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Abstract

Adversarial robustness is a research area that has re-
cently received a lot of attention in the quest for trustworthy
artificial intelligence. However, recent works on adversar-
ial robustness have focused on supervised learning where
it is assumed that labeled data is plentiful. In this paper,
we investigate semi-supervised adversarial training where
labeled data is scarce. We derive two upper bounds for
the robust risk and propose a regularization term for un-
labeled data motivated by these two upper bounds. Then,
we develop a semi-supervised adversarial training algo-
rithm that combines the proposed regularization term with
knowledge distillation using a semi-supervised teacher (i.e.,
a teacher model trained using a semi-supervised learning
algorithm). Our experiments show that our proposed al-
gorithm achieves state-of-the-art performance with signif-
icant margins compared to existing algorithms. In partic-
ular, compared to supervised learning algorithms, perfor-
mance of our proposed algorithm is not much worse even
when the amount of labeled data is very small. For exam-
ple, our algorithm with only 8% labeled data is comparable
to supervised adversarial training algorithms that use all
labeled data, both in terms of standard and robust accura-
cies on CIFAR-10.

1. Introduction

Neural network models used for image classification are
vulnerable to adversarial perturbations that are impercep-
tible to humans [28]. These perturbed images are called
adversarial examples, and they can be generated without
any knowledge of the underlying model, leading to security
concerns [23, 24, 4, 14, 25]. Adversarial examples can also
cause problems in real-world scenarios, where printed im-
ages with adversarial perturbations can easily fool the clas-
sification model [17]. To defend against adversarial attacks,
many adversarial learning algorithms have been proposed,

such as [19, 36, 30, 37, 38, 26].
Learning accurate prediction models typically requires a

large amount of labeled data, which can be expensive and
time-consuming to collect. In contrast, obtaining unlabeled
data is relatively easier. Semi-supervised learning is a re-
search area that focuses on effectively utilizing unlabeled
data [20, 2, 32, 27, 35]. Because adversarial training algo-
rithms also require labeled data, semi-supervised adversar-
ial training (SS-AT) has become a crucial research area for
reliable artificial intelligence [3, 29, 34, 18].

The aim of this paper is to develop a new SS-AT algo-
rithm that is theoretically well motivated and empirically
superior to existing competitors when the amount of la-
beled data is insufficient. We propose an objective func-
tion for SS-AT, which consists of three key components -
one for generalization of labeled data, a regularization term
with unlabeled data for adversarial robustness, and a knowl-
edge distillation term for improving generalization ability
of unlabeled data. Our regularization term is motivated by
two new upper bounds of the boundary risk. The knowl-
edge distillation term is added to estimate soft pseudo labels
of unlabeled data, which contrasts with existing algorithms
[29, 3, 34] that use hard pseudo labels. Using soft pseudo
labels instead of hard pseudo labels improves the perfor-
mance significantly.

Our contributions can be summarized as follows:

• We derive two upper bounds of the robust risk for
semi-supervised adversarial training, providing the-
oretical insights into the performance of proposed
method.

• We propose a novel semi-supervised adversarial train-
ing algorithm, called Semisupervised-Robust-Self-
Training with Adaptively Weighted Regularization
(SRST-AWR), that combining an adaptively weighted
regularization and knowledge distillation with a semi-
supervised teacher to put soft pseudo labels in adver-
sarial training.
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• We demonstrate the effectiveness of our algorithm
through numerical experiments on various benchmark
datasets, showing simultaneous improvements in ro-
bustness and generalization with significant perfor-
mance gains over existing state-of-the-art methods.

• Our proposed algorithm exhibits only minor perfor-
mance degradation even when the amount of labeled
data is limited compared to fully supervised methods
with a large amount of labeled data.

2. Preliminaries
Let X ⊂ Rd be the input space, Y = {1, · · · , C} be

the set of output labels and fθ : X → RC be the score
function parametrized by parameters θ such that pθ(·|x) =
softmax(fθ(x)) ∈ RC is the vector of the predictive condi-
tional probabilities. Let Fθ(x) = argmax

c
[fθ(x)]c ∈ RC ,

Bp(x, ε) = {x′ ∈ X : ∥x− x′∥p ≤ ε} and Let 1{·} rep-
resent the indicator function, which takes the value 1 when
the condition · is satisfied, and 0 otherwise.

2.1. Population Robust Risk

The population robust risk used in adversarial training is
defined as

Rrob(θ) = E(X,Y) max
X′∈Bp(X,ε)

1 {Fθ(X
′) ̸= Y} . (1)

The objective of adversarial training is to learn θ that min-
imizes the population robust risk (1). Most state-of-the-art
adversarial training algorithms consist of two steps: a maxi-
mization step and a minimization step. In the maximization
step, an adversarial example x′ ∈ Bp(x, ε) is generated,
which is described in Section 2.2. In the minimization step,
a certain regularized empirical risk for given adversarial ex-
amples is minimized [19, 36, 30, 26].

2.2. Adversarial Attack

An adversarial attack is a method to generate an ad-
versarial example. Adversarial attacks can be categorized
into white-box attacks [28, 10, 19] and black-box attacks
[23, 24, 1]. In the white-box attack, it is assumed that the
adversary can exploit all information about the model archi-
tectures and parameters to generate adversarial examples.
In a black-box attack, the adversary can only access the out-
puts of the model.

One of the most popular white-box adversarial attack al-
gorithms is Projected Gradient Descent (PGD), which finds
an adversarial example by iteratively updating it by the gra-
dient ascent and projecting onto the ϵ-ball of the original
data [19]. The formula of PGDT is as follows:

x(T ) = ΠBp(x,ε)

(
x(T−1) + ν sgn

(
∇x(T−1)η(x

(T−1)|θ,x, y)
))

,

(2)

where ΠBp(x,ε)(·) is the projection operator to Bp(x, ε),
ν > 0 is the step size, η is a surrogate loss , x(0) = x,
T is the number of iterations. The cross-entropy or Kull-
back–Leibler divergence for η can be used.

2.3. Semi-Supervised Learning

Virtual Adversarial Training (VAT) [20] is a semi-
supervised learning algorithm minimizing

1

nl

nl∑
i=1

ℓce(fθ(xi), yi) + λ
1

nul

nul∑
j=1

DKL(pθ̃(·|xj)∥pθ(·|x̂adv
j )),

(3)
where {(xi, yi)}nl

i=1 and {xj}nul
j=1 are labeled and unlabeled

samples, respectively, and θ̃ is the pretrained parameter and
x̂adv
j ∈ B2(xj , ε) is an adversarial example.

FixMatch [27] is a semi-supervised learning algorithm
minimizing

1

nl

nl∑
i=1

ℓce(fθ(xi), yi)

+
1

nτ

nul∑
j=1

ℓce(fθ(x
s
j), Fθ(x

w
j ))1{max

c
pθ(c|xw

j ) > τ},

where τ ∈ (0, 1) is a constant, nτ =
nul∑
j=1

1{max
c

pθ(c|xw
j )

> τ} and xs
j and xw

j are strongly and weakly augmented
samples [8], respectively.

2.4. Semi-Supervised Adversarial Training

Existing adversarial training algorithms can be catego-
rized into two types: one directly minimizing empirical ro-
bust risk (e.g. PGD-AT [19]), and the other decomposing
the robust risk into supervised and regularization terms and
minimizing the corresponding regularized empirical risk
(e.g. TRADES [36] ). In algorithms based on PGD-AT, la-
bel information for all data is required, and thus it cannot be
directly applied in a semi-supervised setting. TRADES can
be applied in a semi-supervised setting since the regulariza-
tion term does not require label information. However, it
shows poor performance for semi-supervised learning.

For achieving adversarial robustness in a semi-
supervised setting, several SS-AT algorithms have been pro-
posed [29, 3, 34, 18, 11]. RST [3] generates pseudo la-
bels for unlabeled data by predicting the class labels us-
ing a teacher model trained only with labeled data. Then,
the algorithm minimizes the regularized empirical risk of
TRADES [36] using both the labeled data and the unlabeled
data with their pseudo labels. That is, it minimizes the fol-
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Figure 1: Performance comparison of SRST-AWR, RST and UAT++ for varying the number of labeled data. The x-
axis is the number of labeled data and y-axis are the standard accuracy and robust accuracy against autoattack, respectively.

lowing regularized empirical risk:

R(RST)(θ; {(xi, yi)}nl

i=1 , {(xj , ŷj)}
nnl

+nul

j=nl+1 , λ)

:=
1

nl + nul

nl+nul∑
k=1

{
ℓce(fθ(xk), yk or ŷk)

+ λDKL(pθ(·|xk)||pθ(·|x̂pgd
k ))

}
, (4)

where ŷj = FθT
(xj) and θT is the parameter of the teacher

model trained only with labeled data.

On the other hand, UAT [29] minimizes the following
regularized empirical risk:

R(UAT)(θ; {(xi, yi)}nl

i=1 , {(xj , ŷj)}
nnl

+nul

j=nl+1 , λ)

:=
1

nl + nul

nl+nul∑
k=1

{
ℓce(fθ(x̂

pgd
k ), yk or ŷk)

+ λDKL(pθ̃(·|xk)||pθ(·|x̂pgd
k ))

}
. (5)

If λ = 0, it is called Unsupervised Adversarial Training
with Fixed Targets (UAT-FT); otherwise, it is called Unsu-
pervised Adversarial Training Plus Plus (UAT++).

However, as seen in Figure 1, RST and UAT++ show
poor performances when the amount of labeled data is in-
sufficient, which is partially the teacher model does not pre-
dict well. To resolve this problem, ARMOURED (Adver-
sarially Robust MOdels using Unlabeled data by REgular-
izing Diversity) [18] combines multi-view learning and di-
versity regularization. It employs a multi-view ensemble
learning approach for selecting high quality pseudo labeled
data.

3. Semi-Supervised Robust Self-Training via
Adaptively Weighted Regularization and
Knowledge Distillation

In this section, we derive two upper bounds of the robust
risk and propose a SS-AT algorithm by modifying the upper
bounds.

3.1. Upper Bounds of the Population Robust Risk

The population robust risk Rrob(θ) is decomposed of the
two terms - natural risk and boundary risk as follows [36]:

Rrob(θ) = Rnat(θ) +Rbdy(θ),

where Rnat(θ) = E(X,Y )1 {Fθ(X) ̸= Y } and Rbdy(θ) =
E(X,Y )1{∃X′ ∈ Bp(X, ε) : Fθ(X) ̸= Fθ(X

′), Fθ(X) =
Y }. The objective of adversarial training is to find θ mini-
mizing the population robust risk.

The following theorems provide two upper bounds of
the population robust risk whose proofs are deferred to Ap-
pendix A.

Theorem 3.1. For a given score function fθ, let

z(x) ∈ argmax
x′∈Bp(x,ε)

1 {Fθ(x) ̸= Fθ(x
′)} .

Then, we have

Rrob(θ) ≤ E(X,Y )1{Y ̸= Fθ(X)}
+EX {1{Fθ(X) ̸= Fθ(z(X))} · p(Y ̸= Fθ(z(X))|X)} .

(6)

Theorem 3.2. For a given score function fθ, let

z(x) ∈ argmax
x′∈Bp(x,ε)

1{Fθ(x) ̸= Fθ(x
′)}.
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Then, we have

Rrob(θ) ≤ E(X,Y )1{Y ̸= Fθ(X)}
+EX {1{Fθ(X) ̸= Fθ(z(X))} · p(Y = Fθ(X)|X)} .

(7)

The key point of Theorems 3.1 and 3.2 is that their sec-
ond terms on the right-hand side do not depend on label
information. Thus, the second terms can be used as reg-
ularization term for unlabeled data. In contrast, the regu-
larization terms used in supervised adversarial training al-
gorithms such as MART [30] and ARoW [9] require label
information.

Comparison to TRADES [36] For binary classification
problems such that Y = {−1, 1}, the following upper
bounds can be derived using Theorems 3.1 and 3.2:

Rrob(θ) ≤ E(X,Y )ϕ(Y fθ(X))

+EX{ϕ(fθ(X)fθ(z(X))/λ) · p(Y ̸= Fθ(z(X))|X)},
(8)

Rrob(θ) ≤ E(X,Y )ϕ(Y fθ(X))

+EX{ϕ(fθ(X)fθ(z(X))/λ) · p(Y = Fθ(X)|X)},
(9)

where ϕ is the binary cross entropy loss and λ > 0 is a reg-
ularization parameter. The proofs are provided in Appendix
A. In contrast, [36] shows that

Rrob(θ) ≤ E(X,Y )ϕ(Y fθ(X))+EXϕ(fθ(X)fθ(z(X))/λ).
(10)

Note that the upper bounds (8) and (9) are tighter than
TRADES [36].

3.2. Algorithm

By modifying the upper bounds in Theorems 3.1 and 3.2,
we propose the corresponding SS-AT algorithm. The mod-
ifications are as follows:

• the adversarial example z(x) is replaced by x̂pgd ob-
tained by the PGD algorithm;

• the term 1(Y ̸= Fθ(X)) is replaced by the smooth
cross-entropy ℓLS(fθ(x), y), where ℓLS(fθ(x), y) =

−yLS
α

⊤
logpθ(·|x), yLS

α = (1 − α)uy + α
C1C , uy ∈

RC is the one-hot vector whose the y-th entry is 1 and
1C ∈ RC is the vector whose entries are all 1;

• the term 1(Fθ(X) ̸= Fθ(z(X))) is replaced by λ ·
KL(pθ(·|x)||pθ(·|x̂pgd)) for a regularization parame-
ter λ > 0;

• the terms p(Y ̸= Fθ(X̂
pgd)|X) and p(Y = Fθ(X)|X)

are replaced by 1 −
C∑

c=1
pθT

(Y = c|x̂pgd)pθ(c|x̂pgd)

and
C∑

c=1
pθT

(Y = c|x)pθ(c|x), respectively.

The upper bounds in Theorems 3.1 and 3.2 have the con-
ditional probabilities p(Fθ(x̂

pgd)|x) and p(Fθ(x)|x). We
estimate these conditional probabilities by smooth proxies
as following:

p(Y ̸= Fθ(x̂
pgd)|x) = 1− p(Y = Fθ(x̂

pgd)|x)

= 1−
C∑

c=1

p(Y = c|x)1(c = Fθ(x̂
pgd))

≈ 1−
C∑

c=1

pθT
(Y = c|x)pθ(c|x̂pgd),

p(Y = Fθ(x)|x) =
C∑

c=1

p(Y = c|x)1(c = Fθ(x))

≈
C∑

c=1

pθT
(Y = c|x)pθ(c|x).

where θT is a parameter of the teacher model.
We use the label smooth cross entropy instead of the

standard cross entropy during training phase because the
use of standard cross-entropy induces overconfident predic-
tions [12]. To accurately estimate the conditional predictive
probability pθ(·|x) in modified version of upper bounds
in Theorems 3.1 and 3.2, we use label smoothing cross-
entropy as a surrogate for 1(Y ̸= Fθ(X)) [21].

Furthermore, we introduce a knowledge distillation term
using the teacher model trained by a semi-supervised learn-
ing algorithm to facilitate soft pseudo-labeling instead of
hard labeling which is used exiting works [3, 29].

Algorithm 1 Semi-Supervised Robust-Self-Training with
Adaptively Weighted Regularziation Algorithm (SRST-
AWR)
Inputs : network fθ , training dataset Dnl

l = {(xi, yi) ∈ Rd+1

: i = 1, · · · , nl}, Dnul
ul = {xj ∈ Rd+1 : j = 1, · · · , nul},

learning rate η, hyperparameters (α, λ, β, γ, τ ) of (11), number of
epochs T , number of batch B, batch size K
Output : adversarially robust model fθ

1: Train a teacher model fθT using a semi-supervised learning
algorithm on Dl ∪ Dul

2: for t = 1, · · · , T do
3: for b = 1, · · · , B do
4: for k = 1, · · · ,K do
5: Generate x̂pgd

b,k using PGD10 in (2) ; xb,k ∈ Rd

6: end for
7:

θ ← θ − η
1

K
∇θR(SRST-AWR)(θ;DK

l ∪ DK
ul) in (11)

8: end for
9: end for

10: Return fθ

In summary, we combine the adpaptively weighted
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Table 1: Comparison SRST-AWR, RST and UAT++. θsup and θsemi are parameters of the models using supervised and
semi-supervised learning algorithms, respectively. xi and xj are labeled sample and unlabeled sample, respetively. xk can
be labeled or unlabeled sample having pseudo label ŷk.

Method Pseudo-labeling Supervised Term Regularization Term
UAT++ ŷj = Fθsup(xj) ℓce(fθ(x̂

pgd
k ), yk or ŷk) DKL(pθ̃(·|xk)||pθ(·|x̂pgd

k ))

RST ŷj = Fθsup(xj) ℓce(fθ(xk), yk or ŷk) DKL(pθ(·|xk)||pθ(·|x̂pgd
k ))

ARMOURED Multi-view learning ℓce(fθ(x̂
pgd
k ), yk or ŷk) LDPP(xk, yk or ŷk), LNEM(xk, yk or ŷk)

SRST-AWR Soft pseudo-labeling ℓce(fθ(xi), yi) DKL(pθ(·|xj)||pθ(·|x̂pgd
j ))× wθ(xj)

surrogate loss and knowledge distillation with a semi-
supervised teacher. We call the algorithm Semi-Robust-
Self-Training with Adaptively Weighted Regularization
(SRST-AWR) which minimizes the following regularized
empirical risk:

R(SRST-AWR)(θ; {(xi, yi)}nl

i=1 , {xj}nul

j=1 , α, λ, β, γ, τ,θT )

:=
1

nl

nl∑
i=1

ℓLS
α (fθ(xi), yi)

+ γ · 1

nul

nul∑
j=1

DKL(p
τ
θT

(·|xj)||pτ
θ(·|xj))

+ λ · 1

nul

nul∑
j=1

·DKL(pθ(·|xj)||pθ(·|x̂pgd
j )) · wθ(xj ;β θT ),

(11)

where

wθ(xj ;β,θT ) = β ·
C∑

c=1

pθT
(Y = c|xj)pθ(c|xj)

+(1− β) ·

(
1−

C∑
c=1

pθT
(Y = c|xj)pθ(c|x̂pgd

j )

)
,

(12)

where β ∈ [0, 1] and τ is a temperature for knowledge dis-
tillation. The proposed semi-supervised adversarial training
algorithm is summarized in Algorithm 1.

Comparison of SRST-AWR to RST [3] The proposed
SRST-AWR algorithm differs from RST [3] in three main
ways. Firstly, SRST-AWR employs a semi-supervised
teacher that is trained with both labeled and unlabeled data,
whereas RST utilizes a supervised teacher that is trained
only on labeled data. Second, RST uses hard targets (one-
hot labels) as pseudo-labels, while SRST-AWR employs
soft targets (predictive probabilities) via knowledge distil-
lation. The parameter τ in (11) regulates the smoothness of
the pseudo-labels, where smaller values result in harder tar-
gets (using one-hot labels) and larger values result in softer
targets (using predictive probabilities via knowledge distil-
lation). Finally, SRST-AWR uses a new regularized em-
pirical risk motivated by two upper bounds (6) and (7) for

the robust risk. Table 1 provides the comparison of SRST-
AWR, RST, UAT++ and ARMOURED.

Knowledge Distillation in Semi-Supervised Learning
We have observed that the performance of a student model
does not surpass the teacher model in the vanilla semi-
supervised setting (i.e., without adversarial robust train-
ing). See Appendix C.1 for empirical evidences. However,
we have found that applying knowledge distillation with a
semi-supervised teacher can improve the adversarial robust-
ness and generalization performance of the student model
simultaneously in SS-AT.

Interpretation of wθ(x;β,θT ) We set β to 1/2. Then,

2wθ(x;β,θT ) =

C∑
c=1

pθT
(Y = c|x)pθ(c|x)

+

(
1−

C∑
c=1

pθT
(Y = c|xj)pθ(c|x̂pgd)

)
= ⟨pθT

(·|x), pθ(·|x)⟩+ (1−
〈
pθT

(·|x), pθ(·|x̂pgd)
〉

≈ corr(pθT
(·|x), pθ(·|x))︸ ︷︷ ︸
:=(a)

+(1− corr(pθT
(·|x), pθ(·|x̂pgd))︸ ︷︷ ︸

:=(b)

)

Our wθ(x;β,θT ) in (11) is designed to impose more
weights when the current prediction on a clean sample is
highly correlated to the prediction of the teacher model (i.e.
(a) part) and/or the current prediction on adversarial exam-
ple is lowly correlated to the prediction of the teacher (i.e.
(b) part ).

4. Experiments

In this section, we report the performance of our algo-
rithm and compare it with other competitors (Section 4.2),
investigate how each component of our algorithm affects the
performance improvement (Section 4.3), and evaluate the
performance of our algorithm in comparison to supervised
adversarial training algorithms (Section 4.3.5). The code is
available at https://github.com/dyoony/SRST AWR.
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Figure 2: Comparison of SRST-AWR, SRST-TRADES, Semi-RST, RST and UAT++ for varying λ. The x-axis and
y-axis are the standard and robust accuracies, respectively. The adversarial attacks for robust accuracies are PGD20 in the left
panel and AutoAttack in right panel.

4.1. Experimental Setup

Training Setup The datasets are normalized into [0,
1]. We consider the three architectures - WideResNet-
28-5 (WRN-28-5) [33] for CIFAR-10 [16] and STL-10
[5], WideResNet-28-2 (WRN-28-2) for SVHN [22] and
WideResNet-28-8 (WRN-28-8) for CIFAR-100 [16], re-
spectively. The architecture of the teacher network is same
as that of the student and the training algorithm for teacher
networks is FixMatch [27]. Details for training the teacher
model are summarized in Appendix B.3.

We retain 4,000 samples for CIFAR-10 and CIFAR-100
and 1,000 samples for SVHN and STL-10 as labeled data
from official train data, and use the remaining data for un-
labeled data. For training prediction models, the SGD with
momentum 0.9, weight decay 5× 10−4, the initial learning
rate 0.1 on CIFAR-10 and 0.05 on CIFAR-100, SVHN and
STL-10 are used. The total epochs is 200 and the learning
rate is multiplied by 0.1 after each 50 and 150 epoch. The
batch size of labeled data and unlabeled data are 64 and
128, respectively. For CIFAR-10, CIFAR-100 and STL-10,
the random crop and random horizontal flip with probability
0.5 are applied for data augmentation. Stochastic weight-
ing average (SWA) [15] is applied after 50-epochs. We se-
lect the models with having a maximum robust accuracy
against PGD10 on test set. For training SRST-AWR, we set
(α, γ, β, τ) to (0.2, 4, 0.5, 1.2) and select λ maximizing the
robust accuracy.

In maximization step, PGD10 with random start, p = ∞,
ε = 8/255 and ν = 2/255 is used. The final model is
set to be the best model against PGD10 on the validation
set among those obtained until 200 epochs. Experimental
details are summarized in Appendix B.

Evaluation Setup For evaluating adversarial robustness,
we set the maximum perturbation ε to 8/255. We imple-
ment PGD20 and Auto-Attack (AA) [7]. Auto-Attack is en-
semble of four attack - APGD, APGD-DLR, FAB [6] and
Square Attack [1]. Among them, AGPD-DLR and Square
Attack are effective to check the gradient masking [14].

4.2. Performance Evaluation

Comparison of SRST-AWR to RST and UAT++ We
compare SRST-AWR to RST and UAT++. Since [29] ob-
serves that UAT++ outperforms UAT-FT, we only compare
UAT++ among UAT algorithms. Figure 1 shows the per-
formance with varying the number of labeled data. When
the labeled data are scarce, SRST-AWR is far superior to
the other competitors. SRST-AWR maintains performance
even though the size of labeled data is very small. In
addition, Figure 2 shows the trade-off between the stan-
dard and robust accuracies as the regularization parame-
ter λ varies for SRST-AWR, RST and UAT++. Moreover,
SRST-AWR uniformly outperforms the other competitors
with large margins. Table 2 shows that SRST-AWR out-
performs the other semi-supervised adversarial training al-
gorithms for various benchmark data sets in terms of both
standard and robust accuracies. Experimental details of Ta-
ble 2 are provided in Appendix B.1.

Comparison to ARMOURED [18] We compare SRST-
AWR with ARMOURED. As the official code of AR-
MOURED is not available, we set the architecture of SRST-
AWR to be equal to that of ARMOURED and cite the
performance measures of ARMOURED (standard accura-
cies, PGD-7, and AA) reported in the original paper. It
is observed that the robust accuracy against PGD of AR-
MOURED is high, but not against AA, mainly due to gradi-
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Table 2: Comparison to RST and UAT++. We conduct the experiment three times with different seeds and present the
averages of the accuracies with the standard errors in the parenthesis.

Method CIFAR-10 (WRN-28-5) CIFAR-100 (WRN-28-8)
Stand PGD20 AA Stand PGD20 AA

RST 79.77(0.06) 49.31(0.09) 46.69(0.02) 47.36(0.06) 17.32(0.06) 14.65(0.19)
UAT++ 79.84(0.23) 49.61(0.07) 46.53(0.11) 46.99(0.18) 22.13(0.04) 19.69(0.07)

SRST-AWR 84.56(0.06) 54.41(0.15) 51.72(0.06) 54.25(0.04) 30.90(0.07) 25.58(0.05)

Method SVHN (WRN-28-2) STL-10 (WRN-28-5)
Stand PGD20 AA Stand PGD20 AA

RST 86.47(0.51) 52.62(0.44) 42.38(0.48) 60.81(0.32) 35.86(0.37) 34.00(0.22)
UAT++ 91.07(0.08) 52.54(0.16) 46.81(0.13) 58.56(0.28) 43.00(0.21) 40.08(0.24)

SRST-AWR 91.86(0.19) 57.02(0.73) 50.84(0.83) 89.61(0.21) 73.93(0.28) 69.99(0.27)

Table 3: Comparison to ARMOURED. The performance measures of ARMOURED are cited from original paper i.e.
ARMOUREDs are not reimplemented. Maximum perturbation size εs are set to be 8/255 and 4/255 on CIFAR-10 and
SVHN, respectively. This settings are identical to ARMOURED [18]. We conduct the experiment three times with different
seeds and present the averages of the accuracies with the standard errors in the parenthesis.

Method CIFAR-10 (WRN-28-2) SVHN (WRN-28-2)
Stand PGD7 AA Stand PGD7 AA

ARMOURED-F+AT 76.76(1.60) 55.12(4.90) 35.24(4.56) 92.44(0.64) 62.10(8.39) 23.35(3.22)
SRST-AWR 81.78(0.03) 52.43(0.10) 47.41(0.11) 95.30(0.05) 81.19(0.03) 78.21(0.03)

ent masking [24]. Causing gradient masking is considered
as a failed defense method in terms of adversarial robust-
ness since adversarial examples are easily generated from
a model with gradient masking. Since AA contains sev-
eral attack algorithms that break down models with gradient
masking, it is a more reliable evaluation protocol for adver-
sarial robustness. Table 3 shows that SRST-AWR outper-
forms ARMOURED with significant margins for CIFAR-
10 and SVHN. Experimental details of Table 3 are provided
in Appendix B.1.

4.3. Ablation Studies

In this section, we investigate how each component of
the objective function (11) for SRST-AWR has influence on
performance - (1) effect of the semi-supervised teacher, (2)
effect of the wθ(x;β,θT ), (3) effect of the knowledge dis-
tillation (i.e. soft pseudo-labeling), (4) sensitivity of the reg-
ularization parameter λ. Also, we report (5) the results for
fully labeled data setting to justify tightness of our bound.

Additionally, we provide the sensitivity analysis of pa-
rameter β and τ in Appendix C.3 and C.4, respectively. Un-
less otherwise stated, the ablation studies are implemented
on CIFAR-10 with 4,000 labeled data and (λ, γ, τ, β) =
(20, 4, 1.2, 0.5) in (11) are used.

4.3.1 Effect of Semi-Supervised Teacher

Table 4 shows that using a semi-supervised teacher im-
proves the performance of RST [3] and UAT++ [29] on both

Table 4: Effect of Semi-supervised Teacher. We conduct
the experiments three times with different seeds and present
the averages of the accuracies with the standard errors in the
parenthesis.

Method CIFAR-10 (WRN-28-5)
Stand PGD20 AA

RST w/ sup. 79.77(0.06) 49.31(0.09) 46.69(0.02)
RST w/ semi-sup. 83.41(0.08) 51.94(0.04) 49.32(0.03)

UAT++ w/ sup. 79.84(0.23) 49.61(0.07) 46.53(0.11)
UAT++ w/ semi-sup. 84.49(0.15) 51.18(0.10) 48.46(0.07)

RST-AWR 82.40(0.05) 52.16(0.11) 49.34(0.08)
SRST-AWR 84.56(0.06) 54.41(0.15) 51.72(0.06)

standard and robust accuracies. The enhancement is ac-
complished by assigning labels to the unlabeled data more
correctly. When using a supervised teacher, the two meth-
ods show comparable performance. However, when using a
semi-supervised teacher, RST outperforms UAT++ in terms
of robustness, while UAT++ performs better than RST in
terms of generalization. However, SRST-AWR still outper-
forms RST and UAT++ with the semi-supervised teacher.

4.3.2 Effect of wθ(x;β,θT ) in Low-Label Regime

In this subsection, we compare the SRST-TRADES, which
is SRST-AWR with wθ(x;β,θT ) = 1 for all x, and
SRST-AWR for confirming the role of our proposed weight
wθ(x;β,θT ) in low-label regime. The number of labeled
data is 500, 2,000, 100 and 1,000 on CIFAR-10, CIFAR-
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Table 5: Effect of wθ(x;β,θT ) in Low-Label Regime. We
conduct the experiment three times with different seeds and
present the averages of the accuracies with the standard er-
rors in the parenthesis.

Method CIFAR-10 (WRN-28-5)
Stand PGD20 AA

SRST-TRADES 79.09(0.10) 45.51(0.15) 43.93(0.14)
SRST-AWR 82.93(0.06) 52.54(0.15) 50.76(0.06)

Method CIFAR-100 (WRN-28-8)
Stand PGD20 AA

SRST-TRADES 29.74(0.15) 16.51(0.21) 14.43(0.14)
SRST-AWR 33.65(0.14) 18.64(0.17) 16.77(0.15)

Method SVHN (WRN-28-2)
Stand PGD20 AA

SRST-TRADES 72.85(0.11) 47.64(0.41) 45.08(0.31)
SRST-AWR 80.09(0.19) 50.19(0.73) 48.69(0.83)

Method STL-10 (WRN-28-5)
Stand PGD20 AA

SRST-TRADES 88.19(0.12) 66.71(0.21) 63.41(0.25)
SRST-AWR 90.61(0.21) 75.85(0.28) 72.51(0.27)

Table 6: Effect of Knowledge Distillation. We conduct the
experiments three times with different seeds and present the
averages of the accuracies with the standard errors in the
parenthesis.

Method CIFAR-10 (WRN-28-5)
Stand PGD20 AA

SRST-AWR w/ KD 84.56(0.06) 54.41(0.15) 51.72(0.06)
SRST-AWR w/o KD 84.37(0.12) 52.77(0.09) 50.02(0.09)

100, SVHN and STL-10, respectively. Table 5 demonstrates
that SRST-AWR significantly outperforms SRST-TRADES
in terms of both standard and robust accuracies. We also
compare the performance of SRST-TRADES and SRST-
AWR with varying the number of labeled data on CIFAR-
100 and STL-10 in Appendix C.2. Details of the experi-
mental setup are provided in Appendix B.4.

4.3.3 Effect of Knowledge Distillation

To investigate the effect of knowledge distillation, we es-
timate pseudo labels using a semi-supervised teacher with
hard labels. Table 6 shows the effect of Knowledge Distil-
lation (KD) term in our algorithm. KD improves the robust-
ness with retaining generalization performance.

4.3.4 Sensitivity Analysis on λ

Figure 2 shows the trade-off between standard accuracies
and robust accuracies with respect to λ for each algorithm.
It is observed that SRST-AWR uniformly dominates SRST-
TRADES, RST-SS which is RST with the semi-supervised

Table 7: Comparison to Supervised Adversarial Train-
ing Algorithms using the whole labeled data. We conduct
the experiment three times with different seeds and present
the averages of the accuracies with the standard errors in the
parenthesis.

Method # Labels (%) CIFAR-10 (WRN-28-5)
Stand PGD20 AA

PGD-AT 100 85.96(0.17) 54.29(0.10) 50.84(0.09)
MART 100 80.98(0.28) 57.56(0.14) 51.06(0.03)

TRADES 100 83.90(0.04) 54.74(0.03) 51.72(0.10)
SRST-AWR 8 84.56(0.06) 54.41(0.15) 51.72(0.06)
SRST-AWR 12 86.06(0.05) 54.69(0.16) 51.88(0.08)

Table 8: Performance in Fully Labeled Data. We conduct
the experiments three times with different seeds and present
the averages of the accuracies with the standard errors in the
parenthesis.

Method CIFAR-10 (WRN-28-5)
Stand PGD20 AA

TRADES 83.90(0.04) 54.74(0.03) 51.72(0.10)
AWR 87.01(0.10) 55.01(0.11) 51.97(0.09)

TRADES-AWP 84.56(0.06) 54.41(0.15) 51.72(0.06)
AWR-AWP 85.81(0.09) 57.03(0.14) 53.90(0.12)

teacher considered in Section 4.3.1, RST [3], and UAT++
[29] regardless of the choice of the regularization parameter
λ.

4.3.5 Comparison to Supervised Adversarial Training
Algorithms

Table 7 shows that SRST-AWR with only 12% labeled
data outperforms the supervised PGD-AT [19], TRADES
[36], and MART [30] (i.e., trained with 100% labeled data)
on both standard and robust accuracies against AA, while
SRST-AWR with only 8% labeled data achieves compara-
ble robust accuracies to the supervised TRADES, while out-
performing on standard accuracy.

4.3.6 Performance on Fully Labeled Data

Table 8 shows the performance of TRADES-based meth-
ods - TRADES [36] and AWP [31]. AWR-based methods
outperform TRADES-based methods for the given fully la-
beled data. Details of the experimental setup are provided
in Appendix B.6.

5. Conclusion
In this paper, we derived the two upper bounds of the ro-

bust risk and developed a new semi-supervised adversarial
training algorithm called SRST-AWR. The objective func-
tion of SRST-AWR is a combination of a new surrogate
version of the robust risk and a knowledge distillation term
with a semi-supervised teacher. While existing algorithms
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show significant performance degradation as the number of
labeled data decreases, our proposed algorithm has shown
relatively little performance degradation.

The experiments showed that SRST-AWR outperforms
existing algorithms with significant margins in terms of
both standard and robust accuracies on various benchmark
datasets. Especially, we can achieve standard and robust ac-
curacy that are comparable to supervised adversarial train-
ing algorithms when the number of labeled data is around
10% of the whole labeled data.
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