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Abstract

Diffusion Probabilistic Models (DPMs) have recently
demonstrated impressive results on various generative
tasks. Despite its promises, the learned representations
of pre-trained DPMs, however, have not been fully under-
stood. In this paper, we conduct an in-depth investigation
of the representation power of DPMs, and propose a novel
knowledge transfer method that leverages the knowledge
acquired by generative DPMs for recognition tasks. Our
study begins by examining the feature space of DPMs, re-
vealing that DPMs are inherently denoising autoencoders
that balance the representation learning with regularizing
model capacity. To this end, we introduce a novel knowl-
edge transfer paradigm named RepFusion. Our paradigm
extracts representations at different time steps from off-the-
shelf DPMs and dynamically employs them as supervision
for student networks, in which the optimal time is deter-
mined through reinforcement learning. We evaluate our ap-
proach on several image classification, semantic segmen-
tation, and landmark detection benchmarks, and demon-
strate that it outperforms state-of-the-art methods. Our
results uncover the potential of DPMs as a powerful tool
for representation learning and provide insights into the
usefulness of generative models beyond sample genera-
tion. The code is available at https://github.com/
Adamdad/Repfusion.

1. Introduction

In the ever-evolving landscape of machine learning, gen-
erative models have emerged as a captivating approach to
tackle the intricacies of data distributions. Among these
marvels, Diffusion Probabilistic Models (DPMs) stand tall,
boasting a remarkable prowess in producing realistic and di-
verse samples. Powered by the elegent design of diffusion,
these models elegantly transform a humble noise into tar-
get data distribution, unfurling a breathtaking array of vari-
ations and unyielding fidelity in their artistic creations.
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Figure 1. Illustration of our core idea on establishing a link be-
tween representation learning and diffusion models. Building
upon this connection, we propose to utiliz the knowledge acquired
from pre-trained DPMs. This knowledge is selectively distilled
into a student network, empowering it to carry out recognition
tasks with enhanced proficiency.

Although the generative ability of DPMs has been ex-
tensively studied, their potential for representation learning
has not been fully explored. Recent research has demon-
strated that the diffusion models already have a semantic la-
tent space[32], and could be extended to tasks like control-
lable image generation [51], representation learning [1, 46]
and image segmentation [5, 76], albeit through complicated
model modifications. Nevertheless, the usefulness of the
learned feature space of DPMs remain unclear. In this work,
we intend to close the gap between generative DPM and its
capability in representation learning by answering the fol-
lowing question: Can the representation learned by DPMs
be effectively reused for recognition tasks?

We answer this question by first analyzing the inherent
relationship between the diffusion model and the standard
auto-encoder, as shown in Figure 1. Conceptually, DPMs
are designed to predict noise from perturbed input distribu-
tions. Essentially, DPMs can be viewed as denoising auto-
encoders (DAEs) [68, 67] with varying denoising scales.
DAEs have been well-established as a powerful technique
for self-supervised learning, which captures the underlying
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structures of data. Its latent features are useful for down-
stream tasks. On another note, DPMs are commonly known
as score-matching models [62], which model the gradient
of the log probability density with a sequence of interme-
diate latent variables. By connecting score-matching with
DAEs [66], DPMs should also be considered an extension
of DAE. It is, therefore, intuitive that DPM produces mean-
ingful encoding from its input.

Although the representational power of the diffusion
model has well-established theoretical foundations, lever-
aging the off-the-self DPM for non-generative tasks poses
significant challenges. Primarily, these models are parame-
terized as time-conditioned Unet [55, 14, 63], a specialized
structure unsuited for tasks such as classification and object
detection. Secondly, existing DPMs are computationally
heavy [78], making it difficult to use the original model for
discriminative tasks without substantial modifications. An-
other obstacle arises from the fact that a single DPM can be
perceived as a composition of networks, each indexed by its
input timestep. Determining the suitable time-step remains
non-trivial. Consequently, the representations learned by
DPMs do not readily benefit other non-generative tasks.

In this paper, our primary objective is to reuse the knowl-
edge encoded in the DPM for recognition tasks [13]. To
achieve this, we look into the mathematical formulation
of DPM’s latent space, and show that DPMs can be seen
as DAEs that strike a balance between learning meaning-
ful features and regularizing the model capacity. Build-
ing on this insight, we propose a novel knowledge trans-
fer approach, termed RepFusion. Our approach utilizes the
knowledge distillation techniques to transfer the represen-
tation learning capability of the trained generative models
to improve discriminative tasks. Specifically, we dynami-
cally extract intermediate representations at different time
steps and use them as auxiliary supervision for student net-
works. To determine the optimal time selection, we measure
the informativeness of a given representation and optimize
it through the REINFORCED algorithm [72]. Moreover,
the reinforced time-steps selection is aligned with the de-
rived property of DPMs, thereby providing a mechanism
for adapting to different downstream tasks and increasing
the flexibility and generalizability of our approach.

Our experiments demonstrate that RepFusion consis-
tently improves performance on several image classifica-
tion, semantic segmentation, and landmark detection bench-
marks, indicating the powerful representation learning ca-
pability of DPMs. These findings shed light on the poten-
tial utility of generative models beyond their traditional use
in sample generation and highlight the opportunities for ex-
ploring pre-trained models in representation learning.

To sum up, our contributions can be divided into three
main parts:

1. We investigate the potential of repurposing diffusion

models for representation learning, an area that has
been relatively unexplored in prior research.

2. By establishing the relationship between DPMs and
denoising auto-encoders, we verify the statistical and
empirical properties of features extracted from DPMs.

3. We introduce a novel knowledge distillation approach
called RepFusion, which utilizes pre-trained DPMs to
enhance recognition tasks. Extensive evaluations on
image classification, segmentation, and landmark de-
tection benchmarks demonstrate the effectiveness of
DPMs as powerful tools for representation learning.

2. Related Work
Denoising Autoencoders. Autoencoders are a type of neu-
ral network that can learn to reconstruct their input at the
output. Denoising autoencoder (DAE) is a variant of au-
toencoder that recover clean output from corrupted input.
With the denoising objective, DAE has been one of the dom-
inant approaches for unsupervised representations learn-
ing [68, 67, 18, 36]. Several studies have demonstrated that
adjusting the noise scale [17, 11, 86] improves the features.
Apart from learning representation, DAE has been recog-
nized as a generative model by matching the score func-
tion [66, 62, 7, 30]. This paper reframes modern diffusion
models as auto-encoders to make their latent features more
suitable for recognition tasks.
Diffusion Probabilistic Models. DPMs [24] have emerged
as a cutting-edge approach for generating high-quality
samples, with applications like conditioned image genera-
tion [85, 52, 57], 3D generation [50], video synthesis [25]
and domain generalization [82]. DPMs are essentially
score-based models [66, 63] match the score functions over
multiple scales [62]. The objective of this study is to inves-
tigate the potential of diffusion models in learning represen-
tation, which has not received much attention before.
Learn Representation from Generative Models Gener-
ative models, such as diffusion-based models have been
found to learn meaningful semantics [51, 32], with applica-
tions on semantic segmentation [76], correspondence [43,
64] and image editing [61]. Others endeavors to learn from
model generated data [4, 39, 74, 21]. However, current ap-
proaches [5] require complex modifications of the model.
In contrast, our paper takes a novel approach by distilling
well-trained DPMs for general representation learning.
Model Reuse and Knowledge Distillation. The popularity
of pre-trained models creates a growing demand for reusing
model [71, 29, 28, 77, 79, 53] and data [40, 41] to enhance
performance and minimize costs [70, 15, 16, 44]. Knowl-
edge distillation (KD) [22, 80, 65, 38] emerges as a promis-
ing solution, facilitating knowledge transfer from teacher
models to students, benefiting DPMs with reduced sampling
time [45, 58, 45] and improved model efficiency [78]. Our
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research pioneers the exploration of knowledge distillation
from diffusion-based models for recognition tasks.

3. Diffusion Models are Auto-Encoders
In this section, we review DPM’s formulation and

demonstrate its connection to DAEs in terms of represen-
tation learning. Our main insight is that DPM behaves sim-
ilarly to a regularized auto-encoder, with its representation
characteristics being controlled by noise scales.

3.1. Recap on Diffusion Probabilistic Models

The diffusion model is a probabilistic generative model
designed for denoising by systematically reversing a pro-
gressive noising process. It initiates with clean data denoted
as x0 ∼ q(x0) and iteratively applies Gaussian noise with
zero mean and variance βt for a total of T steps, progres-
sively generating a noisy version at each step,

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where t ∈ [1, T ] and 0 < β1:T < 1 denote the noise scale
scheduling. This process converges to a Gaussian white
noise distribution, i.e., xT → N (0, I). Sampling from the
noise-perturbed distribution q(xt) =

∫
q(x1:t|x0)dx1:t−1

requires numerical integration over the steps, while the use
of Gaussian parametrization enables the generation of an ar-
bitrary time-step xt through a closed-form formulation

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) (2)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. The re-
verse process is parameterized as a time-conditioned de-
noising neural network s(x, t;θ) with pθ(xt−1|xt) =
N (xt−1;

1√
1−βt

(xt + βts(xt, t;θ)), βtI). This neural net-
work is trained to minimize re-weighted evidence lower
bound (ELBO) that fits the noise

LDDPM = Et,x0,ϵ

[
||ϵ− s(xt, t;θ)||22

]
(3)

With a trained denoiser s(x, t;θ∗), we are able to generate
the data by solving a reverse process.
Connecting DAE with Diffusion Model. The relation be-
tween diffusion model and DAE lies at the core of our paper.
In essence, diffusion models are created through a gradual
denoising procedure, akin to a cascade of DAEs, with the
only distinction on the input t and shared parameters.

A compelling demonstration of this connection can
be traced back to the advent of score-based generative
model [26, 66, 6, 3, 7, 2]. In that sense, the denoising auto-
encoders involves fitting the derivative of the log-likelihood
of the data, which is known as score matching. The con-
nection is further reinforced by a recent study [63] that dif-
fusion models learn to generate data by matching scores.

This profound insight provides a deeper understanding of
the intrinsic relationship between these two powerful mod-
els, paving the way for our later discussion.

3.2. Probing the Representations in DPMs

Despite the connection between DPM and DAE, we typi-
cally ignore internal latent representation of DPM. This sec-
tion examines the features learned by DPM, particularly the
characteristics of the latent space at various time steps.

An autoencoder (AE) consists of an encoder E : RL →
Rd and a decoder D : Rd → RL, where d < L. The en-
coder maps the noisy input x′ = x+ σ2ϵ to a hidden space
h, and the decoder maps it back x′ to make the prediction y.
We assume a linear AE with skip connection, which mimics
the Unet [55] used in DPMs. This encoder-decoder interac-
tion is mathematically expressed as:

h = WEx
′; y = WDh+WSx

′ (4)

Here, WE ∈ Rd×L, WD ∈ RL×d and WS ∈ RL×L are the
encoding, decoding, and skip-connection matrices, respec-
tively. This simplification enables us to examine the latent
space properties of DPM in Proposition 1.
Proposition 1.1 Assume a linear DPM with skip connec-
tion. For xt =

√
ᾱx0 +

√
1− ᾱϵ and E[x0] = 0, minimiz-

ing Eq.3 is equivalent to minimize

L(WE ,WD,WS) = Ex0,ϵ[||ϵ− (WDWExt +WSxt)||22] (5)

= ᾱtP
⊤ΣxxP︸ ︷︷ ︸

Representation Learning

+ ||I −
√
1− ᾱtP ||22︸ ︷︷ ︸

Regularization

(6)

Here, P = WDWE+WS , and Σxx is the covariance matrix
of x0. The expression consists of two terms: the first term
is related to representation learning, while the second term
is related to regularization.

(i) The first term ensures a meaningful latent space h.
For example, when WS = −I , we get back to lin-
ear AE that encodes the data into principal components
space [27, 8].

(ii) The second term enforces spectral regularization [47],
driving the diagonal values of the weight matrix
WDWE + WS towards 1√

1−ᾱt
. This regularization

encourages a compact latent space as more noise is
added, aligning with the manifold hypothesis [10].

Trade-off in DPMs. Eq. 6 indicates a trade-off between
learning a meaningful representation and the penalize the
spectrum of the optimal parameters. As t gets larger and ᾱt

decreases, the model prioritizes the regularization term over
the representation learning term. Consequently, the sin-
gular values of the learned representations tend to become
smaller. if the model becomes overly regularized, its ability

1Due to the page limit, full derivation is in the supplementary material.
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(a) MNIST Results

(b) CIFAR10 Results

Figure 2. Comparison of (Left) the singular values and (Right) ef-
fective rank of learned features at different timestep on MNIST
and CIFAR-10 datasets.

to learn informative features may become limited. Ideally,
an optimal representation should exhibit uniform singular
values close to 1, with a larger effective rank number [56]
that prevents dimensional collapse [60].
Singular Values and Rank Number. To validate the trade-
off in DPMs, we analyzed the singular values and effec-
tive rank number [56] of embeddings extracted from well-
trained DPMs2 on the CIFAR10 [31] and MNIST [34].

As illustrated in Figure 2, the representations show a
slight improvement when t is small, but they quickly de-
teriorate as t increases due to a rapid reduction in singular
values and the effective rank number. It indicates that the
feature quality grows earlier in the reverse process, while
gradually becoming uninformative in the later stages.
Latent Embedding Visualization. Visualizing the fea-
tures using T-SNE for unconditional DDPMs, we observed
a time-varying pattern. Figure 3 displays the data embed-
dings obtained through T-SNE for unconditional DDPMs.
Our results reveal that, even without supervision, DPMs are
able to group input samples at properly selected timestep,
particularly t = 300 on MNIST and t = 100 on CIFAR-
10. However, when t is too small or large, the class-wise
representations become inseparable, leading to less distinct
clustering structures and blurred decision boundaries.
Attention Patterns. We also examined the attention pat-
terns of DPMs on the CIFAR-10 dataset for different noise
magnitudes corresponding to different scales of feature
extraction. We calculate the self-attention map at T ∈
{0, 100, 999} by averaging across 128 samples and all at-

2We feed clean images and timestep t into the encoder and compute the
statistics of the embedding vectors at the MID-BLOCK layer.
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M
N
IS
T

C
IF
A
R
10

Figure 3. T-SNE feature visualization on for unconditional DDPM
trained on MNIST and CIFAR-10 datasets.
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Figure 4. Averaged self-attention map visualization on different
feature layers with T ∈ {0, 100, 999} on CIFAR-10.

tention heads. The pixel value at the i-th column and j-
th row refers to the attention weights between the i-th and
the j-th token. As shown in Figure 4, higher noise levels
led to the network attending to more image tokens, captur-
ing long-range dependencies. Conversely, smaller t corre-
sponded to local attention, capturing fine-grained patterns.

To sum up, DPMs encompass a latent space that evolves
over time. Notably, the features at a moderately small
timestep are found to possess the best geometric structure,
potentially leading to optimal performance in the recogni-
tion task. Nevertheless, this optimal time step varies across
various tasks and datasets, thereby posing significant chal-
lenges for applying trained DPM in non-generative tasks.

4. RepFusion

Given a pre-trained denoising network s(·, ·;θ∗), our
goal is to reuse its knowledge for recognition tasks. This
can be achieved by distilling a recognition encoder f(·;θf )
from a DPM teacher. However, as discussed in Section 3,
determining the ideal time step for knowledge transfer is
non-trivial. To address this issue, we introduce a reinforce-
ment learning approach to solve the selection problem. Our
pipeline is illustrated in Figure 5.

4.1. Distill Knowledge from Diffusion Teacher

We intend to distill the intermediate representation from
a pre-trained diffusion model to a recognition student.
Given an input x and its label y, we extract the feature
pair from both the diffusion model at timestep t and stu-
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Figure 5. Overall pipeline for the RepFusion. Given an input sample, we adopt REINFORRCE algorithm [72] to determine the optimal
time-step for knowledge distillation.

dent model respectively, e.g. z(t) ← s(x, t;θ∗) and z ←
f(x;θf ). We minimize the distance between z(t) and z with
respect to a loss function Lkd

min
θf

E[Lkd(z
(t), z)] (7)

In the experiment, we show that arbitrary distillation func-
tionLkd can effectively boost the model’s performance. Our
implementation employs L2 distance [54], attention trans-
fer [84], and relational knowledge distillation [49].

After the distillation phase, the student is reapplied as a
feature extractor and fine-tuned on with the task label

min
θf

E[Ltask(y, ŷ)], where ŷ = f(x;θf ) (8)

Here, ŷ represents the student model’s prediction and Ltask
is the task loss function. In this way, the distilled model
using Eq. 7 is utilized to initialize the task training. As dis-
cussed, the selection of an optimal value for t is a critical
aspect of our pipeline. We provide a detailed explanation of
our selection strategy for t in Section 4.2.

4.2. Reinforced Time Selection for Distillation

Applying DPM for knowledge distillation presents a
noteworthy challenge due to the mismatch between a group
of time-indexed teachers and a single student network. This
section outlines our criteria for time-step selection and ex-
plains how we optimize it through reinforcement learning.

Intuitively, we seek to extract the most informative fea-
ture, akin to a ”golden standard”, that can guide the student.
To achieve this, we identify the optimal t∗ for each sample
x, such that the DPM’s feature z(t

∗) is most predictive for
y, thereby facilitating knowledge distillation. The realiza-
tion of this objective leads to a nested optimization problem:

t∗ = argmin
t∈[0,T ]

{
inf
θg

Ltask
(
y, g(z(t);θg)

)}
(9)

Here, g(·;θg) refers to an additional decoder that maps the
feature of the DPM to the label space. While its gener-
ally impractical to train g on all (t,x) combinations3 ex-
haustively, we have developed an efficient solution for de-
termining the optimal distillation strategy using the REIN-
FORCED algorithm [72].

Specifically, we define the state space as the input
sample x, and the action space as timestep t. We set
the reward function Rt

x to be the negative task loss
−Ltask

(
y, g(z(t);θg)

)
. A policy network πθπ

(t|x) is
trained to determine, on a per-sample basis, which timestep
should be evaluated. The network parameters θπ are opti-
mized to maximize the reward function

max
θπ

J(θπ) = E[
∑
t

πθπ
(t|x)Rt

x] + λHH(t) (10)

where H(t) [48] is an entropy term to promote action diver-
sity, and λH = 0.1 is its weighting factor.

Besides, the decoder g is trained jointly with the policy
network to minimize task loss and improve the prediction
accuracy of the ground-truth label. As such, we are opti-
mizing Eq. 9 equivalently.

By assembling all the components, we present the Rep-
Fusion algorithm in Figure 5. In each training step, we
begin by sampling the time from the action distribution
t ∼ CategoricalT (πθπ

(t|x)) and subsequently extract the
corresponding feature map z(t) for each input sample. The
student network is optimized to replicate the teacher’s rep-
resentation using Eq. 7. Meanwhile, the policy network and
teacher decoder are updated according to Eq. 9 and Eq. 10.
Despite its simplicity, we observe that this pipeline yields
impressive results across various tasks.

3Gradient-based optimizations are not feasible due to the discrete na-
ture of t.
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5. Experiment

This section demonstrates that our RepFusion can be ef-
fectively utilized in a variety of recognition tasks with com-
petitive performance, despite being learned from generative
DPMs. The distilled encoders are evaluated on a range of
downstream applications, including semantic segmentation,
keypoint detection, and image classification. More experi-
ments can be found in the supplementary materials.

5.1. Experimental Setting

Datesets and Pre-trained DPMs. We evaluate the pro-
posed method on 3 tasks across 4 different visual datasets.
Those datasets include CelebAMask-HQ for semantic seg-
mentation, WFLW for face landmark detection and CIFAR-
10 and Tiny-ImageNet for image classification. The
CelebAMask-HQ [35] dataset is a collection of 30,000
high-resolution face images. Each image comes with its
segmentation mask of 19 facial attributes. The WFLW
dataset [73] consists of 10,000 faces that have been an-
notated with 98 landmarks, with 7,500 for training and
2,500 for testing. CIFAR-10 [31] is an image dataset con-
taining 32 × 32 images from 10 classes, and is split into
50,000 images for training and 10,000 for validation. Tiny-
ImageNet [33] comprises images from 200 classes down-
sized to 64×64. Specifically, each class contains 500 train-
ing, 50 validation, and 50 test images.

We have gathered open-source DPMs models on dif-
fusers4 and guided diffusion5. To perform knowledge dis-
tillation, we utilize ADM [14] model that was trained on
64 × 64 ImageNet, as the teacher model for TinyIma-
geNet. For face parsing, we use DDPM [24] trained on
CelebA-HQ, as the teacher model. We do not apply dis-
tillation on WFLW, but direct transfer the weight learned
from the CelebA-HQ segmentation as initialization. Fur-
thermore, we reuse the DDPM that was trained on uncondi-
tional CIFAR-10 as the teacher model for the same dataset.
Distillation. We utilize the pipeline described in Section 4
to train the networks f, g, π for 200 epochs with a mini-
batch size of 128 across all tasks. The networks are opti-
mized using SGD with an initial learning rate of 0.1, a mo-
mentum term of 0.9, and a weight decay of 1e-4. We apply
learning rate decay at the 100th and 150th epochs. During
training, the only augmentation applied to training images
is random horizontal flipping, and no pre-trained weights
are loaded by default. Feature distillation is performed us-
ing the embeddings extracted from the MID-BLOCK of the
DPM and the last layer of the student network. A hint loss
is used for feature distillation by default, and this selection
will be verified in the ablation study. Furthermore, we de-
fine g as a linear layer for classification and FCN [42] for

4https://huggingface.co/docs/diffusers/index
5https://github.com/openai/guided-diffusion

Table 1. Semantic segmentation results on CelebAMask-HQ [35],
compared with hint-based knowledge distillation [54].

Teacher Student mIOU aAcc mAcc
- ResNet-18 61.22 94.65 70.29
ResNet-18 ResNet-18 62.73 94.46 71.88
ResNet-50 ResNet-18 63.12 94.72 72.44
RepFusion(ours) ResNet-18 67.37 94.75 76.37
- ResNet-50 65.81 94.83 75.31
ResNet-50 ResNet-50 68.21 94.96 77.23
RepFusion(ours) ResNet-50 70.63 95.24 80.08

Table 2. Semantic segmentation results on CelebAMask-HQ [35],
compared with self-supervised learning approaches.

Method mIOU aAcc mAcc
ResNet-18 61.22 94.65 70.29
+ MoCov2 [12] 66.38 94.84 74.23
+ SwAV [9] 67.14 94.66 75.92
+ DeepClusterv2 [9] 66.92 94.51 76.11
+ RepFusion(ours) 67.37 94.70 76.37

ResNet-50 65.81 94.83 75.31
+ MoCov2 [12] 69.81 95.32 79.55
+ SwAV [9] 70.41 95.26 79.40
+ DeepClusterv2 [9] 68.83 95.27 79.43
+ RepFusion(ours) 70.89 95.47 80.14

segmentation. The policy network π is a 3-layer convolu-
tional net followed by 3 linear layers.
Segmentation. We use BiSeNetv1 [81] with ResNet-18
and ResNet-50 backbones as the baseline for semantic seg-
mentation. The networks are distilled on CelebA-HQ at
256×256 resolution, then trained for 160k iterations on seg-
mentation labels using SGD optimizer with batch size 16,
initial learning rate 0.01, momentum 0.9, and polynomial
learning rate scheduler. Random cropping of size 448×448
is applied during training. Finally, we evaluate the perfor-
mance of the model on the test set at a scale of 512 × 512
and report its performance based on the mean Intersection
over Union (mIOU), mean accuracy of each class (mAcc),
and all-pixel accuracy (aAcc).
Landmark Detection. The distilled segmentation student
on CelebA-HQ is reused for Top-down heatmap-based key-
point estimation [75] with HRNetv2-w18 [69] and ResNet-
50. The model was trained for 60 epochs with a batch size
of 128 using the Adam optimizer with an initial learning
rate of 2e-3. Images were resized to 256 during both train-
ing and testing. Performance was evaluated on using the
normalized mean error (NME) metric on 7 subsets.
Classification. On CIFAR-10 and Tiny-ImageNet,
we follow the conventional setting and apply ResNet-
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Figure 6. Face parsing results on CelebAMask-HQ dataset. Rep-
Fusion excels on segmenting rare patterns and minority cate-
gories.

18 [20], WideResNet (WRN) 28-2 [83] and Mo-
bileNetv2 (MBNv2) [59] as the student models.
Baselines. We compared our method to several self-
supervised learning approaches, including MoCov2 [12],
SwAV [9], and DeepCluster-v2 [9]. To ensure a fair com-
parison, we used the official implementation and pre-trained
the models directly on CelebA-HQ without large-scale pre-
training, keeping all hyper-parameters the same as in their
respective papers. However, we did not compare with
DatasetGAN [87] and DatasetDDPM [5] as they are pri-
marily designed for few-shot segmentation.

Besides, we assessed our performance by comparing it
with the other distillation techniques. Specifically, we ini-
tially trained a teacher model from scratch and distilled a
student model by mimicking the teacher’s features.

5.2. Evaluation on Recognition Tasks

5.2.1 Semantic Segmentation

To evaluate the effectiveness of our method, we conducted
a comparative analysis on CelebAMask-HQ by comparing
it with two distinct lines of research, namely (1) knowl-
edge distillation from a supervised teacher and (2) self-
supervised representation learning models.
Quantitative Results. We show the numerical results for
face parsing with distilled and self-supervised models in
Table 1 and Table 2. First, our approach significantly out-
performs the knowledge distillation counterparts. Precisely,
while raw ResNet-18 achieved an mIOU score of 61.22, our
method achieved an mIOU of 67.37. This represents an im-
provement of 6.15 over the baseline model and a 4.25 im-
provement over the distilled student from ResNet-50. Our
RepFusion also matches the performance with up-to-date
self-supervised representation learner. These findings un-
derscore the notable improvement in the segmentation task
through knowledge distillation from off-the-shelf DPMs.
Qualitative Results. Additionally, we visualize the seg-
mented facial attribute with ResNet-50 model in Figure 6,
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Figure 7. Face keypoint detection results on WFLW [73] dataset.
RepFusion can successfully handle the hard cases (large pose and
low image quality).

where we highlight the errors made by the baseline model
using white rectangles. It is evident that the baseline model
struggles to accurately segment rare patterns and minor-
ity categories such as white hair, hat and distinguish
between the left eyebrows and right eyebrows.
By distilling from DPMs, our RepFusion enables the model
to capture fine-grained details to better discern between
these features, resulting in more accurate segmentation.

5.2.2 Keypoint Detection

In this study, we compare our distill image encoder on
CelebA-HQ to other self-supervised learning approaches
for facial keypoint detection.
Quantative Results. We present the results in Table 3.
All of the self-supervised methods yielded performance
improvements. However, our proposed approach outper-
formed the other methods, achieving the smallest mean er-
rors for both ResNet-50 and HRNetv2w18.

It is noteworthy that the distillation process is proved
to be particularly beneficial in challenging scenarios char-
acterized by large pose variations, heavy occlusions, and
extreme illumination. In such scenarios, our proposed
method achieved significant improvements of 0.39/0.18
on NMEpose, 0.25/0.15 on NMEocclusion, and 0.24/0.09 on
NMEillumination scores. These findings highlight the effec-
tiveness of our proposed distillation approach in enhancing
the model’s performance in challenging scenarios.
Qualitative Results. Figure 7 showcases the landmark
detection visualization obtained by ResNet-50. The out-
comes expose that the baseline model, lacking distillation,
encounters challenges in recognizing faces with extensive
head movements or off-angle orientations. In contrast, our
proposed technique successfully identifies landmarks that
are otherwise unobservable. These findings validate the ef-
ficacy of our approach in augmenting the model’s recall in
detecting facial landmarks, especially in complex scenar-
ios characterized by notable pose variations, occlusions, and
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Table 3. Normalized Mean Error (NME) on WFLW for head keypoint detection. A smaller value indicates better performance.
Method NMEtest ↓ NMEpose ↓ NMEillumination ↓ NMEocclusion ↓ NMEblur ↓ NMEmakeup ↓ NMEexpression ↓
HRNetv2w18 4.33 7.81 4.42 5.35 4.92 4.36 4.55
+ MoCov2 [12] 4.27 7.64 4.25 5.22 4.86 4.22 4.49
+ SwAV [9] 4.26 7.54 4.19 5.23 4.82 4.19 4.49
+ DeepClusterv2 [9] 4.31 7.58 4.22 5.19 4.84 4.23 4.48
+ RepFusion 4.23 7.42 4.18 5.10 4.80 4.15 4.48

ResNet-50 4.58 8.15 4.58 5.63 5.23 4.54 5.01
+ MoCov2 [12] 4.49 7.99 4.52 5.49 5.14 4.42 4.85
+ SwAV [9] 4.47 7.97 4.53 5.49 5.12 4.40 4.87
+ DeepClusterv2 [9] 4.51 8.00 4.55 5.51 5.18 4.39 4.88
+ RepFusion 4.47 7.97 4.49 5.48 5.10 4.39 4.84

Table 4. Test Accuracy (%) comparison on CIFAR-10.
Teacher:Acc Student:Acc Hint [54] AT [84] RKD [49] Avg Imp.

ResNet-18:94.47

ResNet-18:94.47

95.06 94.66 94.90 +0.40
WRN28-2:94.15 94.87 94.63 94.57 +0.22
WRN28-10:95.18 94.95 94.35 95.04 +0.31
RepFusion(Ours) 95.01 95.09 94.58 +0.42
ResNet-18:94.47

WRN28-2:94.15

94.39 94.42 94.57 +0.31
WRN28-2:94.15 94.53 94.12 94.07 +0.09
WRN28-10:95.18 94.35 94.05 94.61 +0.18
RepFusion(Ours) 94.52 94.42 94.66 +0.38

suboptimal image quality.

5.2.3 Image Classification

In this section, we aim to compare the effectiveness of
learned representations obtained through distillation from
DPMs by assessing the classification performance [23, 19]
on widely used benchmark datasets, namely CIFAR-10
and TinyImageNet. We compare our approach with typi-
cal distillation schemes on top of Hint-based [54], Atten-
tion Transfer-(AT) [84], and Relational Knowledge Distil-
lation (RKD) [49] losses.
Results. Table 4 and Table 5 present a comparison of
the test accuracy of various models on the CIFAR-10 and
Tiny-ImageNet datasets. On CIFAR-10, our proposed
method performs comparably to other teachers in terms of
the average increase in test accuracy, exhibiting a gain of
+0.42/+0.38 compared to its student. On Tiny-ImageNet,
our proposed technique achieves the highest average accu-
racy gain, with an improvement of +1.83 over ResNet-18
and +0.42 on MBNv2. These results highlight the effec-
tiveness of our approach in improving the performance of
the student models on recognition tasks.

Furthermore, all distillation losses (Hint, AT, and RKD)
lead to a boost in student model accuracy, with hint-based

Table 5. Test Top-1 Accuracy (%) comparison on Tiny-ImageNet.
Teacher:Acc Student:Acc Hint [54] AT [84] RK [49] Avg Imp.

ResNet-18:60.37

ResNet-18:60.37

61.48 61.93 61.06 +1.12
WRN28-2:59.30 61.91 61.11 61.31 +1.07
WRN28-10:65.73 61.65 61.12 62.08 +1.25
RepFusion(Ours) 62.16 62.05 62.38 +1.83
ResNet-18:60.37

MBNv2:61.69

61.99 61.84 62.40 +0.42
WRN28-2:59.30 61.97 61.20 62.37 +0.20
WRN28-10:65.73 61.81 61.63 61.63 +0.04
RepFusion(Ours) 61.93 62.01 62.27 +0.42

distillation showing the best improvement. Notably, our
model outperforms student models that were distilled from
supervised teachers, establishing its efficacy in acquiring
valuable representations for classification tasks.

Comparison Among Tasks. In our experiments, we
found that when distilling from the DPM teacher, there was
a notable performance improvement in segmentation com-
pared to a more modest enhancement in classification. This
suggests that the features learned by DPMs are more effec-
tive for tasks that prioritize local information over global
semantics. This conclusion is supported by findings from
other recent studies [37, 88].

5.3. Ablation Study and Analysis on Time Selection

This section validates the necessity and effectiveness of
our time-step selection approach. We specifically investi-
gate its importance and the achieved outcomes.
Do We Need Time-step Selection? To assess the ne-
cessity of the reinforced strategy in selecting time steps,
we conducted experiments using alternative selection meth-
ods, namely random and manual selection. For the ran-
dom strategy, a time-step is sampled uniformly from the
set of time-steps {0, . . . , T} for each data point. In
contrast, the manual selection method involves select-
ing a fixed time-step t for all data points, with t ∼
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Figure 8. Ablative study on the time-step selection.

{0, 10, 50, 100, 200, 300, 500, 999}. We validate the results
on CIFAR-10 with the ResNet18 model.

Figure 8 presents the performance with different time se-
lection strategies. The results indicate that distillation from
randomly sampled or large fixed timesteps leads to a sig-
nificant degradation in performance, even compared to the
no-distill baseline. This finding aligns with the derivation in
Section 3 that large timestep features are unlikely to provide
discriminative information, leading to a negative impact on
performance. While a fixed small t approach can slightly
improve performance, it is not universally effective. In con-
trast, our reinforced strategy that identifies the optimal t on
a per-sample basis outperforms the fixed t approach.
What Time Has Been Selected? One natural question is
what timestep is selected across various tasks. Our core
observation reveals that different tasks give slightly varied
outcomes. Initially, during training, the time step t is ran-
domly selected, but gradually it tends to converge to a nar-
row range of 0 − 200. We have included the full results in
the supplementary, owing to page limitations.

6. Conclusion
In this work, we demonstrate the efficacy of Diffusion

Probabilistic Models (DPMs) in enhancing visual represen-
tations for recognition tasks. By establishing a connection
between DPMs and denoising auto-encoders, we empiri-
cally validate the statistical properties of DPM-extracted
features. However, utilizing these features for non-
generative tasks poses challenges. To address this, we pro-
pose a novel knowledge distillation approach called Rep-
Fusion, which leverages a reinforcement learning frame-
work to determine the optimal timing for representation
distillation. Our method demonstrates consistent improve-
ments across various recognition benchmarks, highlighting
the remarkable potential of DPMs in learning effective rep-
resentations and facilitating transfer to downstream tasks.
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