For the

language encoder, an [EOS] token is appended after the

last word to represent the full sentence. The CLIP model

projects the [CLS] and [EOS] features into an embedding

space, denoted as eI and eT respectively, where a vision-

language contrastive loss is applied:

Lvl = 0.5 ∗ Lv + 0.5 ∗ Ll (1)

where

Lv = − 1

B

B∑
i=1

log
exp

(
sim

(
eIi , e

T
i

)
/τ

)
∑B

j=1 exp
(
sim

(
eIi , e

T
j

)
/τ

) (2)

Ll = − 1

B

B∑
i=1

log
exp

(
sim

(
eTi , e

I
i

)
/τ

)
∑B

j=1 exp
(
sim

(
eTi , e

I
j

)
/τ

) (3)

In the above equations, B denotes the batch size; sim(·)
denotes the cosine similarity function; τ is a learnable tem-

perature to scale the logits.

3.2. Masking for Efficient CLIP Training

We seek to adopt a masking strategy to improve the train-

ing efficiency of CLIP.

A naive approach is to randomly select a portion of im-

age tokens to remove, as shown in Figure 1 (right). The

random masking method has been shown to be effective

for masked image modeling(MIM) [13]. However, we note

two main differences between MIM and CLIP tasks: 1)

The MIM method is mainly designed for pre-training, while

CLIP excels at zero-shot classification and retrieval. In

fine-tuning settings, the domain gap between masked-image

based pre-training and full-image based fine-tuning can be

bridged by adjusting model parameters, which zero-shot

evaluation hopes to achieve good accuracy by not chang-

ing the original model and thus requires a small domain gap

between pre-training and evaluating; 2) MIM pre-training is

more of a low-level task without language semantics. Re-

moving highly semantic visuals does not affect training in

general. CLIP training is more of a high-level task, aim-

ing to connect images to semantics defined by text. Remov-

ing highly semantic objects related to associated alt-text can

form noisy pairs. As illustrated in Figure 1 (right), after the

Ferrari car is almost discarded from an image, it would be

inappropriate to associate the masked image to a textual de-

scription of Ferrari at a race.

In fact, as shown in Table 2, using a random ratio with

50% mask ratio, the zero-shot accuracy on ImageNet-1K is

2.6% worse than using the full image for training (35.0%

vs. 37.6%). In the following subsection, we will present an

attentive masking method that can resolve the issues of ran-

dom masking described above, and achieves good accuracy

for zero-shot and retrieval.

3.3. Attentive Mask

The goal of attentive masking is to retain tokens that

are relevant to language description, as illustrated in Fig-

ure 1 (left).

To this end, we note that the representation of the [CLS]
token after CLIP training corresponds well to the semantics

contained in the associated alt-text, and its attention weights

to other image tokens can act a good indicator as the rele-

vance measure of each image token to the linguistic seman-

tics. We thus compute the score of the token at location P
as:

sP =
1

HL

L∑
l=1

H∑
h=1

Softmax

(
fqlh(CLS) · fklh(P )√

C

)
, (4)

where l denotes the layer index; h denotes the attention

head index; fqlh(CLS) denotes the query embedding of the

[CLS] token at Layer l and Head h; fklh(P ) denotes the key

embedding of Layer l and Head h for an image token at lo-

cation P ; C is the number of channels for the query and key

embedding.

The image tokens to mask are selected based on the

scores sP . We consider three strategies: 1) “Low” strategy.

The image tokens with the lowest scores are discarded; 2)

“High” strategy. The image tokens with the highest scores

are discarded; 3) “Mixed” strategy. A portion of the main-

tained tokens are the ones with the highest scores, and the

other maintained tokens are randomly selected. In the ex-

periments, the “low” strategy performs best, and is set as

the default in our method.

Generating scores using an EMA network To obtain

the attentive masked images as described above, we need

a network that can generate attention scores for all image

areas. We introduce an exponential moving average (EMA)

version of the CLIP visual encoder and apply this EMA net-

work on the full image to generate the attention scores. Us-

ing the EMA network has the following merits: First, the

attention scores can be computed online, without a need of

an already trained network. Second, the EMA network con-

stitutes another view of the image, so other effective auxil-

iary tasks such as BYOL [12] can be introduced with little
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overhead. Third, the EMA network only involves the in-

ference phase during training, which can save 2/3 of the

computational cost compared to using a trainable network.

In order to further improve efficiency and effectiveness,

we propose the following two techniques.

Efficient EMA computation with reduced image reso-
lution The EMA network is primarily used for attention

score computation to select image tokens to maintain. It

does not need to be very accurate. We thus propose to per-

form the EMA computation at reduced image resolution,

for example, using half the original resolution. By reducing

the resolution, the EMA computation cost is saved by more

than 4×.

Overall, the EMA computation will correspond to be

1/12 of a regular CLIP visual encoder, which is efficient.

Shared EMA score map for multiple masked views We

also consider adding more masked image views for better

results. A naive solution would be performing one time of

the EMA computation for each view. However, this would

waste computational cost. We propose using a shared EMA

attention score maps for different image views.

Specifically, we first compute the minimum enclosing

rectangle for multiple image views. Accordingly, we crop

and resize the original image, where the EMA network is

applied to produce an attention score map. The selection

scores for each image view are computed from this shared

attention score map via bilinear interpolation, and with the

selection scores, the masking is performed using the “low”

strategy described above. Please see the process in Figure 2.

3.4. Overall Framework

Based on attentive masking, we present an attentive

mask CLIP method, dubbed A-CLIP. The overall frame-

work is illustrated in Figure 3. In the following, we de-

scribe several key designs and implementations of the A-

CLIP framework.

Multiple masked views The A-CLIP framework can take

multiple masked views for better results. To make different

number of views with roughly the same complexity, we set

the token number for each masked view as N/k (N and k

are the number of tokens and masked views respectively).

The final VL loss is the average of all losses between each

masked view and the alt-text. In the experiments, k = 2, 3
perform best (see Table 5), and k = 2 is set as default.

Auxiliary self-supervised tasks Our framework can con-

veniently add several auxiliary self-supervised tasks. We

consider two tasks: 1) Online-to-EMA contastive task. We

“A small aircraft 
ready to take off”

EMA

VL ConstrastiveSSL
online-EMA

SSL
(online)

updated

Figure 3: The architecture diagram of A-CLIP. We use

masked multi-view input, where each view is computed in-

dependently for the vision language(VL) contrastive loss

and then averaged. Between multiple online views we intro-

duce auxiliary image self-supervised learning(SSL) to en-

rich features. An EMA update vision encoder is used to help

us generate the attentive mask, which is not involved in the

gradient update. Since EMA encoder uses unmasked im-

ages, we design an self-distillation based online-EMA SSL

task to learn the output distribution of the complete image.

adopt the BYOL instantiation [12] for this task, which en-

courages the feature of a masked view to be the same as the

EMA feature. 2) Online-to-online contrastive tasks. When

multiple masked views are used, we can introduce con-

trastive losses between the masked views. We use the Sim-

CLR [3] or SimSiam [4] instantiation for this task. Table 3

shows that both auxiliary self-supervised learning tasks can

improve the zero-shot and retrieval accuracy.

An A-CLIP-eff variant For A-CLIP, we use the full im-

age resolution as the input to the EMA network. We also

introduce a variant called A-CLIP-eff, which uses half the

resolution for EMA input. The new variant is more efficient

than the A-CLIP variant, while being marginally worse in

accuracy. Specifically, A-CLIP-eff is 0.86× than that of

the original CLIP model in training cost, much faster than

the A-CLIP variant (1.16× of the original CLIP model),

and slightly worse than A-CLIP in terms of zero-shot im-

age classification and multi-modal retrieval accuracy (see

Table 1).
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4. Experiments
4.1. Implementation Details

Dataset and augmentation We train our model on a 15M

subset of YFCC100M [32] filtered by Radford et al. [28].

The text data in the subset consists of English-only titles and

descriptions. During training, we randomly sample a valid

caption (e.g., title or description) for each image, as in SLIP

[27]. The data augmentation is also similar to SLIP. Images

in the online branches are randomly resized and cropped

to between 50% and 100% of the original image size. For

the EMA encoder, we choose a larger randomly cropped

sub-image than online views to ensure we can get attentive

scores by bilinear sampling. When adding auxiliary self-

supervised learning tasks such as SimCLR or SimSiam, we

used a classic combination of color jitter, grayscale, solarize

and blur.

Architecture and training configurations We employ

the ViT-B/16[8] architecture as our visual encoder, and a

12-layer, 512-width, and 8-head Transformer as our text en-

coder following CLIP. The input resolution for the image

encoder is 224×224, and the text is encoded into 77 tokens

using a vocabulary of 49k tokens with necessary truncations

or paddings. To ensure stable training, we use a fixed ran-

dom patch projection layer to embed image patches, follow-

ing MoCo v3 [5].

The AdamW optimizer with a learning rate of 5e-4 and

a weight decay of 0.5 is used, with a batch size of 4,096.

The built-in automatic mixed precision library in PyTorch

is adopted for training in all experiments. For the expo-

nential moving average (EMA) model which generates the

attentive mask, its momentum starts from 0.996 and gradu-

ally increases to 1 using a cosine scheduler during training,

following [12]. For the A-CLIP-eff variant, we use a halved

resolution image as the input of the EMA model, with a

bi-cubic interpolation method to get the new position en-

codings for the lower-resolution images.

Details of Evaluation Tasks For zero-shot retrieval, we

perform text-to-image and image-to-text evaluation on two

benchmarks: COCO [23] and Flickr30k [39]. Follow-

ing [28], we retrieve top-k candidates using the similarity

scores from the image and text encoder. We evaluate zero-

shot transfer capacity of the models on various classifica-

tion benchmarks, such as ImageNet [30] and Caltech101

[10]. Following [28], we use the same prompt templates

and class names for the evaluation.

4.2. Main Results

CLIP with random masking This is the first work to

analyze the impact of mask on the zero-shot performance

of CLIP. There are two potential effects of mask training

Mask Strategy

(View × Ratio)

IN 1K Flickr30K MS COCO

0-shot I2T T2I I2T T2I

w/o mask

1×100% 37.6 51.4 32.6 27.9 17.6

+random mask

1×50% 35.0 48.8 32.5 28.9 16.6

2×50% 38.0 54.6 34.4 31.1 18.7

+attentive mask

1×50% 39.5 57.6 36.6 34.2 19.8

2×50% 41.3 59.3 38.4 35.1 21.3

(a) Comparison of different mask strategies.

Methods
IN 1K Flickr30K MS COCO

0-shot I2T T2I I2T T2I

Selection

high 28.5 42.6 29.0 23.5 13.6

mix 40.4 59.8 37.6 34.9 20.9

low 41.3 59.3 38.4 35.1 21.3
Patch Size

16 40.8 61.4 37.6 35.1 20.5

32 41.3 59.3 38.4 35.1 21.3
Layers

last 40.4 59.4 36.8 34.9 20.0

all 41.3 59.3 38.4 35.1 21.3
EMA

eff 41.0 56.8 37.5 35.1 20.4

full 41.3 59.3 38.4 35.1 21.3

(b) Ablations for adding attentive mask to CLIP training.

Table 2: Comparison of different mask strategies and abla-

tion experiments of attentive mask. The indigo background

highlights our default setting.

on CLIP. One is that it may cause ambiguity or meaning-

lessness in text and image matching, and the other is that

the masked input of the pre-training process differs signifi-

cantly from the full image during zero-shot evaluation. Our

analysis in Table 2a reveals that randomly masking 50% of

image tokens in the 1×50% setting leads to a drop of -2.6%

in ImageNet-1K zero-shot accuracy compared to the origi-

nal CLIP model, as well as -2.6/-0.1, +1.0/-1.0 I2T/T2I re-

trieval accuracy on Flickr30K and MS COCO.

However, the comparison may be unfair due to lower

training costs with mask training. To address this, we

use two-views for the random masking method, which is

still 20% more efficient than the original CLIP model due

to the superlinear computation cost reduction for the self-

attention layers. The two-view version is now comparable

in zero-shot accuracy to the one using full images (38.0%

vs. 37.6%), and has shown +3.2/+1.8, +3.2/+1.1 retrieval

accuracy improvements on Flickr30K and MS COCO. We

believe that in the 2×50% case, two independent random

crop samples increase the richness of the input visual sig-

nal, alleviate the side effects of image and text description

mismatch caused by random mask, and gain the benefits of
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mask as an effective data augmentation at the same time.

The effects of attentive mask As described in Sec-

tion 3.3, we developed attentive mask strategies for CLIP

training that allow us to selectively sample tokens based

on their potential relevance to the text, rather than random

masking.

In the 1×50% setting, attentive mask improved perfor-

mance by +4.5%, +8.8/+4.1 and +5.3/+3.2 compared to

random mask in ImageNet-1K, Flickr30K and MS COCO

I2T/T2I. In the 2×50% setting, improvements to random

mask were +4.7%, +4.7/+4.0 and +4.0/+2.6. It can be

found that the attentive mask solves the non-negligible per-

formance degradation caused by random mask in single

masked view setting, and is even much higher than full to-

ken CLIP. These results demonstrated that attentive mask

can effectively integrate mask learning into CLIP, provid-

ing the benefits of data augmentation without introducing

bias to the vision language contrastive task.

We also conducted experiments on different selection

strategies, as shown in Table 2b. The Low strategy, which

retained the top 50% of the most relevant tokens, achieving

the best results. It increased ImageNet-1K zero-shot perfor-

mance by +3.7%, and improved Flickr30K and MS COCO

I2T/T2I retrieval accuracy by +7.9/+5.8 and +7.2/+3.7. This

indicates that attentive selection can provide a more infor-

mative and valuable input distribution. In contrast, the High
strategy, which masks off the most relevant 50% of tokens

and is a good strategy for AttnMask [18] in MIM, resulted

in a drastic performance collapse, while the Mix strategy,

which combines Low with 25% random selection, did not

match the performance of Low. These results suggest that

for CLIP’s VL contrastive task, only tokens with greater rel-

evance are needed, which is consistent with the assumption

of MaskCLIP [7] that CLIP’s training mainly relates to the

language-described region and plays a low role.

Although masking brings efficiency gains, the additional

cost of attentive selection is the need to pre-infer with

the EMA encoder. Although back-propagation is not re-

quired, this takes close to 30% of the training time. To

further reduce the cost, we use half-resolution images as

input to the EMA encoder, which reduces the cost to 5%.

As shown in the results of EMA-eff in Table 2b, this step

achieves competitive results compared to EMA-full and re-

sulted in a +3.4%, +5.4/+4.9, +7.2/+2.8 improvement on

ImageNet-1K zero-shot classification, Flickr30K and MS

COCO I2T/T2I retrieval, respectively.

A-CLIP provides an efficient paradigm for combining
SSL with CLIP SLIP [27] and MaskCLIP [7] both add

image self-supervised learning (SSL) to CLIP using a sep-

arate branch, whereas our proposed A-CLIP integrates dif-

ferent SSL tasks naturally and efficiently through masked

Methods
IN 1K Flickr30K MS COCO

0-shot I2T T2I I2T T2I

CLIP

plain 37.6 51.4 32.6 27.9 17.6

+SimCLR(SLIP) 42.8 57.2 41.2 33.6 21.9

+MAE(MaskCLIP) 42.7 60.0 38.8 34.1 21.2

A-CLIP

plain 41.3 59.3 38.4 35.1 21.3

+SimCLR 42.8 63.6 41.0 36.0 22.6

+SimCLR+BYOL 43.9 62.7 42.1 38.0 23.2

+SimSiam 43.1 62.5 41.3 37.6 22.6

+SimSiam+BYOL 43.4 64.1 41.5 38.1 23.3

Table 3: Ablation for auxiliary self-supervised tasks.

Methods
IN 1K Flickr30K MS COCO

0-shot I2T T2I I2T T2I

CLIP(25ep) 37.6 51.4 32.6 27.9 17.6

SLIP(25ep) 42.8 57.2 41.2 33.6 21.9

A-CLIP(25ep) 43.9 62.7 42.1 38.0 23.2
CLIP(50ep) 39.4 53.9 35.8 30.2 19.2

SLIP(50ep) 44.1 60.6 41.1 33.2 22.3

A-CLIP(50ep) 46.3 66.7 43.2 39.8 24.4
CLIP(100ep) 42.7 61.0 37.9 34.4 20.9

SLIP(100ep) 45.0 59.3 41.4 34.6 22.7

A-CLIP(100ep) 48.0 66.3 45.7 40.7 25.1
CLIP(VIT-L) 40.4 51.4 35.2 28.9 18.5

SLIP(VIT-L) 46.2 60.6 43.7 35.3 23.5

A-CLIP(VIT-L) 48.9 64.1 48.2 39.1 26.9

Table 4: The results using longer training schedulers and

bigger model size.

Methods
tokens per view × k views

196 × 1 98 × 2 65 × 3 48 × 4

+attentive mask 37.6 41.3 41.3 38.9

Table 5: Effects of more attentive mask views. In this table,

we tried more views, i.e., 3 and 4 views, while keeping the

total image tokens of multiple views to be the same (196 to-

kens) so as to keep the computation overheads roughly the

same. Results evaluated by zero-shot classification accu-

racy on ImageNet-1K validation set.

multi-view input. In Table 3, with the same SimCLR

task added, A-CLIP can achieve comparable ImageNet [30]

zero-shot performance to SLIP [27], +6.4/-0.2 in Flickr30K

retrieval and +2.4/+0.7 in MS COCO retrieval, but the re-

duced branches accelerate the training time by 2.3×. We

tried SimSiam without using negative samples as a SSL task

and had similar performance gains, demonstrating that our

approach is not dependent on specific SSL tasks.

Online-EMA SSL can further improve performance. To

obtain the attentive mask through the EMA encoder, we use

a self-distillation based BYOL head to learn the output dis-

tribution of the full image. Table 3 shows that Online-EMA
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CLIP 50.6 66.0 34.5 38.8 51.1 4.0 5.4 21.2 28.5 60.9 53.3 8.4 17.3 90.5 30.2 21.5 6.1 35.1 10.5 53.5 28.5 22.1 10.8 52.4 50.7 37.6 34.2
SLIP 59.5 78.6 45.2 38.7 53.4 5.4 5.7 26.1 31.1 71.0 56.6 9.8 19.6 94.4 20.3 28.9 14.5 34.0 11.6 55.4 37.7 26.9 17.5 52.8 51.1 42.8 38.0

MaskCLIP 60.6 70.1 41.6 43.3 54.0 4.9 8.2 25.5 36.8 68.9 53.6 11.2 22.4 93.9 35.1 24.8 10.1 30.5 12.5 51.2 37.0 28.1 12.9 52.8 50.0 42.7 37.8
A-CLIP 58.3 82.8 51.0 43.0 57.0 5.4 7.6 26.0 32.0 71.6 57.7 9.8 29.7 95.4 29.3 30.3 13.1 35.2 13.5 51.6 38.3 29.6 14.1 52.8 49.9 43.9 39.6

50
CLIP 55.2 77.0 43.8 38.9 49.0 4.7 6.3 23.5 27.2 63.5 56.2 12.5 30.2 92.1 21.0 31.9 7.4 33.6 10.9 50.8 35.5 24.8 14.0 49.9 50.1 39.4 36.5
SLIP 61.9 76.8 48.9 39.2 54.8 7.3 9.0 29.8 31.9 75.0 57.7 9.8 24.9 95.6 37.8 32.5 9.0 35.1 12.7 54.4 41.1 30.3 13.8 49.5 49.9 44.1 39.7

A-CLIP 62.2 81.5 53.7 48.2 58.7 8.3 10.2 27.7 40.5 73.3 61.0 11.3 32.9 95.5 39.7 37.5 9.4 23.3 14.4 63.7 42.5 31.6 19.6 50.8 52.3 46.3 42.2

100
CLIP 60.4 79.4 44.6 43.3 53.0 8.5 8.2 26.2 34.7 68.9 59.2 11.4 20.4 93.2 23.3 27.3 10.3 23.1 12.0 54.0 36.7 27.7 13.0 50.9 50.1 42.7 37.8
SLIP 63.0 83.1 50.4 43.0 52.0 8.3 8.3 26.2 34.0 74.6 61.1 16.1 32.4 95.1 22.6 28.5 10.5 34.8 11.5 52.1 37.3 28.3 13.7 55.2 49.9 45.0 39.9

A-CLIP 66.7 86.6 58.6 51.4 58.6 10.5 11.9 33.1 48.5 74.9 64.3 7.8 31.2 96.7 35.6 35.8 12.9 30.5 15.7 57.1 44.1 33.1 22.9 52.7 50.7 48.1 43.8

Table 6: Zero-shot evaluation on a variety of classification benchmarks. The Epochs indicates the number of training rounds.

A-CLIP significantly outperforms other methods at all epochs setting, both in terms of average accuracy and number of

winning tracks of above 25 downstream tasks.

task BYOL improves performance in both tasks, and it is

complementary to online SSL.

Zero-shot performance on 25 benchmarks We tested

the zero-shot classification performance of the proposed A-

CLIP approach on a larger set of validation benchmarks,

which included 25 classification tasks, following SLIP’s

[27] evaluation setting. In testing, we also followed SLIP’s

prompts for evaluation for a fair comparison.

Table 6 reports the results under different training

lengths. A-CLIP achieves +1.6%, +2.5%, and +3.9% gains

over the counterpart SLIP method regarding the average ac-

curacy of this 25-dataset suite, using 25-epoch, 50-epoch,

and 100-epoch training, respectively. Also, note that A-

CLIP is 2.3× faster than SLIP. These results further prove

the efficacy and efficiency of the proposed A-CLIP.

Comparison with other methods In Table 1, we com-

pare the differences with other methods. Using ViT-B

and YFCC-15M dataset, our approach achieves 43.9% top-

1 accuracy on ImageNet-1K zero-shot classification, as

well as 62.7/42.1 and 38.0/23.2 I2T/T2I retrieval accuracy

on Flickr30K and MS COCO, which are +1.1% higher,

+5.5/+0.9 higher, and +4.4/+1.3 higher than the SLIP

method, respectively, while being 2.30× faster and requir-

ing less GPU memory. A-CLIP-eff, an efficient version that

is even 1.16× faster than the plain CLIP model, achieves

significant gains of +5.3%, +11.3/+8.0, and +9.5/+4.9 on

these benchmarks over that of the plain CLIP model.

4.3. Ablation Study and Analysis

Effects of training longer Table 4 ablates the effects of

longer training for different frameworks. Using 2× and

4× training schedulers, i.e., 50 and 100 epochs, the ac-

curacy gaps between the A-CLIP and SLIP models are

larger on benchmarks than that using 25-epoch training:

+1.1%, +2.2%, and +3.0% gains ImageNet-1K zero-shot

classification, and +4.4/+1.3, +6.6/+2.1, and +6.1/+2.4 on

MS COCO [23] I2T/T2I retrieval, by 25, 50, and 100

epochs training, respectively. On Fickr30K [39], longer

training also overall benefits more for A-CLIP: +5.5/+0.9,

+6.1/+2.1, and +7.0/+4.3 gains on I2T/T2I retrieval by 25,

50, and 100 epochs training, respectively.

We hypothesize that the attentive mask input play as

strong augmentation to the input images, which can greatly

alleviate the over-fitting issue and thus perform better when

training is longer.

Effects of larger model size In Table 4, we have included

a comparison with ViT-L/16 on 25 epochs setting. A-CLIP

benefits more with larger model size.

Effects of more attentive mask views Our proposed A-

CLIP is not limited to two views, and can be extended for

multiple views such as 3 and 4. Table 5 shows the results

of using different views. In this comparison, we keep the

total number of tokens the same for different k views set-

tings. k = 1 means the the original CLIP model which

keeps all image tokens. For other k, each view selects the

most relevant 196/k tokens. So the computation overheads

for different k are roughly the same.

It can be seen that all k = 2, 3, 4 performs significantly

better than that of k = 1. k = 2, 3 both perform the best,

and are higher than k = 4 (+2.4%).

Use alt-text to select the image patches? We tried using

alt-text to select image regions, yielding high training but

low evaluation accuracy due to information leakage. Using

the text to directly select its corresponding image alters the

distance between every positive pairs, rendering the con-

trastive learning trivial. To address this, we employ EMA

attention weights in Eq.(4) as a form of regularization, ef-

fectively avoiding direct information leakage.
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Drives at IITA Ibadan, Nigeria showing the guest 
building at the background

Statue of Schiller in Schiller Park, German 
Village, Columbus, Ohio

Mystery solved: it's a people-counting camera 
balloon! 

"Crown Mary" at New Holland Dock The fountain in front of The Kansas City Star at 
18th and Grand

This is Alison a few days after her cleft palate 
repair - wearing the much dreaded arm restraints

Santa Barbara Chalk Festival

Okay, one more! Look at that tail! Not breeding 
plumage but everyday wear for the adult bird.

Figure 4: Visualization of attentive mask. Here we use a ViT-B16 model from A-CLIP’s EMA vision encoder of to generate

a mask with patch size of 32× 32 and 50% mask ratio. Attentive mask can be found to magically preserve the content of text

descriptions and filter out redundant backgrounds. The image and text used are sampled from YFCC-100M [32].

Visualization We have done some visualization of the

attentive mask. Figure 4 showes the original image and the

two views inputted in A-CLIP. It can be found that we ba-

sically keep the significant part of the image. The token

that is closer to the language semantics makes the input of

A-CLIP effective and valuable.

Effects of masked patch size Referring to the conclu-

sion of SimMIM [36], we experimented with different mask

patch sizes. As can be seen in Table 2, it obtained a +0.5%

ImageNet-1K zero-shot improvement from change mask

size to 32. Due to the continuity and redundancy of im-

ages, greater granularity of filtering may lead to better per-

formance.

Using all layers works better for attentive token selec-
tion Table 2 ablates the use of different layers for atten-

tive token selection. Using all layers performs +0.9% higher

on ImageNet-1K zero-shot than that using the last layer.

5. Conclusion

In this paper, we present the attentive mask CLIP frame-

work, or A-CLIP for short, which achieves more efficient

and more effective CLIP training by introducing atten-

tive masks for the image branch. Compared to a baseline

method using random masking, the attentive mask approach

maintains image tokens that are more relevant to the alt-text

description and performs much better. The A-CLIP frame-

work is also flexible in incorporating multiple masked views

as well as several auxiliary self-supervised tasks, which can

further boost efficacy. The attentive mask also serves as

good data augmentation, which benefits more from longer

training than the original CLIP method.

Due to these advantages, the A-CLIP framework per-

forms much better in both efficiency and efficacy than other

CLIP improvements such as SLIP and MaskCLIP. An effi-

cient variant of A-CLIP-eff is even more efficient than the

original CLIP method, while being significantly better in

terms of zero-shot and multi-modal retrieval accuracy.

References
[1] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-

janowski, Florian Bordes, Pascal Vincent, Armand Joulin,

Michael Rabbat, and Nicolas Ballas. Masked siamese net-

works for label-efficient learning. 2022. 3

[2] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training

of image transformers. Learning, 2021. 3

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey E. Hinton. A simple framework for contrastive learn-

ing of visual representations. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607. PMLR,

2020. 2, 3, 5

[4] Xinlei Chen and Kaiming He. Exploring simple siamese rep-

resentation learning. computer vision and pattern recogni-
tion, 2020. 2, 5

[5] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-

cal study of training self-supervised vision transformers. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9640–9649, 2021. 6

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota, 2019. Association for

Computational Linguistics. 4

2779



[7] Xiaoyi Dong, Yinglin Zheng, Jianmin Bao, Ting Zhang,

Dongdong Chen, Hao Yang, Ming Zeng, Weiming Zhang,

Lu Yuan, Dong Chen, Fang Wen, and Nenghai Yu.

Maskclip: Masked self-distillation advances contrastive

language-image pretraining. 2022. 1, 2, 3, 7

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition

at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 2, 4, 6

[9] Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang

Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu

Yuan, Nanyun Peng, Zicheng Liu, and Michael Zeng. An

empirical study of training end-to-end vision-and-language

transformers. arXiv: Computer Vision and Pattern Recogni-
tion, 2021. 2

[10] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning

of object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2006. 6

[11] Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, and

Chunhua Shen. Pyramidclip: Hierarchical feature alignment

for vision-language model pretraining. 2022. 2

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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