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Abstract

This paper proposes a pre-trained neural network for
handling event camera data. Our model is a self-supervised
learning framework, and uses paired event camera data
and natural RGB images for training. Our method con-
tains three modules connected in a sequence: i) a family
of event data augmentations, generating meaningful event
images for self-supervised training; ii) a conditional mask-
ing strategy to sample informative event patches from event
images, encouraging our model to capture the spatial lay-
out of a scene and accelerating training; iii) a contrastive
learning approach, enforcing the similarity of embeddings
between matching event images, and between paired event
and RGB images. An embedding projection loss is proposed
to avoid the model collapse when enforcing the event image
embedding similarities. A probability distribution align-
ment loss is proposed to encourage the event image to be
consistent with its paired RGB image in the feature space.
Transfer learning performance on downstream tasks shows
the superiority of our method over state-of-the-art meth-
ods. For example, we achieve top-1 accuracy at 64.83%
on the N-ImageNet dataset. Our code is available at https:
//github.com/Yan98/Event-Camera-Data-Pre-training.

1. Introduction
An event camera asynchronously captures the time, lo-

cation, and polarity of pixel-wise changes in brightness as a
sequence of events. Event cameras are widely used in many
applications, e.g., recognition [22], detection [30, 27], seg-
mentation [3], optical flow estimation [43], and SLAM [40].
Compared with conventional RGB cameras which record
all pixel intensities at a fixed frame rate, event cameras en-
joy a high dynamic range and temporal resolution, and are
robust to lighting changes and motion blur [22, 36, 25].

This paper studies the problem of event camera data pre-
training. Our model is pre-trained in a self-supervised man-
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Figure 1: Comparison of our methods and state-of-the-art meth-
ods on N-ImageNet dataset [22]. The Blue cycles and red squares
separately denote the self-supervised and supervised pre-training
methods. We show top-1 accuracy (%), i. e., acc@1, with respect
to the number of model parameters (M). We include the publica-
tion year of each method in the brackets beside the method names.

ner, only using paired event data and RGB images for train-
ing. One can simply transfer our pre-trained model for di-
verse downstream tasks.

In self-supervised learning (SSL), significant progress
has been made in pre-training with RGB images [19, 2, 10].
However, it is non-trivial to replicate the success on event
camera data, as there is a domain gap between RGB images
and event data. An RGB image records all pixel intensities
of a scene and is spatially dense, while the event data only
records scene changes and is spatially sparse.

For network training in the SSL framework, image aug-
mentations (e.g., Gaussian Blur, ColorJitter, RandomRe-
sizedCrop) are one of the most important parts. The sparse
event camera data can be commonly represented as an event
image [22]. One may directly and wrongly perform these
augmentations on event images, e.g., blurring a binary event
image (0/1 valued pixels) generates a meaningless event im-
age. In contrast, we study how to perform event data aug-
mentations before converting to an event image.

We formulate our learning problem as a contrastive
learning task. Taking event images as inputs, one may di-
rectly perform a random masking strategy to sample a fixed
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number of event patches for encouraging the model to cap-
ture the spatial layout and accelerating training. However,
an event image is spatially sparse, and random masking
would generate non-informative patches, leading to train-
ing instability. To mitigate this problem, we propose a con-
ditional masking strategy to sample informative patches.

With event patches, we are able to learn discriminative
event embeddings, i. e., pulling together embeddings from
similar event images while pushing away embeddings from
dissimilar ones. Surprisingly, we find that simply perform-
ing metric learning in the event embedding space leads to
model collapse, producing over-similar embeddings. The
reason comes from the spatial sparsity of event images. To
solve this problem, we find that embeddings from paired
RGB images can be used as a regularizer, and we propose
an embedding projection loss to solve the collapse.

With paired event data and RGB images, we also aim to
pull together embeddings from matched pairs. This is moti-
vated by the fact that many well pre-trained RGB networks
are available, and an event image is less informative than its
paired RGB image. Therefore, the RGB network serves as a
teacher for our event network, and we propose a probability
distribution alignment loss for the learning.

Our contributions are summarized as follows:
• A self-supervised framework for event camera data

pre-training. The pre-trained model can be transferred
to diverse downstream tasks;

• A family of event data augmentations, generating
meaningful event images;

• A conditional masking strategy, sampling informative
event patches for network training;

• An embedding projection loss, using paired RGB
embeddings to regularize event embeddings to avoid
model collapse;

• A probability distribution alignment loss for aligning
embeddings from the paired event and RGB images.

• We achieve state-of-the-art performance in standard
event benchmark datasets (e.g., Fig. 1).

2. Related Work
The SSL frameworks can be generally divided into two

categories: contrastive learning and masked modeling. We
briefly review their recent achievements, and then introduce
event datasets for diverse computer vision tasks.
Contrastive learning. This approach generally assumes
augmentation invariance of images [7, 20]. Two or more
views of each image are generated for instance discrimi-
nation that enforces embedding similarity and dissimilarity
among the views [7, 20, 8, 10, 41]. Only enforcing the
embedding similarity is also possible and has been stud-
ied in [9, 18]. In addition to model design and optimiza-
tion objectives, contrastive learning approaches usually rely

on strong augmentations over images to boost model per-
formance [7, 20, 8, 10, 4, 9]. Under certain tasks, con-
trastive learning has shown better performance than super-
vised pre-training [14, 10]. However, one notable drawback
of contrastive learning is suffering from model collapse and
training instability. Diverse methods including asymmetric
network designs (e.g., maintaining a momentum network)
[7, 20], partial weight freezing [10], and group-based dis-
crimination [4, 5] are introduced to avoid the model collapse
and instability issue.

Masked modeling. Reconstructing masked inputs from
the (i. e., unmasked) visible ones is a popular self-
supervised learning objective motivated by the idea of auto-
encoding. The pioneer works can be specified to the nat-
ural language processing domain, e.g., Bert [13] and GPT
[31]. Recently, masked modeling has been formulated in
the image domain, where the objective is defined in a sim-
ilar vein, and the masking of images is done pixel-wisely
or patch-wisely [6, 19, 14, 2, 42]. Some works [2, 42] turn
the masked modeling into a classification problem by pre-
dicting discrete indices assigned to the masked patches by
a tokenizer, e.g., pre-trained discrete VAE [32, 15] or self-
distilled network [42, 5]. One could also target to directly
regress the pixel intensity of masked patches [6, 19, 14].

Event datasets. The event camera is a novel sensor that
asynchronously captures the time, location, and polarity
(i. e., direction) of per-pixel brightness change as a sequence
of events. With growing interest in event-based computer
vision tasks, researchers have collected a wide range of
datasets for object recognition [22, 35, 28, 11], semantic
segmentation [3], optical flow estimations [43], and so forth
[33, 26, 39]. To leverage existing computer vision algo-
rithms, e.g., CNN and ViT, the majority of event-based vi-
sion frameworks convert event data into image/video-liked
grid representations, where the conversion is done either
learnable [34] or by directly using the position and time
of each event [22]. This paper leverages the event image
representation to study the event-based SSL algorithm that
benefits diverse event-based downstream tasks.

3. Method
We start with a brief overview of background knowledge,

and then present our self-supervised learning framework, in
this section. The overall architecture is shown in Fig. 2.

Preliminary. Contrastive learning aims to learn an em-
bedding space, where similar image pairs stay close to each
other while dissimilar ones are far apart. Specifically, im-
ages are embedded into vectors to collect a query set {q}
and a key set {k}. For each query q, we have a matching
key k+ and non-matching keys {k−}. Usually, q and k+

are generated from views of the same instance, while q and
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Figure 2: The overall architecture. For pre-training, our method takes event data E and its paired natural RGB image I as inputs, and
outputs a pre-trained network fe. Given E (its abstract representation is used for visualization purposes), we first consecutively perform
data augmentations, event image generation, and conditional masking to obtain two patch sets (xq,xk). Second, fe extracts features
from event patch set xq, and himg

e and hevt
e separately project features from fe to latent embeddings qimg and qevt. fm and hevt

m are the
momentum of fe and hevt

e , and are updated by the exponential moving average (EMA). The momentum network takes patch set xk as
input and generates an embedding kevt. At the same time, the natural RGB image I is embeded into y = fI(hI(I)). Finally, we perform
event discrimination, and event and natural RGB image discrimination to train our model. We optimize the network by Levt (Eq. 3), LRGB

(Eq. 4), and Lkl (Eq. 6). Levt is an event embedding projection loss aiming to pull together paired event embeddings qevt and kevt, for event
discrimination. LRGB aims to pull together paired event and RGB embeddings qevt and y, for event and natural RGB image discrimination.
Lkl aims to drive fe learning discriminative event embeddings, towards well-structured embedding space of natural RGB images.

{k−} are generated from views of different instances. Con-
trastive learning aims to pull together embeddings q and
k+, and pushes away embeddings q and {k−}. In this pa-
per, we use the InfoNCE loss [37],

Lnce(q, {k}) = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
,

where q and k are L2 normalized to a metric space, and
the similarity between them is then measured by the cosine
similarity using dot-product (·). τ is a temperature hyper-
parameter [10].
Overall architecture. Given an event data E =
(ui, ti, pi)

N
i=1 and a paired natural RGB image I, where ui,

ti, and pi separately denotes spatial location, time, and po-
larity of each event, and N is the length of the event data.

We aim to pre-train a neural network fe, such that
fe can generate discriminative features for benefiting di-
verse event-based downstream tasks. Our method is self-
supervised and has three components: i) event image patch
generation. Given input E , it generates matching patches
(xq,xk) on E ; ii) event discrimination. It aims to pull to-
gether embeddings of (xq,xk); iii) event and RGB image
discrimination. It aims to pull together embeddings of xq

and I. Details of the above three components are given in
the following paragraphs.
Event image patch generation. To convert E into two
matching patches (xq,xk), we consecutively apply our data

augmentations, event image generation, and conditional
masking strategy. We perform event data augmentations
before converting them to event images. Please refer to
the supplementary material for details, i. e., how to per-
form RandomResizedCrop, GaussianBlur, and ColorJitter
for E . With augmented E , we first generate an event image
by applying the event histogram algorithm [23], and then
use our conditional masking strategy to obtain patches xq

and patches xk.
Given an event image, considering its sparsity, using a

random masking strategy to sample patches is prone to gen-
erate meaningless/non-informative patches. Therefore, a
conditional masking strategy is proposed to sample patches.
Let {pi}Pi=1 be a patch set of an event image, pi is the i-th
patch, and P is the cardinality of the set. After vectorizing
pi, we calculate the information quantity di of each patch,

di = |pi| · 1, ∀i ∈ [1, · · · ,P], (1)

where 1 denotes a vector of ones. Collecting P information
quantities and L1 normalizing them, we obtain a probabil-
ity distribution. A patch probability describes how likely it
contains meaningful information. We randomly sample a
fixed number (≪ P) of patches according to the probabil-
ity distribution, resulting in xq. Then, the same process is
performed to generate xk.
Event discrimination. With patches xq and patches xk,
we show how to pull together embeddings of them. xq is
fed to network fe to extract features, and features from fe
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are fed to a projection head hevte to extract an embedding
qevt, qevt = hevte (fe(xq)). For self-supervised training, xk

is fed to fm and hevtm to extract an embedding kevt, kevt =
hevtm (fm(xk)), where fm and hevtm are the momentum [20]
of fe and hevte , respectively.

To enforce the similarity between embeddings qevt

and kevt, one may directly optimize the InfoNCE loss
Lnce(q

evt, {kevt}). However, we find that optimized em-
beddings collapse, i. e., they are over-similar. The reason
would be the sparsity of event images, and the sparsity de-
creases the discriminativeness of event embeddings.

To solve this collapse problem, interestingly, we find that
the embedding y = hI(fI(I)) of the paired natural RGB
image I is a basis vector and provides good regularization.
fI is an image feature extraction network, and hI projects
features to an embedding. We have the event embedding
projection loss,

Levt = Lnce
(
ζ(qevt,y), {ζ(kevt,y)}

)
, (2)

ζ(v1,v2) = v1 · v2
v2

∥v2∥2
, (3)

where ζ(v1,v2) is the projection function. Here, ζ(qevt,y)
and ζ(kevt,y) separately projects event embeddings qevt

and kevt to embedding y. We do not perform L2 normal-
ization on ζ(qevt,y) and ζ(kevt,y) for calculating Levt.
Event and RGB image discrimination. Considering the
sparsity of the event image, a single event image is less
informative than an RGB image, possessing difficulty for
self-supervised event network training. In contrast, many
well-trained RGB networks are available. We aim to teach
our event network fe, using well pre-trained RGB network
fI. We pull together embeddings of paired event and RGB
images, xq and I. Features from fe are fed to a projection
head himge to extract an event image embedding qimg. Given
embeddings qimg and y, we enforce their similarity by op-
timizing the InfoNCE loss,

LRGB = Lnce(q
img, {y}). (4)

To better align event and RGB embedding spaces, we first
separately fit two probability distributions in the event and
RGB embedding spaces, and then use Kullback–Leibler di-
vergence to minimize the distribution mismatch.

Specifically, given a batch of event embeddings {qimg},
we first compute the pairwise embedding similarity and
then fit an exponential kernel to the similarities to compute
probability scores. The probability score of the (i, j)-th pair
is given by,

sqi,j =
exp(ki · kj/τ)∑
j

exp(ki · kj/τ)
, (5)

where ki and kj are the i-th and j-th embedding of the
batch {qimg}. The probability score of y is obtained in the

same way and is denoted as syi,j . Our probability distribu-
tion alignment loss is given by,

Lkl =
∑
i

∑
j

sqi,j · log

(
sqi,j
syi,j

)
(6)

Losses. Our network is trained end-to-end, and the total
loss is

Ltotal = Levt + LRGB + λ1Lkl, (7)

where λ1 is a hyper-parameter for balancing the losses.

4. Experiments
4.1. Experimental Setup

Pre-training dataset. We use the N-ImageNet [22] and
ImageNet-1K [12] datasets for pre-training. The N-
ImageNet dataset is built from the ImageNet-1K dataset,
where a moving event camera observes natural RGB im-
ages displayed by a monitor. Similar to the ImageNet-1K, it
contains 1, 781, 167 samples of event data, covering 1, 000
object classes. All event samples are recorded in 480× 640
resolution. We resize them to 224× 224 resolution, and use
the official training set for pre-training.

Implementation. We explore two backbones ViT-S/16
and ResNet50 for our method, and separately report our pre-
training performance. We use the backbone for fe and fm,
and the same projection head as MoCo-v3 for hevte , hevtm ,
and himge . We use SSL pre-trained ViT-B/32 for the RGB
image backbone fI, and set hI to a single linear layer. The
hyper-parameters λ1 is set to 2. Please refer to the supple-
ment material for optimization schemes, ablation of fe, fI
and hI. Our method is implemented in Pytorch [29].

Transfer learning tasks. We evaluate our method and
state-of-the-art methods on three downstream tasks: object
recognition (Sec. 4.2), optical flow estimation (Sec. 4.3),
and semantic segmentation (Sec. 4.4).

Baselines. Our method is compared with four groups of
methods: i) Previous best. We compare with state-of-the-art
methods for each task; ii) Training from scratch. We train
state-of-the-art methods with random weight initialization;
iii) Transfer learning of supervised pre-training. The initial
weights of state-of-the-art methods are obtained in a super-
vised manner using the ImageNet-1K dataset; iv) Transfer
learning of self-supervised pre-training. The initial weights
of state-of-the-art methods are obtained in a self-supervised
manner using the ImageNet-1K dataset.

4.2. Object Recognition

We first show our object recognition performance on the
large-scale N-ImageNet [22] dataset and then report our
performance on three small-scale datasets, N-Cars [35], N-
Caltech101 [28], and CIFAR-10-DVS [11].
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Table 1: Comparison of object recognition accuracies on the N-ImageNet dataset [22]. We show the top-1 and top-5 accuracies (i. e.,
acc@1 and acc@5 (%)) of state-of-the-art methods.

Method Architecture Parameters Pre-training Epoch
Fine-tuning

acc@1 acc@5

The best performance in the literature.
EST [16] - 21M - 48.93 -

Training from scratch, i. e., random weight initialization.
ViT [14] ViT-S/16 21M - 46.70 69.89
ViT [14] ViT-B/16 86M - 51.23 74.50
ResNet [21] ResNet50 23M - 50.07 74.83

Transfer learning of supervised pre-training methods, i. e., initial weights learned in a supervised manner.
ViT [14] ViT-S/16 21M 300 60.48 83.02
ViT [14] ViT-B/16 86M 300 62.98 84.75
ResNet [21] ResNet50 23M 90 57.37 80.93

Transfer learning of self-supervised pre-training methods, i. e., initial weights learned in a self-supervised manner.
SimCLR [7] ResNet50 23M 100 56.07 80.49
MoCo-v2 [8] ResNet50 23M 200 50.46 75.67
MoCo-v3 [10] ViT-S/16 21M 300 45.77 68.89
BeiT [2] ViT-B/16 86M 800 47.15 69.27
iBoT [42] ViT-S/16 21M 800 19.55 38.72
MAE [19] ViT-B/16 86M 800 51.25 72.64
Ours ResNet50 23M 300 59.80 82.04
Ours ViT-S/16 21M 300 64.83 86.30
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Figure 3: The linear probing accuracy of our method with respect
to the number of training epochs.

Results on the large-scale N-ImageNet dataset. The
comparisons are given in Tab. 1. It shows that fine-tuning
our pre-trained model with a ViT-S/16 backbone achieves a
top-1 accuracy at 64.83%, outperforming all other methods.
Additionally, we examine the linear probing performance
of this pre-trained model, and it achieves a top-1 accuracy
at 59.90%, outperforming methods in the self-supervised
group. The linear probing accuracies of our method with
respect to the number of training epochs are given in Fig. 3.

For methods (except ours) in the self-supervised group,
we find that they overfit easily (even achieving a near-
perfect top-1 training accuracy) when fine-tuning on the N-
ImageNet dataset, though we have tried our best to use di-

verse regularization techniques. This further demonstrates
the value of this paper – a self-supervised learning frame-
work for event camera data pre-training.

Results on other small-scale datasets. The comparisons
on N-cars [35], N-Caltech101 [28], and CIFAR-10-DVS
[11] datasets are given in Tab. 2. Note that the N-
Caltech101 and CIFAR-10-DVS have not provided train-
ing and testing splits. We therefore randomly split them
for generating training and testing datasets (please refer to
the supplementary materials). Our pre-trained model with
a ViT-S/16 backbone outperforms all other methods, with
97.93%, 87.66%, and 78.00% top-1 accuracy on N-Cars,
N-Caltech101, and CIFAR-10-DVS datasets, respectively.

4.3. Optical Flow Estimation

We show our optical flow estimation performance on the
MVSEC dataset [43]. Following [19, 2], we simply append
a decoder network to pre-trained networks to estimate the
optical flow. Please refer to the supplementary material
for architecture details and train-test splitting. The com-
parisons on the ‘indoor flying1’, ‘indoor flying2’, and ‘in-
door flying3’ scenes are given in Tab. 3.

Compared with other methods, our method with a ViT-
S/16 backbone has the lowest AEEs and outlier ratios,
showing the effectiveness of our pre-trained model for the
optical flow estimation task. We show optical flow predic-
tion examples of our method in Fig. 4.
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Table 2: Comparison of object recognition accuracies on the N-Cars [35], N-Caltech101 [28], and CIFAR-10-DVS [11] datasets. We
show the top-1 accuracy for clarity.

Method Architecture N-Cars N-Caltech101 CIFAR-10-DVS

The best performance in the literature.
N-ImageNet [22] - 94.73 86.81 73.72

Training from scratch, i. e., random weight initialization.
ViT [14] ViT-S/16 89.14 55.63 52.45
ViT [14] ViT-B/16 93.09 67.11 55.15
ResNet [21] ResNet50 91.20 62.69 56.65

Transfer learning of supervised pre-training methods, i. e., initial weights learned in a supervised manner.
ViT [14] ViT-S/16 96.76 85.02 76.10
ViT [14] ViT-B/16 97.56 86.45 77.45
ResNet [21] ResNet50 97.61 86.51 73.40

Transfer learning of self-supervised pre-training methods, i. e., initial weights learned in a self-supervised manner.
SimCLR [7] ResNet50 97.10 86.57 75.15
MoCo-v2 [8] ResNet50 96.64 84.16 74.65
MoCo-v3 [10] ViT-S/16 95.33 76.59 68.40
BeiT [2] ViT-B/16 90.61 53.10 53.15
iBoT [42] ViT-S/16 92.30 47.36 56.10
MAE [19] ViT-B/16 95.34 67.68 68.65
Ours ResNet50 98.01 87.08 74.75
Ours ViT-S/16 97.93 87.66 78.00

(a) (b) (c) (d) (e) (f)
Figure 4: Optical flow prediction examples of our method on the MVSEC dataset [43]. (a)/(d) are event images, where red and blue
indicate positive and negative events. (b)/(e) are ground-truth optical flows. (c)/(f) are our predicted optical flows.

4.4. Semantic Segmentation

We show our semantic segmentation performance on the
DDD17 [3, 1] and DSEC datasets [17, 36]. Following
[2], we simply append a decoder network to pre-trained net-
works to estimate semantic labels, and use the mean inter-
action over union (mIoU) metric to evaluate methods. The
comparisons are given in Tab. 4.

The performance of our method with a ResNet50 back-
bone is comparable with respect to the state-of-the-art
method ESS [36], which uses additional RGB images and
their semantic labels for training. For methods only using

event data and semantic labels for training, our method out-
performs the state-of-the-art method EV-SegNet [1]. Please
refer to Fig. 5 for our semantic segmentation examples.

4.5. Discussion

Analysis of attention maps. We visualize attention maps
of our pre-trained model in Fig. 6, where features from the
last layer of our pre-trained model are used to compute the
attention map. The results show that our pre-trained model
successfully focuses on semantic meaningful objects on the
noisy event images (e.g., spider on the second row of Fig. 6).
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Table 3: Comparison of optical flow estimation on the MVSEC dataset [43]. We use average end-point error (AEE) and percentage of
outliers (%) for evaluation. Similar to the KITTI benchmark [24], the outlier measures the percentage of pixels that has end-point error
larger than three units and 5% of the ground truth optical flow.

Method Backbone
indoor flying1 indoor flying2 indoor flying3

AEE Outlier AEE Outlier AEE Outlier

The best performance in the literature.
EST [16] - 1.24 5.09 2.05 19.90 1.71 11.67
DCEIFlow [38] - 0.75 0.60 1.39 8.01 1.13 5.29

Training from scratch, i. e., random weight initialization.
ViT [14] ViT-S/16 0.68 0.13 1.38 7.58 1.08 3.76
ViT [14] ViT-B/16 0.64 0.19 1.36 7.21 1.05 3.86
ResNet [21] ResNet50 0.73 0.66 1.55 9.81 1.23 5.77

Transfer learning of supervised pre-training methods, i. e., initial weights learned in a supervised manner.
ViT [14] ViT-S/16 0.88 3.06 1.79 16.63 1.49 8.66
ViT [14] ViT-B/16 0.65 0.45 1.34 7.65 1.11 4.96
ResNet [21] ResNet50 0.60 0.23 1.37 8.76 1.15 5.34

Transfer learning of self-supervised pre-training methods, i. e., initial weights learned in a self-supervised manner.
SimCLR [7] ResNet50 0.65 0.49 1.45 9.33 1.19 5.51
MoCo-v2 [8] ResNet50 0.61 0.46 1.36 8.68 1.13 5.20
MoCo-v3 [10] ViT-S/16 0.66 0.35 1.41 8.23 1.17 5.10
BeiT [2] ViT-B/16 0.64 0.29 1.32 7.34 1.07 4.32
iBoT [42] ViT-S/16 0.80 0.81 1.47 8.77 1.16 5.43
MAE [19] ViT-B/16 0.61 0.17 1.29 6.95 1.11 4.64
Ours ResNet50 0.60 0.35 1.35 8.57 1.12 5.26
Ours ViT-S/16 0.61 0.05 1.26 6.69 1.00 3.11

(a) (b) (c) (d) (e) (f)
Figure 5: Semantic segmentation prediction examples of our method on the DSEC dataset [43]. (a)/(d) are event images, where red and
blue indicate positive and negative events. (b)/(e) are ground-truth segmentation images, and pixel colors denote semantic classes. (c)/(f)
are our predicted segmentation images.

This strong pattern discovery ability of our method poten-
tially explains the effectiveness of our pre-trained model
when transferring to diverse downstream tasks.

Effectiveness of data augmentations. Generating differ-
ent views of the same data is one of the most important parts
of the self-supervised learning framework. We compare two
methods: i) previously commonly used methods [10, 19]; ii)

our event data augmentations. By pre-training our method
with the above two different augmentation methods for 100
epochs on the N-ImageNet, we obtain 46.1% and 53.5%
top-1 accuracy with linear probing, respectively.

Pre-train MAE using event data? Can we pre-train the
state-of-the-art self-supervised method MAE [19] using
event data? To check the feasibility, we perform a bi-
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(a) (b) (c) (d) (e) (f)
Figure 6: Attention maps of our pre-trained model (without any fine-tuning) on sample data from the N-ImageNet dataset [22]. (a)/(d)
are event images. Similarly, we use red and blue to indicate positive and negative events. (b)/(e) are corresponding natural RGB images
used for visualization assistance. (c)/(f) are our attention maps.

Table 4: Comparison of semantic segmentation on the DDD17
[3, 1] and DSEC datasets [17, 36]. Following [2], we use the
mean interaction over union (mIoU (%)) for comparison. Our
method and EV-SegNet [1] only use event data and correspond-
ing semantic labels for training. ESS [36] uses additional RGB
images and semantic labels in the training stage.

Method Backbone DDD17 DSEC

The best performance in the literature.
EV-SegNet [1] - 54.81 51.76
ESS [36] - 61.37 53.29

Training from scratch.
ViT [14] ViT-S/16 48.76 40.53
ViT [14] ViT-B/16 43.89 38.24
ResNet ResNet50 56.96 57.60

Transfer learning of supervised pre-training methods.
ViT [14] ViT-S/16 54.12 42.92
ViT [14] ViT-B/16 54.06 45.55
ResNet ResNet50 59.25 58.50

Transfer learning of self-supervised pre-training methods.
SimCLR [7] ResNet50 57.22 59.06
MoCo-v2 [8] ResNet50 58.28 59.09
MoCo-v3 [10] ViT-S/16 53.65 49.21
BeiT [2] ViT-B/16 52.39 46.52
IBoT [42] ViT-S/16 49.94 42.53
MAE [19] ViT-B/16 52.36 47.56
Ours ViT-S/16 54.66 47.91
Ours ResNet50 59.15 59.16

nary search to find the best masking ratio and optimiza-
tion schema for MAE. MAE with a ViT-B/16 backbone ob-
tains top-1 accuracy at 55.45% after fine-tuning on the N-
ImageNet dataset. In comparison, our method with a ViT-
S/16 backbone achieves top-1 accuracy at 64.83%.

Table 5: Scaling the number of parameters of fe and fm.

Backbone
Linear Probing Fine-tuning

acc@1 acc@5 acc@1 acc@5

ViT-S/16 59.90 82.26 64.84 86.30
ViT-B/16 61.75 82.53 68.31 88.02
ViT-L/16 64.53 84.90 71.05 89.86

Model Scalability. We scale our backbone (fe and fm)
from ViT-S/16 to ViT-L/16. The results are given in Tab. 5.
The accuracy of our method improves with respect to the
increasing number of model parameters of ViT.

5. Conclusion
In this paper, we have trained a neural network for pro-

cessing event camera data, as a self-supervised learning
framework. The method contains three key components:
a family of event data augmentations, a conditional mask-
ing strategy, and a contrastive learning approach. Our key
insight is enforcing the similarity of embeddings between
matching event images and between paired event and RGB
images to pre-train our model. Extensive experiments on
downstream tasks (i. e., object recognition, optical flow es-
timation, and semantic segmentation) demonstrate the su-
periority of our method over past methods.

Broader impacts. Our model is promising to be extended
for zero-shot learning by using vision-language methods
from the RGB image domain to drive event data network.
We hope this paper will inspire future work.
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son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
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