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Abstract

A multitude of prevalent pre-trained models mark a major
milestone in the development of artificial intelligence, while
fine-tuning has been a common practice that enables pre-
trained models to figure prominently in a wide array of target
datasets. Our empirical results reveal that off-the-shelf fine-
tuning techniques are far from adequate to mitigate negative
transfer caused by two types of underperforming features in
a pre-trained model, including rare features and spuriously
correlated features. Rooted in structural causal models of
predictions after fine-tuning, we propose a Concept-wise
fine-tuning (Concept-Tuning) approach which refines feature
representations in the level of patches with each patch en-
coding a concept. Concept-Tuning minimizes the negative
impacts of rare features and spuriously correlated features
by (1) maximizing the mutual information between examples
in the same category with regard to a slice of rare features (a
patch) and (2) applying front-door adjustment via attention
neural networks in channels and feature slices (patches).
The proposed Concept-Tuning consistently and significantly
(by up to 4.76%) improves prior state-of-the-art fine-tuning
methods on eleven datasets, diverse pre-training strategies
(supervised and self-supervised ones), various network ar-
chitectures, and sample sizes in a target dataset.

1. Introduction
Pre-trained models, pre-trained by either conventional su-

pervised [26] or resurgent self-supervised strategies [17, 20],
undoubtedly constitute a milestone in the artificial intelli-
gence community. Such a resounding success stems from
the gap between the heavy reliance of deep neural networks
on extensive data on one side and the lack of annotated
data in many real-world applications on the other side. Pre-
trained models suffice to bridge this gap under the aegis of
the well-established fine-tuning paradigm [21].

The practice of fine-tuning, unfortunately but unsurpris-
ingly, is not always outperforming; the notorious problem of
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(a) Train from scratch (c) Fine-tuning (d) Bi-tuning(b) Linear probing

Figure 1: Exemplar attentive regions of the model trained (a)
from scratch, by (b) linear probing, (c) vanilla fine-tuning,
and (d) bi-tuning via Eigen-Grad-CAM [38], where only (a)
predicts correctly.

negative transfer [8, 51] arises especially when downstream
tasks are out of the distribution of pre-training data. There
could be cases where the model trained from scratch outper-
forms fine-tuning. For example, there exist 3.08% testing
images of the downstream dataset CUB [50] on which the
model trained from scratch makes correct predictions while
fine-tuning the supervised pre-trained model misclassifies.
The issue remains even if we resort to one recent state-of-
the-art fine-tuning method named Bi-tuning [61], despite
offering a smaller percentage of 2.74%. Beyond such a pre-
diction gap between the from-scratch model and fine-tuning
models, we do see a gap in attended regions. Fig. 1 shows
that the from-scratch model that predicts correctly pays at-
tention to the feet, but fine-tuning models that misclassify
concentrate on body-related features, possibly mislead by
ImageNet pre-trained models. The devil that accounts for
such gaps lies in those underperforming features offered
by the pre-trained model, among which we focus on the
following two types based on our empirical studies.

Type I (Rare features): These undertrained features by
the pre-training dataset force the attention of the fine-tuned
model to be diverted to those well-trained features, although
the most discriminative features for the downstream dataset
are exactly those undertrained ones.

Fig. 2a demonstrates a slice of rare features, i.e., neck/tail
features. Concretely, we mask an original image via Gaus-
sian blurring with two patches preserved, and retrieve its
most similar images. The five most similar images retrieved
by neck/tail are unfortunately distant (evidenced by colorful
necks instead of the expected dark neck) using either pre-
trained features (before fine-tuning) or fine-tuned features
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(a) Top-5 similar images retrieved given a masked image.
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(b) The union of top-k predictive probability scores by different
methods, where the star marks the ground-truth class index 3.

Figure 2: (a) Retrieval of the most similar images based on
the cosine similarity between features of the masked image
and another one. (b) Given the masked image in (a), the
model trained from scratch predicts correctly but both fine-
tuning and linear probing fail.

(after fine-tuning), advocating that the fine-grained neck
features are undertrained in the coarse-grained pre-training
dataset of ImageNet. As a consequence, both linear prob-
ing that only fine-tunes the classification head and vanilla
fine-tuning lose the attention of the discriminative neck fea-
tures, resulting in incorrect predictions, while training from
scratch where all features are initialized to be unanimously
uninformative succeeds.

Type II (Spuriously correlated features): The mislead-
ing correlations in the pre-training dataset constitute another
source that diverts the attention of the fine-tuned model.

In Fig. 3, we show head features and bird feeder features
as a pair of spuriously correlated features. For the masked
image 1 with only the two patches of head and tail preserved,
all three models make correct predictions; nonetheless, in-
cluding one more patch describing the bird feeder in the
masked image 2 significantly alters the predictions by fine-
tuning and linear probing, despite having no influence on
that by the from-scratch model. This can be explained by the
spurious correlations between head and bird feeder features
that exist in another bird class of the pre-training dataset.

This work sets out to develop a fine-tuning strategy that
alleviates the negative effects of these two types of under-
performing pre-trained features. First, we conclude that
maximizing the mutual information between examples in the
same class with respect to a particular slice of rare features
is contributory to draw the attention to refining rare features
to be discriminative. Second, by investigating the causal
models of predictions after fine-tuning, we identify that the
pre-training dataset as a confounder explains the negative
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Figure 3: An examplar pair of spuriously correlated features,
where the model trained from scratch predicts consistently
after including one more patch in the masked image 2. Un-
fortunately, fine-tuning and linear probing predict incorrectly
with the introduction of the same patch.

transfer by spuriously correlated features. To this end, we
propose to deconfound by the principled front-door adjust-
ment rule. In light of the key role of a patch implementing a
slice of features and the fact that each patch usually encrypts
a concept, we dub the proposed approach “Concept-Tuning”.

We summarize our contributions as follows.

• We have identified two specific types of underperform-
ing pre-trained features that give rise to negative transfer
and revealed the root cause of their negative impacts,
upon which more principled fine-tuning techniques can
be developed.

• To our best knowledge, Concept-Tuning is the first that
fine-tunes concept-level sliced features, theoretically
analyzed to offer high invariance to the confounder of
the pre-training dataset.

• Concept-Tuning improves the state-of-the-art sample-
level fine-tuning methods by a large margin (up to
4.76%) and with consistency in eight classification
datasets, seven pre-trained models (supervised and self-
supervised), three network architectures, and different
sample sizes in downstream tasks. Moreover, Concept-
Tuning can extend well to semantic segmentation and
domain generalization tasks.

2. Related Work
Fine-tuning The majority of existing fine-tuning methods
focus on better exploiting the knowledge of a pre-trained
model from different perspectives. For example, L2SP [31]
regularizes weights of the fine-tuned model to be close to
those of the pre-trained model by imposing the ℓ2 constraint,
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refraining the network from forgetting useful knowledge.
REGSL [30] further introduces a layer-wise parameter regu-
larization, where the constraint strength gradually reduces
from the top to bottom layers. DELTA [32] imposes con-
straints on generated activate feature maps instead of weights,
where the constraint on each channel is weighted by the chan-
nel importance. BSS [9] penalizes smaller singular values of
learned feature representations to suppress negative transfer
of spectral components. StochNorm [27] regularizes the
moving statistics in batch normalization layers to mitigate
over-fitting. Co-tuning [58] proposes to explore the informa-
tion encoded in the last task-specific layers of a pre-trained
model, which is usually disregarded, via learning the rela-
tionship between the categories of the pre-training dataset
and those of a downstream dataset. Apart from these reg-
ularization methods, Bi-tuning [61] , Core-tuning [59] and
COIN [40] introduce supervised contrastive learning [20, 24]
to better leverage the label information in the target dataset
with more discriminative representations as a result. How-
ever, these methods use image-wise contrastive loss, which is
orthogonal to our proposed concept-wise losses. In addition
to the above methods that fine-tune all the parameters, some
recent methods transfer a large-scale pre-trained model (e.g.,
ViT [13]) to downstream tasks by freezing the pre-trained
backbone while tuning only a small number of newly in-
troduced trainable parameters and the classification head.
For example, VPT [23] inserts a few learnable parameters
(prompts) in input spaces of the first few layers, and SSF [33]
introduces a small number of learnable parameters for fea-
ture shifting after each linear layer; however, neither of them
targets negative transfer specifically.

Spurious correlation Most deep neural networks are typi-
cally trained to minimize the average loss on a training set,
known as empirical risk minimization [48]. Despite their
success, they likely suffer from spurious correlations which
hinder their successful generalization, such as the contex-
tual correlation of co-occurring objects [45], background
correlation [53], variant-features correlation [3]. The key
to solving this problem is to tell invariant feature represen-
tations apart from variant ones in the training dataset, so
as to enforce the model to rely on the invariant representa-
tions only [34, 37, 35]. Recently, researchers also leverage
the pre-trained models to address spurious correlations in a
downstream dataset [25, 47]. Different from them, we focus
on alleviating negative transfer from a pre-trained model
with spurious correlated features to a downstream dataset.

Patch representation The majority of existing image clas-
sification studies learn the feature representation of an entire
image globally, which inevitably lose position-aware infor-
mation due to the average or max-pooling operation. There
has been a line of literature that learns patch-level features

to deal with this problem. For example, Xiao et al. [54] pro-
posed an approach that learns better feature representations
of regions by maximizing the similarity in convolution fea-
tures of the corresponding regions between two augmented
views. Xie et al. [55] imposed the contrastive loss between a
global image and its local patches to align global and local
feature representations. Xie et al. [56] first detected the fore-
ground object regions, based on which they implemented
contrastive learning of these regions to specifically improve
feature representations of objects. How to embrace these
ideas of patch-level representation learning mainly targeting
object detection towards better fine-tuning of pre-trained
models remains an open but intriguing question.

3. Preliminary

Before proceeding to the proposed fine-tuning approach,
we first introduce the notations that we use. Suppose that
we are provided with a dataset D = Dtr∪Dte, where the
training set Dtr={xtr

i , ytri }
ntr
i

i=1 consists of ntr
i training ex-

amples and the testing set Dte = {xte
i , ytei }

ntr
i +nte

i

i=ntr
i +1

is made
up of nte

i testing examples. xtr
i (xte

i ) and ytri (ytei ) denote
the features and label of the i-th training (testing) exam-
ple, respectively. Note that the labels for the testing set are
used solely for evaluation purposes. Besides, we have ac-
cess to a pre-trained model fθ(·) pre-trained on a dataset Dp

as an initialization feature extractor. In this paper, we aim
to learn a classifier W (·) and fine-tune the feature extrac-
tor fθ(·) through the training set Dtr, so that the function
W (fθ(x)) 7→ y predicts well on the testing set Dte.

Supervised contrastive fine-tuning Besides the common
cross entropy loss LCE(W (fθ(x)), y) adopted in vanilla
fine-tuning, recent state-of-the-art fine-tuning methods [59,
61] introduce the supervised contrastive loss [24] for better
tuning of feature representations, i.e.,

Lcon = − 1

n

n∑
i=1

1

|Pi|
∑

k+∈Pi

log
exp(qi · k+/τ)∑

k−∈Ai
exp(qi · k−/τ)

.

Here Pi and Ai denote the set of positive representations
from the same class to pull towards the query representa-
tion qi as an anchor, and the set of negative representations
from different classes to push away, respectively; k+ and
k− denote a sample from the positive representation set Pi

and the negative representation set Ai, respectively; τ is a
temperature hyper-parameter. Specifically, the representa-
tion space for application of this supervised contrastive loss
could be either qi = W (fθ(x

tr
i )) after the classifier [61] or

qi = fθ(x
tr
i ) after the feature extractor [59]. In our work,

we also follow the best practice by including Lcon and tak-
ing qi = W (fθ(x

tr
i )), which constitutes the first part of our
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Figure 4: Overview of our proposed approach.

training objective in Fig. 4,

Lf = LCE(W (fθ(x)), y) + Lcon. (1)

4. Proposed Approach
In Section 1, we illustrated two types of underperforming

features in a pre-trained model that lead fine-tuning astray:
rare features and spuriously correlated features. To mitigate
such negative transfer, we first investigate the roles of these
features in impairing downstream predictions. Based on this
investigation, we propose our principled approach. As shown
in Fig. 4, our approach includes Lr, which improves the
learning of rare features, and Ls, which lessens the influence
of spuriously correlated features.

Rare features. Given a training example xtr
i , we denote

its feature representation by the pre-trained model as Fi =
fθ(x

tr
i ). According to what we have established in Section 1,

a rare feature F r
i is a slice of Fi that should play a greater

role than the other slices in classification while being not
discriminative, i.e., p(ytri |F r

i ) ≈ p(y′|F r
i ). y′ ̸= ytri here

denotes the label of a different category from ytri . Imposing
the example-level objective Lf only without focusing on
slices of rare features, similar to vanilla fine-tuning, gets
stuck again with those well-trained but nonessential features.

To improve the discriminative ability of rare features
pointedly, we propose to maximize the mutual information
between examples in the same class with respect to any r-th
slice of rare features (e.g., neck features in Section 1), i.e.,

max I(F r
i ;F

r
j ), s.t. ytri = ytrj , (2)

where I(·; ·) denotes the mutual information. By zooming
into each slice feature of an example, this mutual information
favourably prioritizes rare features and makes them more
discriminative as expected. Despite the notorious challenge
of estimating the mutual information, connections have been
made of the contrastive loss to maximization of mutual in-
formation in [39, 46], showing that

I(F r
i ;F

r
j ) ≥ logK− − Lr, (3)

where K− is the number of negative examples from other
classes. Instead, we resort to minimize the contrastive loss
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(a) Structural causal model of pre-
dictions
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(b) Front-door adjustment

Figure 5: A causal probe into the negative impact of spuri-
ously correlated features in pre-trained models.

Lr = −E{F r
i }K+

i=1 ,{F r
j }K+

j=1,{F r
k }K−

k=1
[log

d(F r
i , F

r
j )∑K−

k=1 d(F
r
i , F

r
k )

],

where K+ is the number of positive examples in the same
class as in supervised contrastive loss [24] and ytri ̸= ytrk .

The challenge now reduces to defining the critic function
d(·, ·) which is expected to evaluate the similarity between
the same r-th slice of rare features between different exam-
ples. Take the neck features in Section 1 as an example again.
We seek for d(F r

i , F
r
j ) that pulls the neck features of the i-th

image (characterizing F r
i ) and those of the j-th (describing

F r
j ) given a bird class, say Green Violetear. Fortunately, the

earth mover’s distance (EMD) [2] function that automati-
cally searches the most similar slice across examples meets
this requirement. Therefore, we are inspired to implement

d(F r
i , F

r
j ) = exp(

F r
i · ξ∗(F r

i )

∥F r
i ∥ · ∥ξ∗(F r

i )∥
· 1
τ
), (4)

where ξ∗ = argminξ:{F r′
i }R

r′=1
→{F r′

j }R
r′=1

∑
r′ ∥F r′

i −
ξ(F r′

i )∥ represents the optimal matching flow among all one-
to-one mappings ξ ∈ RR×R. ξ∗(F r

i ) hopefully returns the
slice of features from the j-th example in the same semantic
slice, e.g., neck features, as the i-th example. Consequently,
we have the empirical contrastive loss used as,

Lr = − 1

n

n∑
i=1

1

K+

K+∑
j∈{ytr

i =ytr
j }

log
d(F r

i , F
r
j )∑K−

k∈{ytr
i ̸=ytr

k
} d(F

r
i , F

r
k )

.

(5)

We leave the details of how to define a patch feature
as a slice of features F r

i as well as more details on the
implementation of this contrastive loss in Section 5.1.

Spuriously correlated features Despite the ground-truth
label ytri (e.g., carriage), the spuriously correlated features
(e.g., describing a person) are correlated with another label
y′ ̸= ytri (e.g., horse) more frequently in the pre-training
dataset Dp, thereby likely misguiding the prediction of y′,
i.e., p(ytri |F )≪ p(y′|F ) as demonstrated in Section 1. To
investigate more closely the misleading role of the spuriously
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correlated features, we construct the structural causal model
as shown in Fig. 5a. The causal link Dp → F → Y denotes
that the features F extracted by the pre-trained model on the
pre-training dataset Dp will be fine-tuned to predict the label
Y via the classifier. Unfortunately, besides this legitimate
causal path that the model is expected to learn, the “back-
door” path F ← Dp → Y gives rise to a spurious correlation
from F to Y , making Dp unfavorably a confounder [42].

To this end, we propose to deconfound and thereby
alleviate the negative impact of spuriously correlated
features. There are two deconfounding techniques [41, 42]:
back-door adjustment, which disconnects the causal
link from Dp to F , and front-door adjustment, which
introduces a mediator Z from F to Y while severing the
link from F to Z 1. We adopt the front-door adjustment
approach since back-door adjustment requires access to
the pre-training dataset Dp, which is always unavailable
in our problem. Concretely, as shown in Fig. 5b, the
front-door adjustment estimates the true causal effect
between F and Y by deconfounding the confounder Dp, i.e.,

p(Y |do(F )) =
∑
z

p(Z = z|F )p(Y |Z = z))

=
∑
z

p(Z = z|F )
∑
f

p(F = f)[p(Y |F = f, Z = z)]

= EZ|FEF [p(Y |F = f, Z = z)]

= EZ|FEF Softmax(φ(F,Z)) (6)

≈ Softmax[φ(EFF,EZ|FZ))]

= Softmax
[
φ
(∑

f

p(F = f)f ,
∑
z

p(Z = z|F )z
)]
, (7)

where do(·) is the do-operation in causal inference, z rep-
resents a slice of features from F . f is a stratum of F and
φ is a classifier. z and f are specific embedding vectors
that correspond to the two variables z and f , respectively.
The fourth equation comes from the implementation of
p(Y |F = f, Z = z) as the classifier φ with a Softmax layer.
The approximation is derived from the normalized weighted
geometric mean (NWGM) [57], which moves the outer
expectation in Eqn. (6) inside the Softmax function and the
classifier φ. More details on the derivation of Eqn. (7) can
be found in Appendix A.1.

To be compatible with the slice-level break-down of F
into patches when dealing with rare features, here we for-
mulate Z as sets of patches (or concepts) specifically. As
a result, the expectations EFF =

∑
f p(F = f |F )f and

EZ|FZ =
∑

z p(Z = z|F )z in Eqn. (7) can be easily actu-
alized with attention neural networks [49, 16] in the level
of channels and patches, respectively. We leave more im-
plementation details of the attentional neural networks in
Section 5.1.

The approximation error in Eqn. (7) makes the causal

1Please refer to Appendix B for introduction of causal inference and
deconfounding techniques.

link from F to Z not fully disconnected, thereby leaving the
confounder Dp not fully deconfounded. On this account, we
propose to further minimize the correlation between F and
the feature input Ẑ which is measured by their mutual infor-
mation I(Ẑ;F ). Inspired by variational information bottle-
neck [1] where minimizing the mutual information reduces
to minimizing the Kullback-Leibler (KL) divergence be-
tween p(Ẑ|F ) and a standard Gaussian distributionN (0, 1),
we model p(Ẑ|F ) = N (µẐ , σẐ) and minimize the KL loss
KL[N (µẐ , σẐ),N (0, 1)] instead. Specifically, we generate
the mean µẐ and variance σẐ by projecting the concatena-
tion of

∑
f p(F = f)f and

∑
z p(Z = z|F )z.

Combining the deconfounded prediction p(Y |do(F )) and
the minimization of I(Ẑ;F ), we conclude the following loss
that mitigates the spurious correlations caused by Dp as,

Ls = LCE(p(Y |do(F )), y) + KL[N (µẐ , σẐ),N (0, 1)].
(8)

Proposition 4.1. Given that Ẑ depends on Dp only through
F , i.e., Dp → F → Ẑ, we have

I(Ẑ;Dp) ≤ I(Ẑ;F )− I(F ;Y ) (9)

and minimizing I(Ẑ;F ) leads to invariant representation Ẑ
that is maximally insensitive to the confounder Dp.

This proposition justifies that retaining the minimum in-
formation I(Ẑ;F ) through either deconfounding or mini-
mizing KL[N (µẐ , σẐ),N (0, 1)] suffices to offset the neg-
ative effects of the spuriously correlated features during
fine-tuning. We provide the proof for Proposition 4.1 in
Appendix A.2.

Taking all the loss functions that we have introduced for
supervised contrastive fine-tuning in Eqn. (1), improving rare
features in Eqn. (5), and alleviating spuriously correlated
features in Eqn. (8), we finally obtain the overall objective
function that achieves concept-level fine-tuning as follows,

L = Lf + αLr + βLs (10)

where α and β are the balancing hyper-parameters that gov-
erns the impact of Lr and Ls. The pseudo-code of the whole
algorithm is provided in Appendix C.

5. Experiments
To evaluate the effectiveness of Concept-Tuning, we con-

duct extensive experiments to answer the following ques-
tions: Q1: How do our methods perform compared to
state-of-the-art fine-tuning methods? Q2: Can the proposed
Concept-Tuning consistently improve the performance un-
der different data sizes? Q3: Can our methods be applied
to different pre-trained models and architectures? Q4: Do
our methods indeed alleviate the negative impact of the two
types of underperforming pre-trained features?
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5.1. Experiment setup

Datasets. We evaluate our methods on eight image clas-
sification datasets, covering a wide range of fields: CUB-
200-2011 [50], Stanford Cars [28], FGVC Aircraft [36],
CIFAR10, CIFAR100 [29], Vegetable [44], ISIC [11] and
Caltech101 [15]. Among them, ISIC is a medical dataset
that targets classifying skin lesion images into seven possi-
ble disease categories. We split the datasets as per previous
works [58, 61] to make fair comparison. Further, we apply
Concept-Tuning to semantic segmentation tasks on PASCAL
VOC [14] and ADE20k [63], and domain generalization task
on DomainNet [43]. We provide more descriptions for all
datasets (e.g., the statics of each dataset and the train/test
split) in Appendix E.1.

Baselines. We compare Concept-Tuning with recent ad-
vanced fine-tuning methods, which can be roughly cate-
gorized into three classes: regularization-based methods,
supervised contrastive methods, and parameter-efficient fine-
tuning methods. (1) Regularization-based methods including
L2SP [31] and REGSL [30] which regularize the weights
of the fine-tuned model, DELTA [32] and BSS [9] which
impose constraints on the generated feature maps, and Co-
tuning [58] which explores label information of the pre-
trained dataset as an additional regularization on the down-
stream predictions. (2) Supervised contrastive methods in-
cluding Bi-tuning [61], Core-tuning [59] and COIN [40],
all of which introduce supervised contrastive learning into
fine-tuning and benefit from more discriminative feature rep-
resentations by pulling features from the same class together
and simultaneously pushing apart features from different
classes in the embedding space. Specifically, COIN [40]
fine-tunes a model with Lcon in the first several epochs and
later the joint of LCE and Lcon. (3) Parameter-efficient fine-
tuning methods including VPT [23] and SSF [33], which
freeze the pre-trained backbone while tuning only a small
number of newly introduced trainable parameters and the
classification head. Since the last line of methods targets
large-scale pre-trained models, we include them in only the
experiments involving ViT-B/16. In addition, we include
vanilla fine-tuning with only the cross-entropy loss as a base-
line.

Models. Following [61], we mainly use ResNet-50 pre-
trained on ImageNet-1k in a supervised manner to evalu-
ate different fine-tuning methods on various datasets. In
addition, we conduct experiments with ResNet-50 that
are pre-trained by four other self-supervised pre-training
strategies (i.e., MoCo-V2 [7], SimCLR [6], SwAV [4]
and BYOL [17]) to evaluate the effectiveness of Concept-
Tuning on different pre-trained models. Moreover, we fol-
low VPT [23] to evaluate the compatibility of the proposed
method with larger models: ResNet-101 and ViT-B/16 [13]),
where ResNet-101 is supervised pre-trained on ImageNet-1K

and ViT-B/16 is pre-trained on ImageNet-21K2.
Implementation details. We implement our methods based
on the Transfer Learning Library3. For the baselines, we use
the same training strategies and default hyper-parameters
settings as in the previous works [61, 59]. During training,
we utilize a standard augmentation strategy by performing
random resize-crop to 224 × 224, random horizontal flip,
and normalization with ImageNet means and deviations. Fol-
lowing MoCo [7], we keep a momentum-updated model
and maintain two groups of queues of features. Specifically,
denoting the tuning model as θq and the momentum-updated
model as θk, we update θk by θk ← mθk+(1−m)θq where
m as the momentum coefficient is set as 0.999 by default.
Each queue in the first group of queues stores n ℓ2 normal-
ized feature representations for examples in each class and
each queue in the second group stores n ℓ2 normalized patch
representations for each class, where the representations are
generated by the momentum-updated model and n is a hyper-
parameter controlling the size of a queue. Moreover, we set
the temperature τ = 0.07 [52]. More details of the hyper-
parameter settings tuned by validation sets are provided in
Appendix E.2. All results are averaged over three trials.
Implementation details in rare features. To define a patch
feature as a slice of features F r, we first determine the re-
gions of rare features and then extract features of the cropped
regions. In detail, we obtain the most confusing class based
on the classification logits, upon which we retrieve the clas-
sification weights of the ground truth class Wy ∈ RC (C
represents the number of channels in F ) and the confusing
class Wy′ , respectively. Note that the input features F to the
classification head are all non-negative thanks to the ReLU
operation so that u = Wy −Wy′ demonstrates each chan-
nel’s importance in classifying these two classes. ui close
to zero indicates that the i-th channel feature is not that dis-
criminate. Inspired by previous works [62, 60] that connect
each channel of the convolutional feature map to a visual
concept, we choose the attentive regions of the channels
whose u are closest to zero as regions of the rare features. In
our experiments, we use 9 channels with u closest to zero
and thereby crop 9 patches in size of 64× 64, each of which
is at the most attentive position of a selected channel.
Implementation details in spurious correlated features.
Given a feature representation F ∈ RC×H×W of an exam-
ple, where C represents the channel, H and W represent
the height and width of the feature, we feed it into attention
networks to get two expectations EZ|FZ and EFF . EZ|FZ
via a patch attention module: we first obtain two new fea-
tures {K,Q} ∈ RC/8×H×W to better model the probabil-
ity p(Z = z|F ) in the embedded space as well as reduce
the computation complexity through two 1× 1 convolution
layers, respectively. Then both K and Q are reshaped to

2https://github.com/rwightman/pytorch-image-models
3https://github.com/thuml/Transfer-Learning-Library
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Table 1: Top-1 accuracy (%) on various datasets using supervised pre-trained ResNet-50.

Method CUB Cars Aircraft CIFAR10 CIFAR100 Vegetable ISIC Caltech101 Avg.

Vanilla Fine-tuning 78.01± 0.16 87.20± 0.19 81.13± 0.21 96.33± 0.12 83.56± 0.17 88.10± 0.16 86.07± 0.24 92.20± 0.24 86.56
L2SP 78.44± 0.17 86.58± 0.26 80.98± 0.29 96.29± 0.23 83.01± 0.19 88.04± 0.21 85.99± 0.22 92.36± 0.17 86.46
DELTA 78.63± 0.18 86.32± 0.20 80.44± 0.20 93.77± 0.16 78.98± 0.24 88.21± 0.17 86.05± 0.19 91.95± 0.33 85.54
BSS 78.85± 0.31 87.63± 0.27 81.48± 0.18 96.35± 0.31 83.80± 0.15 88.60± 0.26 85.55± 0.17 92.51± 0.15 86.85
Co-tuning 81.24± 0.14 89.53± 0.09 83.87± 0.09 96.42± 0.26 81.40± 0.22 88.26± 0.19 85.21± 0.13 92.76± 0.18 87.32
REGSL 81.60± 0.21 88.83± 0.18 84.07± 0.23 97.16± 0.17 83.96± 0.20 87.43± 0.25 86.09± 0.19 92.21± 0.22 87.67
Bi-tuning 82.93± 0.23 88.47± 0.11 84.01± 0.33 96.80± 0.20 84.44± 0.18 89.60± 0.26 86.23± 0.28 92.67± 0.08 88.14
Core-tuning 81.99± 0.12 91.68± 0.16 86.71± 0.15 97.28± 0.14 86.09± 0.21 88.63± 0.25 85.13± 0.16 91.66± 0.11 88.65
COIN 82.76± 0.19 89.88± 0.21 87.88± 0.28 97.43± 0.25 85.49± 0.22 88.52± 0.15 86.61± 0.24 92.67± 0.18 88.90
Ours 1 (+Lr) 84.86± 0.26 92.66± 0.28 88.84± 0.25 97.54± 0.12 85.96± 0.09 89.79± 0.13 86.63± 0.21 92.97± 0.14 89.91
Ours 2 (+Lr+Ls) 85.02± 0.21 92.90± 0.24 89.65± 0.30 97.52± 0.14 85.59± 0.15 90.10± 0.18 86.01± 0.26 93.15± 0.10 89.99

{KR, QR} ∈ RC/8×N , where N = H ×W is the number
of patch features. After that, we obtain the patch-wise atten-
tion through P = Softmax(QT

RKR) ∈ RN×N , where T
indicates transpose operation. Meanwhile, we also obtain a
new feature map V ∈ RC×H×W through a 1×1 convolution
layer and then reshape it to VR ∈ RC×N . Lastly, we get the
selected feature in patches via a matrix multiplication opera-
tion between P and V : VRP ∈ RC×N . EFF via a channel
attention module: here we directly calculate the channel
attention map S from F . Specifically, we first reshape F
into FR ∈ RC×N and then obtain S = FRF

T
R ∈ RC×C to

model p(F = f |F ), and then EFF =
∑

f p(F = f |F )f
can be calculated through a matrix multiplication operation
between FR and S: SFR ∈ RC×N . Finally, the two ex-
pectations are aggregated by element-wise sum operation
and then average pooling along dimension N . Please kindly
refer to Appendix C for the pseudo-code and Appendix D
for the structure of the attention network.

5.2. Experimental results

Comparison with previous methods. We first report the
performances of different methods on eight image classifi-
cation datasets using ResNet-50 [22] supervised pre-trained
on ImageNet-1k in Table 1. Concept-Tuning outperforms
all competitors by a large margin (average 1.34% improve-

Table 2: Top-1 accuracy (%) on three datasets under different
sampling rates using supervised pre-trained ResNet-50.

Dataset Method Sampling Rates
15% 30% 50% 100% Avg.

CUB

Vanilla fine-tuning 45.25± 0.12 59.68± 0.21 70.12± 0.29 78.01± 0.16 63.27
Bi-Tuning 55.83± 0.04 69.52± 0.24 77.17± 0.13 82.93± 0.23 71.36
Core-Tuning 55.94± 0.07 68.54± 0.16 76.41± 0.18 81.99± 0.12 70.72
Ours 1 58.15± 0.11 71.16± 0.18 77.98± 0.20 84.86± 0.26 73.04
Ours 2 60.70± 0.25 73.18± 0.22 78.68± 0.14 85.02± 0.21 74.40

Cars

Vanilla fine-tuning 36.77± 0.12 60.63± 0.18 75.10± 0.21 87.20± 0.19 64.93
Bi-Tuning 48.86± 0.22 73.05± 0.29 81.10± 0.07 88.47± 0.11 72.87
Core-Tuning 53.79± 0.17 77.27± 0.24 85.56± 0.18 91.68± 0.16 77.08
Ours 1 55.00± 0.28 78.57± 0.27 86.63± 0.15 92.66± 0.28 78.22
Ours 2 57.32± 0.19 79.99± 0.22 87.60± 0.12 92.90± 0.24 79.45

Aircraft

Vanilla fine-tuning 39.57± 0.20 57.46± 0.12 67.93± 0.28 81.13± 0.21 61.52
Bi-Tuning 47.91± 0.32 64.45± 0.23 72.40± 0.22 84.01± 0.33 67.19
Core-Tuning 50.38± 0.34 68.78± 0.28 77.86± 0.26 86.71± 0.15 70.93
Ours 1 49.02± 0.28 68.05± 0.17 78.04± 0.16 88.84± 0.25 70.99
Ours 2 50.05± 0.23 69.10± 0.27 78.40± 0.24 89.65± 0.30 71.80

ments on eight datasets), especially on fine-grained datasets
(e.g., 2.09% improvements on CUB and 2.94% on Aircraft
compared to the previous best method). Strictly regularizing
the weights or features (e.g., L2SP and DELTA) between the
pre-trained and fine-tuned models could exacerbate negative
transfer and thus achieve poor performances, which is in
most cases even worse than vanilla fine-tuning. Relaxing
the weights-regularization on different layers as REGSL or
only penalizing smaller singular values of features as BSS
could alleviate the forehead problem and achieve better per-
formances. Moreover, introducing supervised contrastive
learning during fine-tuning(e.g., Bi-tuning and Core-tuning)
can achieve superior performances as it efficiently leverages
the label information via supervised contrastive learning.
We attribute less improvement on CIFAR to the low res-
olution (32×32) images, which makes accurate extraction
of concept-level features challenging. However, this does
not limit the applicability of Concept-Tuning in light of pre-
vailing high-resolution images nowadays. As shown in the
averaged accuracy on eight datasets, our method achieves
the best performance by successfully reducing the negative
transfer caused by the two underperforming features in the
pre-trained model.
Results with different data sizes. To verify the performance
of our methods on different sizes of training data, especially
on a small training dataset, we follow [58] to sample 15%,
30%, 50% and 100% of data for training. We show the per-
formances of the proposed method and a part of the baselines
in Table 2 and the full table in Appendix F. We find that our
method consistently surpasses all previous methods under
different sampling rates. This indicates that even when the
training data is limited, our methods can resolve the severe
negative transfer in the pre-training model and achieve much
better performance than the previous methods. For example,
under 15% sampling rate on CUB, our method is 4.87% and
4.76% higher than Bi-tuning and Core-tuning, respectively.
Results with different unsupervised pre-training strate-
gies. To evaluate the effectiveness of our methods on unsu-
pervised pre-trained models, we further conduct extensive ex-
periments on ResNet-50 pre-trained by four widely-used self-
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supervised pre-training methods MoCo-V2 [7], SimCLR [6],
SwAV [4] and BYOL [17] and ViT-B/16 pre-trained by two
self-supervised pre-training methods (MAE [19] and MoCo-
v3 [10]). All the models are pre-trained on ImageNet and
the pre-trained weights are provided by their authors. As
shown in Table 3, our methods work well under different
self-supervised pre-trained methods, showing that the effec-
tiveness of Concept-Tuning is not bounded to specific pre-
training models. More results (e.g., MAE [19] and MoCo-
v3 [10])) are available in Appendix F.
Results with different backbone architectures. Previously
we conduct experiments on ResNet-50, while the effective-
ness of Concept-Tuning on more architectures is unexplored.
Here, we conduct experiments on three different backbone
architectures: ResNet-50, ResNet-101 [22], which are super-
vised pre-trained on ImageNet-1k, and Vit-B/16 [13] super-
vised pre-trained on ImageNet-21k. As shown in Table 4,
Concept-Tuning performs well on all three architectures.
Despite the superior performances of vanilla fine-tuning on
ViT-B/16, Concept-Tuning obtains non-trivial performance
gains (e.g., 2.6% on CUB), verifying the effectiveness of
Concept-Tuning on large pre-trained models.

5.3. Ablation studies

The effect of the two losses Lr and Ls. We first conduct
ablation studies of Concept-Tuning on the loss regarding rare
features Lr , spuriously correlated features Ls, and invariant
representation KL. As shown in Table 5, only resolving rare
features via Lr can improve the performances by a large
margin, indicating that it leads to better feature representa-
tions and thus achieves better classification results, and only
resolving spuriously correlated features to disconnect causal
links via Ls can also obtain obvious improvements. Further,
minimizing I(Ẑ, F ) through the proposed KL loss promotes
invariant representations Ẑ, verified by the improvements
on Ls beyond Ls w/o KL. Moreover, we find that simultane-
ously applying Lr and Ls yields the best results, as shown
in the last row of Table 5.

More ablation studies (i.e., the trade-off weight α, the

Table 3: Top-1 accuracy (%) on three datasets using four
different pre-trained ResNet-50.

Dataset Method Pre-trained method

MoCo-V2 SimCLR SwAV BYOL Avg.

CUB

Vanilla fine-tuning 76.72± 0.21 76.51± 0.28 80.45± 0.32 81.29± 0.29 78.74
Bi-tuning 79.48± 0.24 75.73± 0.25 81.72± 0.23 82.02± 0.29 79.74
Core-tuning 77.93± 0.18 77.55± 0.15 80.60± 0.27 78.46± 0.18 78.64
Ours 1 82.48± 0.14 78.18± 0.20 83.47± 0.22 83.38± 0.18 81.88
Ours 2 82.53± 0.21 79.81± 0.23 84.78± 0.32 84.45± 0.29 82.89

Cars

Vanilla fine-tuning 88.45± 0.35 84.53± 0.12 88.17± 0.21 88.99± 0.39 87.54
Bi-tuning 90.05± 0.15 91.75± 0.18 90.49± 0.27 90.90± 0.18 90.80
Core-tuning 90.87± 0.23 91.78± 0.26 91.84± 0.14 91.95± 0.18 91.61
Ours 1 91.02± 0.11 93.27± 0.20 93.41± 0.26 93.22± 0.15 92.73
Ours 2 91.75± 0.18 93.36± 0.23 93.79± 0.32 93.68± 0.25 93.15

Aircraft

Vanilla fine-tuning 88.60± 0.18 87.79± 0.24 83.26± 0.17 85.03± 0.15 86.17
Bi-Tuning 89.05± 0.16 88.69± 0.17 85.69± 0.13 87.16± 0.11 87.65
Core-Tuning 89.02± 0.19 89.47± 0.21 88.66± 0.34 89.74± 0.20 89.22
Ours 1 89.65± 0.18 90.13± 0.11 91.42± 0.36 90.82± 0.22 90.50
Ours 2 89.32± 0.21 90.85± 0.17 91.75± 0.14 91.21± 0.13 90.76

Table 4: Top-1 accuracy (%) on two datasets using different
architectures with supervised pre-training, where ∗ indicates
the results reported in [23] and [33].

Dataset Method Architecture

ResNet-50 ResNet-101 ViT-B/16 Avg.

CUB

Vanilla fine-tuning 78.01± 0.16 82.26± 0.34 87.3∗ 81.32
Bi-tuning 82.93± 0.23 83.57± 0.13 89.23± 0.33 85.24
Core-tuning 81.99± 0.12 81.76± 0.14 89.30± 0.21 84.35
VPT * * 88.5∗ *
SSF * * 89.5∗ *
Ours 1 84.86± 0.26 83.98± 0.17 89.90± 0.18 86.25
Ours 2 85.02± 0.21 84.12± 0.16 89.78± 0.25 86.31

Cars

Vanilla fine-tuning 87.20± 0.19 88.84± 0.28 84.5∗ 86.85
Bi-tuning 88.47± 0.11 90.82± 0.16 92.40± 0.19 90.56
Core-tuning 91.68± 0.16 91.49± 0.13 91.12± 0.34 91.43
VPT * * 83.6∗ *
SSF * * 89.2∗ *
Ours 1 92.66± 0.17 92.63± 0.22 92.86± 0.19 92.72
Ours 2 92.90± 0.24 92.76± 0.24 92.92± 0.26 92.86

trade-off weight β, the patch size, the temperature τ , and
the number of keys stored in the queue) are provided in
Appendix F.

5.4. Visualization

To better understand the effectiveness of our methods,
we compare the CAMs of different methods, as shown in
Fig. 6a. Influenced by the pre-trained model, Fine-tuning
and Bi-tuning tend to focus on the reflection in the water.
In contrast, our methods could alleviate the problem and
attend to regions closer to the model trained from scratch.
Moreover, Concept-Tuning focuses on a relatively minor part
than Bi-tuning, indicating that our method could effectively
resolve those spuriously correlated features. To further verify
that our approach can improve the representation of rare
features, we test our methods on the masked image in Fig. 2a.
As shown in Fig. 6b, Concept-Tuning predicts correctly,
while both Fine-tuning and Bi-tuning fail.

To compare the convergence of different methods, we
follow COIN [40] to plot the training curves. As shown in
Fig. 7, all methods have fully converged to similar training
accuracy, while Concept-Tuning achieves the best perfor-
mance on the testing set.

Table 5: Ablation studies of our methods using ResNet-50 by
supervised pre-training, and we report the top-1 accuracy (%)
on three datasets. Note that we follow the training strategies
in Bi-tuning [61] to implement the experiments with Lf ,
which is a stronger baseline.

Loss Dataset
Lf Lr Ls Ls w/o KL CUB Cars Aircraft
✓ 82.93± 0.23 88.47± 0.11 84.01± 0.33
✓ ✓ 84.86± 0.26 92.66± 0.28 88.84± 0.25
✓ ✓ 83.36± 0.25 90.49± 0.24 86.29± 0.31
✓ ✓ 84.21± 0.23 91.84± 0.19 87.46± 0.28
✓ ✓ ✓ 84.92± 0.22 92.55± 0.28 89.11± 0.36
✓ ✓ ✓ 85.02± 0.21 92.90± 0.24 89.65± 0.30
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Figure 6: (a) CAM visualization of 4 methods. Influenced
by the pre-trained model, fine-tuning and Bi-tuning will
be attracted by the reflection in the water and make wrong
predictions, while Concept-Tuning focuses on the bird and
predicts correctly. (b) Given a Gaussian-blurred masked
image in Fig. 2a, our method alleviates the negative transfer
and predicts correctly as the model trained from scratch.
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Figure 7: Comparisons of the training curves of different
methods on Cars.

5.5. Experiments on semantic segmentation

To explore the feasibility of our methods beyond vi-
sual classification, we extend the evaluation of ours to se-
mantic segmentation, where we follow the training pro-
tocol in [12] to fine-tune the pre-trained DeepLab-V3
model [5] (ResNet-50 as the backbone) on PASCAL
VOC [14] and ADE20k [63], respectively. Following [12],
for PASCAL VOC, we train on the VOC2012 training set
and its augmented training set [18] with 20k iterations and
then test on VOC2012 validation set; for ADE20k, we train
on its training set with 80k iterations and test on its valida-
tion set. We use SGD with an initial learning rate of 0.01
and a poly decay schedule to train the model. The images
are resized to 512 × 512 for PASCAL VOC and ADE20k,
and other hyper-parameters are the same as [12]. We use
Mean Intersection over Union (MIoU) to evaluate the perfor-
mances of different methods. Results in Table 6 corroborate
the effectiveness of Concept-Tuning in even segmentation
tasks.

Table 6: Results on fine-tuning DeepLab-V3 (ResNet-50) on
two semantic segmentation datasets.

Method PASCAL VOC ADE20k
Vanilla fine-tuning 76.17 42.42
Core-tuning 76.94 42.97
Ours 2 77.66 43.12

Table 7: OOD generalization results on DomainNet. More-
over, c/i/p/q/r/s represent different domains; :c means that the
model is fine-tuned on domains except for c and evaluated
on c.

Method avg. :c :i :p :q :r :s
Vanilla fine-tuning 45.72 62.98 26.31 52.63 14.20 67.00 51.25
Bi-tuning 46.32 64.42 27.65 53.18 14.79 66.36 51.56
Core-tuning 46.06 63.68 26.94 52.89 15.17 65.91 51.78
Ours 2 46.74 64.48 28.17 53.68 15.33 66.04 52.73

5.6. Benefits to out-of-distribution generalization

We also conduct experiments on the domain generaliza-
tion task to investigate our method’s robustness on out-of-
distribution (OOD) datasets. We compare methods on a
large-scale multi-source dataset, i.e., DomainNet [43]. Do-
mainNet includes six domains (i.e., Clipart, Infograph, Paint-
ing, Quickdraw, Real, and Sketch), and the model is fine-
tuned on five domains and evaluated on one remaining do-
main. Specifically, we use supervised pre-trained ResNet-50
as the backbone. For training, we follow the training pro-
tocol in Transfer Learning Library to set the learning rate
as 0.01 and the training step as 50, 000. Results in table 7
show that Concept-Tuning surpasses previous fine-tuning
methods, advocating its advantage in generalizing to OOD
datasets.

6. Conclusions and Discussions

Drew on our preliminary empirical observations, we pin-
point two types of underperforming pre-trained features in
pre-trained models that likely give rise to negative trans-
fer, i.e., rare features and spuriously correlated features. In
this paper, we develop a highly principled Concept-Tuning,
which combats the negative impacts of rare features from an
information-theoretic perspective and that of spuriously cor-
related features based on causal adjustment. By formulating
concepts as patches, we have concretely derived the concept-
level contrastive loss function and the prediction with atten-
tion to channels and patches. Extensive experiments validate
the effectiveness of the proposed Concept-Tuning in a hand-
ful of downstream tasks with various pre-trained models and
under different sample sizes. Limitations: we are more than
eager to investigate the scope and types of downstream tasks
which the proposed Concept-Tuning significantly boosts,
which is only partially understood insofar.
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