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Abstract
Visual object tracking is a fundamental research topic

with a broad range of applications. Benefiting from the
rapid development of Transformer, pure Transformer track-
ers have achieved great progress. However, the feature
learning of these Transformer-based trackers is easily dis-
turbed by complex backgrounds. To address the above lim-
itations, we propose a novel foreground-background distri-
bution modeling transformer for visual object tracking (F-
BDMTrack), including a fore-background agent learning
(FBAL) module and a distribution-aware attention (DA2)
module in a unified transformer architecture. The proposed
F-BDMTrack enjoys several merits. First, the proposed
FBAL module can effectively mine fore-background infor-
mation with designed fore-background agents. Second, the
DA2 module can suppress the incorrect interaction between
foreground and background by modeling fore-background
distribution similarities. Finally, F-BDMTrack can extract
discriminative features under ever-changing tracking sce-
narios for more accurate target state estimation. Extensive
experiments show that our F-BDMTrack outperforms previ-
ous state-of-the-art trackers on eight tracking benchmarks.

1. Introduction
Visual object tracking(VOT) aims to locate the position

of a class-agnostic target in a video sequence given the tar-
get in the first frame, which is a fundamental and essential
research topic in computer vision. Due to its great appli-
cation potential (such as video surveillance [9, 49, 9], anti-
UAV tracking [64, 25, 29], and automatic driving [47, 41,
15]), VOT has attracted substantial attention and has been
developed tremendously [56, 31, 17]. However, as a video
processing task, visual object tracking still faces various
challenges including deformation, motion blur, and suscep-
tibility to background interference [51, 27, 24].
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Figure 1. Response map comparisons among different attention
mechanisms. Both (a) and (b) have incorrect similarities between
the target (green square patch) and background distractor (yellow
triangle patch) due to similar appearance, causing messy response
map. Differently, in our proposed DA2 module (c), the similarity
between target and distractor is suppressed, since the similarity is
obtained according to their fore-background distributions.

To deal with the above challenges, numerous approaches
have been proposed [23, 2, 3, 59, 10, 5, 62]. These meth-
ods can be generally divided into three main paradigms,
including CNN-based [8, 52, 58, 35, 3, 13], hybrid CNN-
Transformer [7, 59, 36, 50, 42], and pure Transformer
trackers [5, 62, 32, 57]. CNN-based trackers first extract
features from the template and search region separately
through a shared convolutional neural network (CNN), and
then the target state is estimated by calculating cross-
correlation [2, 58, 52] between features in template and
search regions, or learning a discriminative correlation fil-
ter [12, 3, 13]. With the successful development of trans-
former in the computer vision field, an increasing number
of hybrid CNN-Transformer trackers [7, 59, 42] have been
proposed. These trackers also leverage CNN to extract fea-
tures separately, but adopt transformer to realize the feature
interaction between the template and search region, which
can alleviate the loss of discriminative foreground informa-
tion. However, for the above two paradigm trackers, there
is no interaction between the template and the search re-
gion when extracting features. These target-unaware feature
extraction ways have limited target-background discrimina-
tive power, especially when the target category is not seen
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in the training dataset. To this end, pure Transformer track-
ers [5, 62, 32, 57] are proposed to build interaction between
template and search region along with the feature extrac-
tion. Thanks to the strong representation and interaction
capability of ViT/SwinT variants [14, 38, 55], pure Trans-
former trackers have achieved remarkable improvements.

Despite the success of the above pure Transformer track-
ers, the feature learning of these methods are easily dis-
turbed by complex backgrounds due to insufficient con-
sideration of fore-background relationship. To make pure
Transformer architectures more suitable for discriminative
feature learning in visual object tracking, there are two core
points that need to be considered. (1) Fore-background
information mining. Previous methods [5, 22, 21] usu-
ally mine fore-background information from the template
according to the given bounding box (bbox). However,
the tracking target can be continuously changing, making
it difficult to learn target discriminative features for cur-
rent search region, if only guided by fore-background in-
formation of the template. Therefore, it is necessary to
propose a effective way to mine fore-background informa-
tion for both template and search region. (2) Target-aware
feature interaction. Most of popular Transformer track-
ers [62, 10, 57] adopt the plain attention mechanism to build
interaction between template and search region. Since at-
tention scores are obtained by appearance similarity, the
template features will mistakenly aggregate background in-
formation and further affect features of search region during
feature interaction, resulting messy response map (Figure 1
(a)). Although some methods [22, 42] introduce additional
target embeddings to enhance the target information, they
could still be disturbed by distractors, making features of
the search region have limited target discriminative power.
And the response map is also unsatisfactory (Figure 1 (b)).
Therefore, it is urgent to design a new attention mechanism
to achieve better target-aware feature interaction.

Motivated by the above discussion, we propose
a novel Foreground-Background Distribution Modeling
Transformer for visual object tracking (F-BDMTrack),
which consists of a fore-background agent learning (FBAL)
module and a distribution-aware attention (DA2) module in
a unified transformer architecture. In the fore-background
agent learning module, we aim to mine foreground and
background information from both the template and the
search region. Specifically, we initialize a set of fore-
background agents. And fore-background agents for the
template (search region) are obtained by aggregating fore-
ground and background information in the template (search
region), which can be used to guide the subsequent fea-
ture interaction. In the distribution-aware attention mod-
ule, it is proposed to realize target-aware feature interaction.
Specifically, we calculate the similarity scores between each
patch feature and the fore-background agents, which can

be regarded as fore-background distributions for each patch
feature. Then we can obtain the attention score by com-
pute the similarity between their distributions, which are
later used for feature aggregation. As shown in Figure 1 (c),
foreground patches and background patches could have dif-
ferent fore-background distributions even though they have
similar appearance. Thus, we can aggregate more useful
information and learn more discriminative features.

The main contributions of this work are summarized as
follows. (1) We develop a novel Foreground-background
Distribution Modeling Transformer for visual object track-
ing (F-BDMTrack), which can extract features with high
target discriminative power under ever-changing tracking
scenarios. (2) The proposed FBAL module can effectively
mine fore-background information for both template and
search region with designed fore-background agents. And
the proposed DA2 module can effectively suppress the in-
teraction between foreground and background, which helps
learn more discriminative features for visual tracking. (3)
Extensive experimental results on eight benchmarks show
that our method attains state-of-the-art performance, veri-
fying the superiority of our F-BDMTrack.

2. Related Work
Visual object tracking (VOT). Current popular trackers
can be divided into CNN-based trackers [8, 2, 58, 35, 40, 12,
3, 13], hybrid CNN-Transformer trackers [59, 7, 50, 53, 42],
and pure Transformer trackers [62, 5, 36, 32, 57] according
to the network architecture. CNN-based trackers commonly
learn features of template and search region via share-
weighted convolutional neural networks (CNN), and the in-
teraction between template and search region is realized by
cross correlation [2, 58, 35] or correlation filter [12, 3, 13].
However, due to the lack of global perception and the sim-
ple interaction strategy, some target-background discrim-
inative information may be lost, restricting the develop-
ment of CNN-based trackers. Recently, Vision Transformer
brings a new solution to visual tracking. Hybrid CNN-
Transformer trackers reserve the extraction of features with
CNNs and utilize attention mechanisms to establish global
dependencies between features. Typically, STARK [59] uti-
lizes the Tramsformer to aggregate spatial-temporal cues for
target location. Moreover, ToMP [42] uses a Transformer-
based architecture to encode a long-term target represen-
tation to localize the target. Nevertheless, these Hybrid
CNN-Transformer trackers still extract features of template
and search region separately, which causes extracted fea-
tures to be unaware of the tracking target. To alleviate this
limitation, pure Transformer-based trackers [62, 5, 57] are
proposed. For example, OSTrack [62] and SimTrack [5]
unify the feature extraction and the feature relation mod-
eling in Vision Transformer [14]. They achieve superior
performance, proving the potential of pure Transformer
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architectures in visual tracking. However, these track-
ers [62, 5] aggregate features according to appearance sim-
ilarities through plain attention mechanisms. Without con-
sidering fore-background relationship for the template and
search region, target features may mistakenly aggregate
background noise in the search region. Differently, in our
work, we propose the distribution aware attention module to
aggregate features according to their fore-background dis-
tribution similarities, which can effectively suppress incor-
rect interaction between foreground and background.

Fore-background exploitation in visual object tracking.
There are several tracking methods [21, 42, 5, 46, 19] ac-
tively exploring ways to mine fore-background information
for robust tracking. STMTrack [21] leverages foreground-
background masks derived by bounding boxes of tem-
plate sequences to highlight target representations. And
ToMP [42] is proposed to learn foreground embeddings
from a set of template sequences, which can be used to
enhance target features of the template and assist in target
state estimation. However, the above methods for exploiting
fore-background generally use fixed foreground embedding
for template images, ignoring the fact that tracking target
can be continuously changing. Besides, they do not ana-
lyze the fore-background information of the search region.
Furhtermore, RTS [46] utilizes an additional segmentation
network to provide more precise object masks, leading to
better performance improvements. And SNLT [19] adopts
additional natural language labels to help extract better tar-
get embeddings for distinguishing foreground and back-
ground. These methods utilize additional network com-
ponents and labels to mine fore-background information,
which affects the independence of the network architec-
ture. In contrast, our method is proposed to fully mine fore-
background information from templates and search regions,
and utilizes them to improve the discriminative ability with-
out attaching additional models.

Visual transformer and attention variants. Nowadays,
Transformer has been rapidly applied in the computer vi-
sion due to its global interaction ability. Typically, ViT [14]
realizes image classification by learning global represen-
tations of patches through attention mechanisms. To op-
timize efficiency, Swin Transformer [38] restricts atten-
tion computation in non-overlapping local windows and ex-
change information between windows through a sliding op-
eration. Thanks to these effective designs, Vision Trans-
formers have been applied to visual tracking, such as Mix-
Former [10] (using CvT [55]) and OSTrack [62] (using
ViT [14]). Further, some trackers improve attention mecha-
nisms to better adapt to visual tracking task. AiATrack [22]
proposes an attention in attention module to model the re-
lationship of attention scores, which can improve the qual-
ity of attention maps. And SparseTT [20] proposes sparse
attention to focus the most relevant information in the

search region. However, these methods still calculate at-
tention scores with appearance similarities, which will in-
evitably disturbed by similar distractors. Differently, we
propose a novel foreground-background distribution mod-
eling tracker, which can accurately discriminate target fea-
tures by perceiving the distribution of fore-background.

3. Method
In this section, we introduce our proposed foreground-

background distribution modeling transformer for visual
tracking (F-BDMTrack). The architecture is in Figure 2.

3.1. Overview

As illustrated in Figure 2, our proposed tracker con-
sists of L stacked fore-background distribution modeling
transformer blocks, where each block have two key compo-
nents including the fore-background agent learning (FBAL)
module and the distribution-aware attention (DA2) mod-
ule. Given a pair of images including template image
z ∈ R3×Hz×Wz and search region image x ∈ RHx×Wx×3,
we first split and flatten them to obtain the patch se-
quence of template zp ∈ RNz×(3·p2) and search region
xp ∈ RNx×(3·p2), where (p, p) is the patch resolution,
and Nz = (HzWz)/p

2, Nx = (HxWx)/p
2 are the num-

ber of patches for template and search region respectively.
Similar to plain vision transformers [14], these patch se-
quences are mapped into C dimensions by a linear projec-
tion, and learnable position embeddings are added to ob-
tain template token embeddings H0

z ∈ RNz×C and search
region token embeddings H0

x ∈ RNx×C . Then, H0
z and

H0
x are concatenated as the input (H0

zx = [H0
z;H

0
x]) to the

fore-background distribution modeling transformer block.
In this transformer block, we intergraded two modules (the
FBAL module and the DA2 module) to help learn discrimi-
native features for both search region and template (We will
give a detailed introduction about how these two modules
work in our proposed transformer block below). Here, we
denote Hl

zx = [Hl
z;H

l
x] as token embeddings output from

the lth transformer block. Eventually, we reshape search re-
gion token features HL

x from the last block, and send them
into a box prediction head to estimate the target state.

3.2. Fore-background Agent Learning Module

Given token features [Hl−1
z ;Hl−1

x ] from (l− 1)th trans-
former block, we normalize them with Layer Normaliza-
tion [1] to obtain Ĥl

z=LN(Hl−1
z ), and Ĥl

x=LN(Hl−1
x ).

These normalized features Ĥl
z and Ĥl

x are sent into the fore-
background agent learning (FBAL) module to produce fore-
background agent (FB-agent) for the template and search
region. Specifically, Ĥl

z and Ĥl
x are first projected into

Ce dimensions (Ce ≪ C) to obtain El
z and El

x, which
can reduce computational overhead. Then, we design a
pseudo bounding box (bbox) generation strategy to obtain
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Figure 2. The architecture of our F-BDMTrack consists of L stacked fore-background distribution modeling transformer blocks, where
each block have two key components including the fore-background agent learning (FBAL) module and the distribution-aware attention
(DA2) module. The FBAL module is used to produce fore-background agents for the template (template FB-agents) and the search region
(search FB-agents). And the DA2 module is used for feature aggregation by modeling the fore-background distribution. The output from
the lth transformer block is denoted as [Hl

z;H
l
x]. Finally, we reshape search region token features HL

x from the last block, and send them
into a box prediction head to estimate the target state. For more details, please refer to the text.

the bounding box for the template and search region. Fi-
nally, we can obtain fore-background agents (FB-agents)
for the template and search region by leveraging a FB-
agent decoder to aggregate information within or outside
the bounding box. The pseudo bbox generation strategy and
the FB-agent decoder are introduced as follows.
Pseudo bbox generation. Since the ground-truth bbox for
the template is given in advance, the difficulty is how to gen-
erate pseudo bbox for the search region. To this end, we es-
tablish coarse matches between template and search region,
which can help generate pseudo bbox. Specifically, given
El

z and El
x, we first reshape them into Êl

z ∈ R
Hz
p ×Wz

p ×Ce ,
and Êl

x ∈ R
Hx
p ×Wx

p ×Ce . Then the target feature Êl
t ∈

Rht×wt×Ce is cropped according to the ground-truth bbox
bz , i.e. Êl

t = PrPool(Êl
z, bz). Here, PrPool(·, ·) denotes

the Precise RoI Pooling [28]. Next, we conduct similar-
ity matching to compute the matching point in Êl

x for each
point in Êl

t according to the probability Dl. Formally,

Dl(k, i) =
exp(< Êl

t(k), Ê
l
x(i) >)∑Nx

i=1 exp(< Êl
t(k), Ê

l
x(i) >)

,

(x̂l
k, ŷ

l
k) =

∑Nx

i=1
s · (xi, yi) ·Dl(k, i), (1)

where k = (xk, yk) and i = (xi, yi) enumerate all 2D posi-
tions in Êl

t and Êl
x, respectively. s is the stride of the back-

bone network. In this way, we can obtain a set of matching
points {(x̂l

k, ŷ
l
k)}Kk=1, where K = htwt. Finally, we de-

rive the pseudo bbox b̂lx = (x̂l, ŷl, ŵl, ĥl) with the mean
and the standard deviation of all keypoints inspired by Rep-
Point [60]. Please refer to the Supplementary Material
for details to obtain b̂lx. During training, we use ground-
truth bbox bx of the search region as supervision for more
accurate pseudo bbox generation. In specific, a set of key-
points {(xj , yj)}Kj=1 are uniformly sampled within the bbox
bx. And the point loss Lpoint measured by Chamfer dis-
tance [18, 61] is introduced to constrain the predicted points
{(x̂l

k, ŷ
l
k)}Kk=1 scattered in the bbox bx.

Ll
point =

1

K

∑K

j=1
min
k

∥∥(xj , yj)− (x̂l
k, ŷ

l
k)
∥∥
2

+
1

K

∑K

k=1
min
j

∥∥(xj , yj)− (x̂l
k, ŷ

l
k)
∥∥
2
.

(2)

Besides, we introduce ℓ1 loss and generalized IoU loss [48]
to directly constrain predicted pseudo bbox. And the final
pseudo bbox generation loss is as follows.

Ll
box = Ll

point + Ll
1(bx, b̂

l
x) + Ll

giou(bx, b̂
l
x). (3)

FB-agent decoder. After obtaining the bbox for the tem-
plate bz and search region b̂lx, we aim to aggregate informa-
tion within or outside the bbox. To this end, we first initial-
ize a set of prototypical foreground agents Fl

a ∈ RNa×Ce
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and prototypical background agents Bl
a ∈ RNa×Ce . In-

spired by CrossViT [6], we use masked cross-attention (M-
CA) mechanism to aggregate information of El

z in the bbox
bz , and produce template foreground agents. Formally,

Att = Softmax((Fl
aWQ)(E

l
zWK)⊤ +Ml

z),

Fl
z = M-CA(Fl

a,E
l
z,M

l
z) = Att(E

l
zWV ),

(4)

where WQ, WK , and WV are linear projections. And the
element in template foreground mask Ml

z is set to 0, if the
corresponding position of this element is in the bbox bz .
Otherwise, it will be set to −∞. Similarly, for the tem-
plate background mask M

l

z , the element is set to 0, if the
corresponding position of this element is outside the bbox
bz . Otherwise, it will be set to −∞. And we can obtain
template background agents Bl

z = M-CA(Bl
a,E

l
z,M

l

z).
For search region features El

x, we can generate Ml
x and

M
l

x according to the pseudo bbox b̂lx. Since b̂lx is not precise
enough, we leverage updated template FB-agents [Fl

z;B
l
z]

to serve as queries, which provides clearer fore-background
priors than prototypical agents [Fl

a;B
l
a]. Formally,

Fl
x = M-CA(Fl

z,E
l
x,M

l
x),

Bl
x = M-CA(Bl

z,E
l
x,M

l

x).
(5)

Finally, we obtain template FB-agents [Fl
z;B

l
z], and search

region FB-agents [Fl
x;B

l
x] at the lth block.

3.3. Distribution-aware Attention Module

After obtaining template FB-agents [Fl
z;B

l
z] and search

region FB-agents [Fl
x;B

l
x], we begin to model the fore-

background distribution for each image token. Specifically,
given token features [Hl−1

z ;Hl−1
x ], the initial query, key and

value arise from these token features. Formally,

Q̃l
zx = [Q̃l

z; Q̃
l
x] = LN([Hl−1

z ;Hl−1
x ])Wl

Q,

K̃l
zx = [K̃l

z; K̃
l
x] = LN([Hl−1

z ;Hl−1
x ])Wl

K ,

Vl
zx = [Vl

z;V
l
x] = LN([Hl−1

z ;Hl−1
x ])Wl

V ,

(6)

where LN denotes the layer normalization, Wl
K ∈

RC×C ,Wl
Q ∈ RC×C ,Wl

V ∈ RC×C are linear projec-
tions. As can be seen, existing plain attention mecha-
nism [14] generate queries and keys simply based on ap-
pearance features, which will easily have incorrect high at-
tention score for regions with similar distractors. Differ-
ently, we use the fore-background distribution to serve as
queries and keys instead of appearance features. To this
end, we first project [Fl

z;B
l
z] and [Fl

x;B
l
x] into C dimen-

sions. By calculating the similarity between each token
and these fore-background agents, we can model the fore-
background distribution of this token. Here, we take the

fore-background distribution of initial query token as up-
dated queries Ql

zx = [Ql
z;Q

l
x]. Formally,

Ql
z = Q̃l

z[F
l
zW

l
z;B

l
zW

l
z]

⊤,

Ql
x = Q̃l

x[F
l
xW

l
x;B

l
xW

l
x]

⊤,
(7)

where Wl
z,W

l
x ∈ RCe×C are linear projections. Similarly,

we can obtain updated keys Kl
zx = [Kl

z;K
l
x].

Kl
z = K̃l

z[F
l
zW

l
z;B

l
zW

l
z]

⊤,

Kl
x = K̃l

x[F
l
xW

l
x;B

l
xW

l
x]

⊤.
(8)

With updated queries and keys, the proposed distribution-
aware attention module can achieve fore-background aware
feature interaction. The output of the lth transformer blocks
Hl

zx can be formulated as follows,

H̃l
zx = Softmax(

Ql
zx(K

l
zx)

⊤
√
C

)Vl
zx +Hl−1

zx

Hl
zx = [Hl

z;H
l
x] = MLP(LN(H̃l

zx)) + H̃l
zx,

(9)

where MLP denotes the multi-layer perception. The out-
put token features Hl

zx will be sent into next transformer
blocks. Eventually, token features are processed L times via
our proposed fore-background distribution modeling trans-
former block, and we can obtain final token features HL

zx.

3.4. Box Prediction Head and Objective Function

As shown in Figure 2, search region token features HL
x

are reshaped and fed into a box prediction head for target
state estimation. Here, the box prediction head is inspired
from OSTrack [62]. We use the weighted focal loss [33] as
classification loss Lcls. Besides, we adopt ℓ1 loss L1 and
generalized IoU loss [48] Lgiou to supervise bounding box
regression. More details about the box prediction head and
losses can be referred to OSTrack [62]. As we introduced
before, there are point loss and box loss for pseudo bbox
generation at each block. In summary, the overall objective
function is formulated as follows.

L = Lcls + λ1L1 + λgiouLgiou + λbox

L∑
l=1

Ll
box, (10)

where λ1, λgiou and λbox are scalars to balance these losses.

4. Experiments

In this section, we first introduce implementation details.
Then, we show experimental results on eight benchmarks.
Finally, we conduct a series of ablation studies to verify the
effectiveness of each component. Please refer to the Sup-
plementary Material for more details and results.
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Table 1. Comparisons with state-of-the-art trackers on GOT-10k, TNL2K, LaSOT, LaSOText, and TrackingNet. The best three results are
shown in red, blue and green fonts.

Method GOT-10k [26] TNL2K [54] LaSOT [17] LaSOText [16] TrackingNet [45]
AO SR0.5 SR0.75 AUC P AUC PNorm P AUC PNorm P AUC PNorm P

SiamFC[2] 34.8 35.3 9.8 29.5 28.6 33.6 42.0 33.9 23.0 31.1 26.9 57.1 66.3 53.3
ECO [11] 31.6 30.9 11.1 32.6 31.7 32.4 33.8 30.1 22.0 25.2 24.0 55.4 61.8 49.2

SiamRPN++ [34] 51.7 61.6 32.5 41.3 41.2 49.6 56.9 49.1 34.0 41.6 39.6 73.3 80.0 69.4
SiamCAR [23] 56.9 67.0 41.5 35.5 38.4 50.7 60.0 51.0 - - - - - -
SiamFC++ [58] 59.5 69.5 47.9 38.6 36.9 54.4 62.3 54.7 - - - 75.4 80.0 70.5

D3S [39] 59.7 67.6 46.2 38.8 39.3 - - - - - - 72.8 76.8 66.4
Ocean [63] 61.1 72.1 47.3 38.4 37.7 56.0 65.1 56.6 - - - - - -

DiMP-50 [3] 61.1 71.7 49.2 44.7 43.4 56.9 65.0 56.7 39.2 47.6 45.1 74.0 80.1 68.7
PrDiMP-50 [13] 63.4 73.8 54.3 47.0 45.9 59.8 68.8 60.8 - - - 75.8 81.6 70.4
KeepTrack[43] - - - - - 67.1 77.2 70.2 48.2 - - - - -
ToMP-101 [42] - - - - - 68.5 79.2 73.5 45.9 - - 81.5 86.4 78.9

KYS [4] 63.6 75.1 51.5 44.9 43.5 55.4 63.3 - - - - 74.0 80.0 68.8
STMTrack [21] 64.2 73.7 57.5 - - 60.6 63.3 69.3 - - - 80.3 85.1 76.7

TransT [7] 67.1 76.8 60.9 50.7 51.7 64.9 69.0 73.8 - - - 81.4 86.7 80.3
STARK-ST101 [59] 68.8 78.1 64.1 - - 67.1 77.0 - - - - 82.0 86.9 -

CSWinTT [50] 69.4 78.9 65.4 - - 66.2 75.2 70.9 - - - 81.9 86.7 79.5
SimTrack-B/16 [5] 68.6 78.9 62.4 54.8 53.8 69.3 78.5 - - - - 82.3 86.5 -
SwinTrack-B [36] 69.4 78.0 64.3 - - 69.6 78.6 74.1 47.6 58.2 54.1 82.5 87.0 80.4

AiATrack [22] 69.6 80.0 63.2 - - 69.0 79.4 73.8 - - - 82.7 87.8 80.4
SBT-L [57] 70.4 80.8 64.7 - - 66.7 77.1 - - - - - - -

MixFormer [10] 70.7 80.0 67.8 - - 69.2 78.7 74.7 - - - 83.1 88.1 81.6
RTS [42] - - - - - 69.7 76.2 73.7 - - - 81.6 86.0 79.4

OSTrack-256 [62] 71.0 80.4 68.2 54.3 - 69.1 78.7 75.2 47.4 57.3 53.3 83.1 87.8 82.0
OSTrack-384 [62] 73.7 83.2 70.8 55.9 - 71.1 81.1 77.6 50.5 61.3 57.6 83.9 88.5 83.2
F-BDMTrack-256 72.7 82.0 69.9 56.4 56.5 69.9 79.4 75.8 47.9 57.9 54.0 83.7 88.3 82.6
F-BDMTrack-384 75.4 84.3 72.9 57.8 59.4 72.0 81.5 77.7 50.8 61.3 57.8 84.5 89.0 84.0

4.1. Implementation Details

Network details. We present two variants of our tracker,
F-BDMTrack-256 and F-BDMTrack-384. Similar to OS-
Track [62], we crop the template image and search region
image which are 22 and 42 times of the target box area re-
spectively. The F-BDMTrack-256 resizes search region to
a resolution of 256 × 256 and template to a resolution of
128×128 as input. The F-BDMTrack-384 resizes search re-
gion to a resolution of 384×384 and template to 192×192.
These images are split into a set of patches, where the res-
olution of each patch is 16 × 16. These patches are flat-
tened and projected into C = 768 channels to serve as the
input of F-BDMTrack. The channel of El

z in the FBAL
module is set to Ce = 256. We leverage the Precise RoI
Pooling [28] operation to crop features according to the tar-
get bounding box, and obtain the target feature with shape
(ht, wt) = (4, 4). The number of foreground agents and
background agents are both set to Na = 4. And our F-
BDMTrack consists of L = 12 fore-background distribu-
tion modeling transformer blocks.

Training details. We train our model on the training
splits of LaSOT [17], GOT-10K [26], COCO2017 [37], and
TrackingNet [45], which is a similar training setting to OS-
Track [62]. Common data augmentations including hori-
zontal flip and brightness jittering are applied in the training

process. We train our F-BDMTrack by the AdamW opti-
mizer with the weight decay 10−4. The learning rates start
from 4×10−5 for the backbone including the FBAL module
and the DA2 module, and 4 × 10−4 for the box prediction
head. Our model is trained on four NVIDIA RTX 3090
GPUs, each GPU holds 32 image pairs, resulting in a to-
tal batch size of 128. The total epochs are set to 300 with
60k samples per epoch and we decrease the learning rate
by a factor of 10 after 240 epochs. The weights of training
losses are set to λ1 = 5.0, λgiou = 2.0, and λbox = 1.0.

4.2. Results and State-of-the-art Comparisons

GOT-10k. GOT-10k [26] is a large-scale dataset containing
over 10k videos for training and 180 for testing. It forbids
trackers to use external datasets for training. We follow its
policy and retrain our model. The results are reported in
Table 1. Our tracker has a satisfactory improvement in all
metrics. Specifically, F-BDMTrack-256 improves by 1.7%
in success rate (SR0.75) compared with OSTrack-256. And
F-BDMTrack-384 gives an improved new record 75.4% in
AO, indicating the effectiveness of foreground and back-
ground distribution modeling to extract discriminative fea-
tures, resulting in more accurate state estimation.
TNL2K. TNL2K [54] is a recently published dataset con-
taining 700 video sequences for testing. In Table 1, F-
BDMTrack-256 gains by 2.1% AUC over OTrack-256 and
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Table 2. Comparisons with state-of-the-art trackers on NFS, OTB100 and UAV123 datasets in terms of overall AUC score. The best three
results are shown in red, blue and green fonts.

SiamFC [2] Ocean [63] ATOM [12] DiMP-50 [3] PrDiMP-50 [13] TransT [7] OSTrack-256 [62] OSTrack-384 [62] F-BDMTrack-256 F-BDMTrack-384
NFS [30] 37.7 49.4 58.3 61.8 63.5 65.3 64.7 66.5 66.0 67.3

OTB100 [56] 61.2 68.4 66.3 68.4 69.6 69.4 68.1 69.2 69.5 69.9
UAV123 [44] 46.8 57.4 63.2 64.3 68.0 68.1 68.3 70.7 69.0 70.9

Figure 3. Visualizations of fore-background agent activation maps
for the template and search region.

Table 3. Effectiveness of each component on the LaSOT
Model FBAL DA2 AUC PNorm P

[A] ✗ ✗ 68.5 77.8 74.2
[B] ✓ ✗ 68.8 78.1 74.6
[C] ✗ ✓ 69.4 78.7 75.4
[D] ✓ ✓ 69.9 79.4 75.8

even performances better than larger models (OTrack-384).
When also leveraging a large model (F-BDMTrack-384),
we can further improve the AUC score to 57.8%.
LaSOT. LaSOT [17] is a densely annotated large-scale
dataset containing a total of 1400 long-term video se-
quences, of which the test set contains 280 video se-
quences. This is a challenging tracking dataset. As shown
in Table 1, F-BDMTrack-256 outperforms OSTrack-256 by
0.8% AUC. Further, F-BDMTrack-384 achieves the best
performance of 72.0% AUC. Our tracker does not add addi-
tional timing strategies [22, 10, 59] in this long-term track-
ing task, but can still obtain performance improvement with
the aid of fore-background distribution modeling design,
which demonstrates that our approach can fundamentally
mitigate complex scenarios and distractors.
LaSOText. The recent LaSOText [16] is an extended subset
of LaSOT, containing 150 additional new sequences. This
dataset has many similar distractors, making it difficult for
tracking. And our F-BDMTrack can achieve competitive
or even better performance. In specific, F-BDMTrack-256
achieves superior results, outperforming OSTrack-256 by
0.5% AUC. And F-BDMTrack-356 obtains a much higher
performance with 50.8% AUC.
Trackingnet. Trackingnet [45] provides over 30k video se-
quences, which are sampled from Youtube to cover target
categories and scenes of real-world. It provides 511 test-
ing video sequences without publicly available annotation,

Figure 4. Visualization of pseudo bboxes using the pseudo-bbox
generation strategy at all blocks.

so results reported in Table 1 are obtained from the online
evaluation server. As can be seen, our F-BDMTrack-384
achieves 84.5% AUC and sets a new state of the art.
NFS. Videos in Need for Speed(NFS) [30] are captured
from a high frame rate camera, which contains fast mo-
tions and distractors. We report results on its commonly
used version NFS30. As shown in Table 2, F-BDMTrack-
256 achieves 66.0% AUC, outperforming OSTrack-256 by
1.3%. And F-BDMTrack-384 achieves best results (67.3%
AUC score) as expected, demonstrating the superior com-
petitiveness of our tracker in the presence of interferer-
challenged benchmark.
OTB100. OTB [56] is a pioneering visual tracking bench-
mark. It has been noticed that this benchmark is approach-
ing saturation [53, 59, 43]. In Table 2, two versions of our
tracker both achieve promising AUC scores (69.5 and 69.9).
UAV123. UAV123 [44] provides 123 unmanned aerial vehi-
cle(UAV) sequences, including different scale sizes of UAV
in real-world dynamic scenarios. As shown in Table 2, our
tracker achieves the best AUC score (70.9%) and is suitable
for UAV tracking scenarios.

4.3. Ablation Study

To validate the effectiveness of each component, we per-
form a detailed ablation study on LaSOT [17]. The follow-
ing experiments use F-BDMTrack-256 as the base model.
Effectiveness of key components in our F-BDMTrack.
Our tracker consists of two key components, including
a fore-background agent learning (FBAL) module and a
distribution-aware attention (DA2) module. Here, we ex-
plore the exact impact of these modules. The model [A]
is the baseline, which means that we directly use plain at-
tention mechanism without using the FBAL and the DA2

module. For the model [B], we add the FBAL module, and

10123



Table 4. Effects with different numbers of prototypical FB-agents.
Na AUC PNorm P
1 69.3 78.8 75.5
2 69.6 79.1 75.6
4 69.9 79.4 75.8
8 69.3 78.9 75.2
16 69.0 78.6 75.1

Table 5. Effects of the pseudo bbox generation at different blocks.
blocks AUC PNorm P
None 69.0 78.5 75.0
10-12 69.5 79.1 75.5
6-12 69.9 79.4 75.8
4-12 69.8 79.2 75.8
1-12 69.2 78.7 75.2

adopt plain attention mechanism to replace our designed
DA2 module. The plain attention mechanism does not re-
quire fore-background agents (FB-agents) produced by our
FBAL module. Thus, the model [B] is used to validate the
impacts of pseudo bbox generation loss Ll

box introduced in
the FBAL module. As shown in Table 3, the performance
of model [B] gains by 0.3% compared to the model [A],
demonstrating that the pseudo bbox loss has some positive
effects to constrain foreground features interact with fea-
tures in foreground regions. For the model [C], we adopt
the DA2 module for feature interaction, and FB-agents are
obtained by pooling features within or outside the bound-
ing box for the template and search region. As can be seen,
the performance of model [C] gains by 0.9% compared to
the model [A], which demonstrates that the proposed DA2

module can significantly help learn discriminative features
even if FB-agents are not good enough. When adding the
FBAL module for better FB-agents generation, the perfor-
mance of model [D] gains by 0.5% compared to the model
[C], showing the superiority of proposed FBAL module.
Study on the number of prototypical FB-agents in the
FBAL module. Here, we explore the effects about different
numbers of prototypical FB-agents. As shown in Table 4,
our tracker achieves the optimal result (69.9% AUC score)
when Na = 4. A small number of prototypical FB-agents
cannot fully model the fore-background distribution, lead-
ing to decreased performance. Meanwhile, more prototypi-
cal FB-agents will introduce useless noise, which is harmful
for feature interaction. Besides, without explicit constraints
to guide foreground and background agent learning, an ex-
cessive number of agents are unable to focus on their re-
spective discriminative information better. A more effective
FB-agent learning way can be explored in future work. Fi-
nally, we show the fore-background agent activation maps
for the template and search region in Figure 3. It can be
seen that these FB-agents generated by our FBAL module
can focus on the foreground and background well.
Study on the pseudo bbox generation strategy at differ-

Figure 5. Response maps of the template central feature to all
search region features. It can be seen that although the template
target has similar appearance with the background distractor in the
search region, their fore-background distributions are different.

ent blocks. High-quality pseudo bbox is more conducive
to the FB-agent learning for the search region. However,
as shown in Figure 4, the pseudo-bboxs in shallow blocks
tend to have a large bias, which is harmful to learn effec-
tive FB-agents. We conduct a detailed experiment to find
which blocks are optimal for using pseudo bbox generation
strategy. As shown in Table 5, our tracker achieves the best
results when we leverage the pseudo bbox generation strat-
egy at the 6th to 12th (‘6-12’) transformer blocks. This is
because the last few blocks provide more reliable pseudo
bbox to guide fore-background agent learning.
Comparisons between the plain attention mechanism
and our DA2 mechanism. Here, we visualize response
maps of the plain attention mechanism and our DA2 mech-
anism in Figure 5. As we can see, the plain attention mech-
anism easily focus on complex backgrounds or distractors.
This is because attention scores are obtained based on ap-
pearance similarities, while targets usually have similar ap-
pearance with distractors, resulting in incorrect response
map. Differently, our proposed DA2 mechanism discrimi-
nates features from the perspective of fore-background dis-
tributions instead of appearance similarities, which can ef-
fectively suppress the response of the template to back-
ground distractors in the search region, and strengthen the
response of the template to the foreground target in the
search region. Finally, based on the proposed distribution-
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aware attention mechanism, our tracker can achieve supe-
rior performance on all eight tracking benchmarks.

5. Conclusion

In this work, we propose a novel foreground-background
distribution modeling transformer for visual tracking, in-
cluding a FBAL module and a DA2 module. With these two
elegant designs, our proposed tracker can extract features
with high target discriminative power under ever-changing
tracking scenarios, which is essential for accurate target
state estimation. Extensive experiments on eight tracking
benchmarks verify the superiority of our proposed tracker.
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