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Abstract

Monocular depth estimation is an ill-posed problem as
the same 2D image can be projected from infinite 3D scenes.
Although the leading algorithms in this field have reported
significant improvement, they are essentially geared to the
particular compound of pictorial observations and camera
parameters (i.e., intrinsics and extrinsics), strongly limit-
ing their generalizability in real-world scenarios. To cope
with this challenge, this paper proposes a novel ground
embedding module to decouple camera parameters from
pictorial cues, thus promoting the generalization capabil-
ity. Given camera parameters, the proposed module gener-
ates the ground depth, which is stacked with the input im-
age and referenced in the final depth prediction. A ground
attention is designed in the module to optimally combine
ground depth with residual depth. Our ground embedding
is highly flexible and lightweight, leading to a plug-in mod-
ule that is amenable to be integrated into various depth es-
timation networks. Experiments reveal that our approach
achieves the state-of-the-art results on popular benchmarks,
and more importantly, renders significant generalization
improvement on a wide range of cross-domain tests.

1. Introduction
Accurate depth acquisition is crucial for many robotics

applications [23, 24, 30, 32] as depth provides pivotal infor-
mation for onboard tasks ranging from perception [17], pre-
diction [31] to planning [18]. Although range sensors (e.g.,
LiDAR) are widely used to produce precise depth mea-
surements, there has been fast growing attention to cam-
era based depth estimation from both academia and indus-
try due to its portability and cost-effectiveness [3, 5, 6, 35].
A typical monocular depth estimation network adopts an
encoder-decoder architecture, which can be trained in a su-
pervised [5, 6] or self-supervised manner [9, 25, 36]. Most
of the existing works in this field focus on designing more
advanced network architectures [3, 20] or engineering more
effective loss functions [6, 22]. Another line of research es-
timates depth by exploiting stereo imagery [2, 14], which
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Figure 1. Illustration of the ground depth produced by our ground
embedding. Due to different camera parameters, (a) and (b) show
one object with the same scale and depth is mapped to different
images, while (b) and (c) show objects with different scales and
depths generate the same image. In each case, the ground depth
encodes the corresponding camera parameters and can be used to
resolve the ill-posed problem in monocular depth estimation.

however requires multiple calibrated cameras and is rela-
tively more expensive and complicated. Compared with its
stereo counterpart, the monocular depth estimation hinging
on single cameras is more amenable for real-world deploy-
ment such as autonomous driving [19, 26].

However, monocular depth estimation is inherently ill-
posed or ambiguous. According to the classic pinhole cam-
era model, an image captured by a camera is determined
by the camera parameters (i.e., intrinsics and extrinsics),
object scale, and object depth with respect to the camera
optical center. Therefore, objects with different scales and
depths captured by a camera could generate the same im-
age; on the contrary, one object with the same depth cap-
tured by cameras with different intrinsics and or extrinsics
could generate different images. As a result, one image may
correspond to multiple plausible depths, and one depth can
be mapped to various images, as illustrated in Figure 1. Re-
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cently, most supervised methods resort to CNNs or Trans-
formers to directly learn the absolute depth based on a sin-
gle image from numerous labeled data [3, 6, 16, 20, 35]. Al-
though these methods have achieved remarkable progress,
they are essentially tailored toward the specific compound
of pictorial cues (e.g., object scale, light and shade, and tex-
ture gradient) and camera parameters on the particular train-
ing data, which strongly limits their generalization capabil-
ity. In addition, very few works have provided an in-depth
investigation into what these networks have learned to con-
duct monocular depth estimation, further undermining the
guarantee of correct behaviors of these networks in cross-
domain or unexpected scenarios. By inspecting synthetic
images, [4] shows that the ground contact point of an object
is primarily used to estimate its depth. Another work [13]
finds that the region around vanishing point of a scene con-
tributes to the vital cues for depth estimation.

In light of the above observations, we develop a ground
embedding module for monocular depth estimation, which
we term GEDepth. It is a plug-in module that is lightweight
and flexible to be incorporated into various depth estima-
tion networks. As illustrated in Figure 2, given camera pa-
rameters, the module first computes ground depth, which is
then fused with an input image to produce ground depth-
aware features. Based on such features, the network gener-
ates residual depth and ground attention map, and the latter
selectively combines the former with the ground depth to
form final depth prediction. Although starting from planar
ground to formulate ground embedding, our module is not
constrained to this assumption, but is practically designed to
be adaptive to handle ground undulation in real-world sce-
narios. Our approach decouples camera parameters from
pictorial cues, thus improving the generalizability of depth
estimation. This design also leads to an explicit utilization
of ground, which reinforces the key information used for
depth estimation as investigated in [4, 13]: (1) the ground
depth together with the ground attention map facilitates the
learning of ground contact points; (2) the vanishing line (ex-
pressed in ground depth) coupled with the ground attention
map locate the region around vanishing point readily.

We summarize our main contributions as follows. (1) To
our knowledge, this work provides the first plug and play
module through ground embedding, which is able to assist
various depth estimation networks in decoupling camera pa-
rameters from pictorial cues, and remarkably enhances their
generalizability. (2) Our proposed module breaks the pla-
nar ground assumption and is capable of tackling ground
undulation in realistic scenes. (3) Extensive experiments
demonstrate that our approach compares favorably against
the competing algorithms, and meanwhile, achieves more
robust performance on a variety of cross-domain evalu-
ations. Our code and model will be made available at
https://github.com/qcraftai/gedepth.

2. Related Work

Monocular Depth Estimation. As the pioneer work, Eigen
et al. first adopt two networks to regress depth from coarse
to fine in [5], where a scale-invariant loss is developed to
mitigate the scale ambiguity problem. A minimum repro-
jection loss together with an auto-masking loss [9] are intro-
duced to handle occlusions and ignore outlier pixels. Laina
et al. [15] propose a reverse Huber loss by switching the
penalty from ℓ1 to ℓ2 along with the increase of error. In [6],
the depth regression objective is argued to be slow in con-
vergence and easy to be trapped in a sub-optimal solution,
instead, the task is modeled as an ordinal regression prob-
lem with a novel ordinal loss considering the order infor-
mation between discrete depths. This method is further im-
proved in [3] via predicting the depth range of a scene into
adaptive discrete bins with Transformers. Benefiting from
the strong ability of learning long-range correlations, Trans-
formers blocks have recently been incorporated either in the
encoder [20] to model the relation of distant structures, or in
the decoder [21] skipping the connection part [1] to better
fuse the features from multiple layers.

However, these works primarily focus on designing more
effective loss functions or exploiting more sophisticated ar-
chitectures. Few of them has considered the impact of cam-
era parameters in monocular depth estimation. GEDepth is
orthogonal to the existing methods and can be applied as a
plug-in module with these methods to further improve upon
the current research achievements.

Geometric Priori. 3D geometry has been widely used in
monocular depth estimation. For the unsupervised learn-
ing branch, the multi-view geometry is used to warp im-
ages from source view to target view to form a reconstruc-
tion loss to enforce consistency between views [9, 36]. In
addition to the photometric consistency, [12, 25] impose
the geometric consistency between the point clouds gener-
ated from image depths with different camera poses. An-
other commonly used geometric priori is the normal con-
straint [22, 28], which enforces the consistency of normal
vectors derived from the estimated and ground-truth depth.
A local planar assumption is proposed in [16] using the
multi-scale local planar guidance layers to construct a di-
rect relation from internal features to predicted depth. Re-
cent works [33, 34] employ the planar parallax geometry,
which divides the correspondence between consecutive im-
ages into planar homography and residual parallax, making
the reconstruction more accurate and stable.

Unlike the geometric cues applied in previous methods,
we directly and explicitly make use of ground to provide
the reference for more accurate and generalizable depth es-
timation. Beyond the ideal planar ground assumption, our
approach is also designed to be able to adaptively process
the undulated ground in realistic scenes.
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Figure 2. A schematic overview of the proposed ground embedding module integrated in a typical depth estimation network. Given camera
parameters, we compute the ground depth and stack it with the input image to produce the ground depth-aware features through the encoder.
A ground attention block is developed to selectively combine the ground depth and the residual depth (i.e., the direct output of the decoder)
to form the final depth prediction. In the vanilla mode, the computation of planar ground depth involves camera parameters only, while in
the adaptive mode, a ground slope block is additionally used to deal with the undulated ground.

3. Ground Embedding
In this section, we start from introducing the formulation

of ground depth given camera parameters. Based on this,
we then present the two designs of ground embedding—
the proposed plug-in module—from the ideal planar ground
(vanilla) to the realistic undulated ground (adaptive).

3.1. Formulation of Ground Depth

Although monocular depth estimation is ill-posed by na-
ture, for some specific areas, depth is deterministic given
the camera parameters. In particular, if the height of a pla-
nar ground with respect to the world coordinate system is
known (mostly can be read off from camera extrinsics), we
can calculate the accurate depth of ground area in a closed-
form solution. Unlike indoor scenes, there exists a ground
region in nearly every image captured in self-driving scenes.
This motivates us to take advantage of the ground depth
as an accurate reference and a strong priori to alleviate the
ambiguous problem, and eventually improve upon various
depth estimation networks in autonomous driving.

We denote the camera intrinsics as K ∈ R3×3, and the
camera extrinsics as rotation matrix R ∈ R3×3 and trans-
lation vector T ∈ R3×1. Derived from the pinhole camera
model, the transformation between a point (xw, yw, zw) in
the world coordinate system and its projection (u, v) in the
pixel coordinate system can be described as:

zc

uv
1

 =
[
K 0

] [R T
0T 1

]
xw

yw
zw
1

 , (1)

where zc is the depth of pixel (u, v) in the camera coordi-
nate system. We then rewrite (1) as:xw

yw
zw

 = R−1(K−1

uv
1

 zc − T ). (2)

We now represent the ray shooting from the camera optical
center through each pixel as r(u, v, zc). For notation sim-
plicity, we denote R−1K−1 as the matrix A = (aij) ∈
R3×3, and R−1(−T ) as the vector B = (bi) ∈ R3×1.
Thus, the parametric equation of the ray can be defined as:

r(u, v, zc) :


xw = (a11u+ a12v + a13)zc + b1

yw = (a21u+ a22v + a23)zc + b2

zw = (a31u+ a32v + a33)zc + b3

(3)

Moreover, the planar ground with height h can be described
by a plane, which is determined by the point (0, h, 0) in the
plane and the normal vector −→n = (0, 1, 0):

yw = h. (4)

As shown in Figure 3, the ground depth can be formulated
by calculating the depth of the intersection point between
each ray and the plane. By combining (3) and (4), we obtain
the ground depth of pixel (u, v) as:

zc =
h− b2

a21u+ a22v + a23
. (5)

Note we assign zc = 0 to those pixels (i.e., vanishing line
and above), through which the rays do not intersect with the
plane. Figure 4 shows the ground depth examples in KITTI.
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Figure 3. Illustration of different formulations of ground depth cor-
responding to one pixel in vanilla and adaptive modules. In the for-
mer, the depth z1c is obtained by calculating the intersection point
p1 between the ray and planar ground. In the latter, the depth z2c is
derived based on the ground slope α formed by the projection of
connection line op2 on the y-z plane and planar ground.

3.2. GEDepth-Vanilla

As shown in Figure 2, the ground depth is first concate-
nated with a raw image to compose the input with ground
depth priori. The encoder and decoder constitute the main
body of the network, which can be instantiated by an ex-
isting depth estimation model with an architecture of either
CNNs or Transformers. However, the ground depth priori
is valid for the ground area only, but inaccurate for other
non-ground regions. We therefore introduce the ground at-
tention map Matten, which is simply generated by a few con-
volutional layers based on the ground depth-aware features
produced by the encoder. Each pixel in Matten represents
the probability of that pixel belonging to the ground area.
The ground attention map is then used to weighted combine
the ground depth and its complementary counterpart that is
the residual depth produced by the decoder to form the final
depth prediction.

It is noteworthy that the ground attention map is totally
learned implicitly without using extra supervision provided
from additional models such as ground segmentation. In-
stead, the whole network including the proposed module is
trained by the original depth loss only, and it is found that
the implicitly learned attention map can well separate the
ground and other regions, as shown in Figure 5.

3.3. GEDepth-Adaptive

As aforementioned, the ground depth is valid for the pla-
nar ground area. However, in real-world driving scenarios,
the undulated ground is not unusual, in particular in urban
scenes where uphill and downhill roads are common, break-
ing the ideal planar ground assumption. To make the ground
depth fulfill the real environment as closely as possible, we
extend the proposed vanilla module to be adaptive to deal
with the ground undulation.

As illustrated in Figure 3, we denote point o as the pro-
jection of camera optical center to the ideal planar ground,
and then connect o with every surface point. For each image

Figure 4. Top demonstrates the ground depth calculated from cam-
era parameters (the dark region above the vanishing line indicates
infinite depth). Bottom visualizes the pixels of which ground depth
values are sufficiently close (i.e., relative error < 3%) to the sparse
ground-truth values provided by LiDAR in KITTI.

pixel (u, v) corresponding to the surface point of undulated
ground, we define its ground slope as the angle α between
the ideal planar ground and the projection of connection line
on the y-z plane. We can extend the ground description from
the planar in (4) to the undulated as:

yw = tan(α)zc + h, (6)

where zc is the depth of pixel (u, v) and h is the height
of planar ground, as defined in Section 3.1. Similarly, by
combining (3) and (6), we get the undulated ground depth:

zc =
b2 − h

tan(α)− (a21u+ a22v + a23)
, (7)

where only the ground slope value α is unknown. To obtain
the value of α, we introduce the ground slope map Mslope,
which is also generated based on the ground depth-aware
features, as shown in Figure 2. Here we pre-define a set
of N discrete angles: {τi ∈ [−π

6 ,
π
6 ] | i = 1, ..., N} in

accordance with the slope statistics in training data. Each
pixel in the map represents the approximated ground slope,
which is computed by softly combining the pre-defined an-
gles with the predicted probability distribution {pi ∈ [0, 1] |∑N

i=1 pi = 1} over the N classes or angles:

α̂ =

N∑
i=1

piτi. (8)

We finally substitute α in (7) with its estimated α̂ in (8) to
calculate the undulated ground depth. In practice, by lever-
aging the available ground-truth depth of sparse ground sur-
face points, we can transform (7) to the following equation
to provide the sparse supervision of ground slope in order
to facilitate the ground slope map learning:

α = arctan

(
b2 − h

zc
+ a21u+ a22v + a23

)
. (9)
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Figure 5. Visualization of the ground attention maps and the ground slope maps of two scenes in the test set of KITTI.

3.4. Optimization

GEDepth is a simple plug and play module that can be
integrated into an existing depth estimation network with
minimum change of the original model. We train the whole
network to optimize the following total objective:

Ltotal = Lreg(z, ẑ) + 1λclsLcls(α, α̂), (10)

where Lreg is the depth regression loss used in the original
network and Lcls is the classification loss in ground slope
learning, z and ẑ denote the ground-truth and predicted
depth, and the ground slope α and α̂ are defined similarly.
λcls is the classification loss weight, and 1 indicates if the
applied module is GEDepth-Adaptive (in other words, the
total objective involves the original regression loss only for
GEDepth-Vanilla).

4. Experiments
In this section, we first introduce the experimental setup

including datasets, metrics and implementation details. We
then report extensive comparisons with the state-of-the-art
methods on the popular benchmarks. A variety of gener-
alization and ablation studies are finally conducted for the
in-depth understanding of the proposed approach.

4.1. Experimental Setup

Datasets. We extensively evaluate our approach on the two
depth estimation datasets: KITTI [8] and Dense Depth for
Autonomous Driving (DDAD) [11]. KITTI is used as the
de facto benchmark for depth evaluation. We follow the
standard Eigen split [5] that consists of 23,158 images for
training and 697 for test. We use the crop defined in [7] and
upsample predicted depth to the ground-truth resolution for
evaluation. DDAD is a more challenging benchmark with
rich geographic diversity, multiple camera views, and long
prediction range. It contains 150 scenes (12,650 images per
camera) for training and 50 scenes (3,950 images per cam-
era) for test. We follow the same protocol as defined in [10]

to use the four camera views including forward, backward,
left forward, and right forward.
Metrics. We follow previous works and adopt a series of
evaluation metrics widely used in the community, including
absolute relative distance (Abs Rel), squared relative dis-
tance (Sq Rel), root mean squared error (RMSE), root mean
squared error in log space (RMSE-log), and scale-invariant
logarithmic error (SILog). However, it is argued in [27] that
the traditional depth estimation metrics mainly consider 2D
global pixel-wise error but lack of 3D structural awareness.
Therefore, we additionally report a set of metrics recently
proposed in [27] that are well suited to evaluate 3D geome-
try, including 3D point cloud F-score (F-score) and 3D point
cloud intersection over union (IoU).
Implementation Details. In order to thoroughly evaluate
GEDepth, we plug the module into four representative net-
works including DepthFormer [20], PixelFormer [1], Bins-
Former [21] and BTS [16], which represent the state-of-
the-art depth estimation models in both Transformers and
CNNs. We implement our approach based on their open-
sourced codebases. We train each network on 8 NVIDIA
V100 GPUs and follow the original training configuration
(such as batch size, learning rate, training epochs, opti-
mizer, etc.) of each corresponding algorithm (see more de-
tails in the supplementary material). We set λcls = 0.1 in
(10), and h = 1.65 and 0 for KITTI and DDAD respectively
according to their defined ground heights. In line with the
ground slope distribution in training data, we use 11 discrete
angles evenly distributed in [−5, 5].

4.2. Comparison with State-of-the-Art Results

KITTI. We extensively compare our approach with a vari-
ety of the state-of-the-art methods in Table 1. As we can
see, the performance of leading algorithms tends to satu-
rate, e.g., Abs Rel of several methods has reached a plateau
around 0.052. By equipped with GEDepth, the results of a
broad range of representative methods are clearly improved,
indicating that our approach is applicable to various depth
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE-log ↓ SILog ↓ F-score ↑ IoU ↑
Eigen [5] 0.190 1.515 7.156 0.270 - - -
DORN [6] 0.072 0.307 2.727 0.120 - - -
DPT [29] 0.062 0.222 2.575 0.092 - - -
AdaBins [3] 0.058 0.190 2.360 0.088 - - -
NeW CRFs [35] 0.052 0.155 2.129 0.079 - - -
BTS [16] 0.060 0.213 2.537 0.094 8.368 0.472 0.318
BTS (GE-Vanilla) 0.058 0.196 2.420 0.090 8.170 0.485 0.329
BTS (GE-Adaptive) 0.056 0.193 2.401 0.089 8.087 0.487 0.331
DepthFormer [20] 0.052 0.156 2.133 0.079 7.210 0.493 0.336
DepthFormer (GE-Vanilla) 0.049 0.144 2.063 0.077 6.983 0.507 0.349
DepthFormer (GE-Adaptive) 0.048 0.142 2.050 0.076 6.982 0.515 0.356
PixelFormer [1] 0.051 0.149 2.081 0.077 7.061 0.496 0.340
PixelFormer (GE-Vanilla) 0.050 0.145 2.071 0.077 7.059 0.496 0.340
PixelFormer (GE-Adaptive) 0.049 0.143 2.054 0.076 6.991 0.507 0.349
BinsFormer [21] 0.052 0.151 2.098 0.079 7.266 0.488 0.333
BinsFormer (GE-Vanilla) 0.051 0.146 2.080 0.078 7.101 0.491 0.335
BinsFormer (GE-Adaptive) 0.050 0.143 2.052 0.077 7.084 0.502 0.344

Table 1. Comparison of GEDepth (in both vanilla and adaptive modes) and the state-of-the-art methods on KITTI. Groups 2-5 correspond
to the four representative methods integrated with the proposed ground embedding modules.

Figure 6. Visualization of the side view of the ground depth unprojected to 3D in the uphill and downhill scenarios in KITTI. In each
scene, the red and blue points respectively denote the ground depth computed by GEDepth-Vanilla and GEDepth-Adaptive, and the green
points correspond to the ground-truth point clouds scanned by LiDAR.

estimation networks. In addition, the improvement by adap-
tive module is overall more significant than that of vanilla
module, which validates our design of modeling ground un-
dulation. We further show the ground attention maps in Fig-
ure 5. Although the maps are implicitly learned without
any direct supervision, they segregate the ground regions
reasonably well, thus providing a solid foundation for the
combination of ground depth and residual depth. In this fig-
ure, we also visualize the paired ground slope maps, which
deliver the plausible descriptions of ground undulation. As
demonstrated in Figure 6, we unproject the ground depth
calculated by vanilla and adaptive modules to 3D, where the
latter is found to be more effective in fitting the real ground
points (captured by LiDAR). This evidently exhibits the ef-
fectiveness of the proposed undulated ground modeling in
the adaptive module.
DDAD. We also evaluate on this multi-view dataset where
four camera views are simultaneously considered. As com-
pared in Table 2, GEDepth is superior to each counterpart
method and again achieves consistent improvement over all
metrics. This verifies that our approach is applicable to
not only different networks but also different datasets. Fur-
thermore, larger improvement is observed on DDAD than
KITTI, which shows the strong potential of our module in
tackling more challenging scenarios.

4.3. Generalization Study

Generalization on Distances. We first evaluate the gen-
eralization effect of depth estimation by our approach in
different distances. We use DepthFormer and BTS as two
representative methods based on Transformers and CNNs,
respectively. Figure 7 compares the relative improvements
over the two methods under different distance intervals
on KITTI. It is observed that as the distance increases,
GEDepth-Vanilla and GEDepth-Adaptive both provide no-
table performance gains. As for the farther distances (e.g.,
> 60m), the improvement by adaptive module is more sig-
nificant due to a higher chance to encounter ground undu-
lation in the distant areas. This comparison indicates that
our approach improves the generalization in the whole dis-
tances, especially for the long range.

Generalization on Resolutions. Here we study how the
proposed ground embedding module impacts the general-
ization of depth estimation with respect to different input
image resolutions (i.e., change of intrinsics). As compared
in Figure 8, DepthFormer and BTS are both severely sen-
sitive to the change in image resolution. In the contrary,
GEDepth-Adaptive makes the two methods substantially
more resistant to the resolution change. This clearly demon-
strates the efficacy of our approach in decoupling camera
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE-log ↓ SILog ↓ F-score ↑ IoU ↑
PackNet-SAN [10] 0.187 2.776 11.936 0.276 - - -
BTS [16] 0.162 2.492 11.466 0.259 24.314 0.636 0.478
BTS (GE-Vanilla) 0.158 2.377 11.219 0.253 23.863 0.636 0.479
BTS (GE-Adaptive) 0.156 2.360 11.186 0.253 23.761 0.642 0.485
DepthFormer [20] 0.152 2.230 11.051 0.246 22.629 0.649 0.493
DepthFormer (GE-Vanilla) 0.149 2.121 10.790 0.240 22.437 0.650 0.493
DepthFormer (GE-Adaptive) 0.145 2.119 10.596 0.237 22.190 0.656 0.500
PixelFormer [1] 0.151 2.140 10.920 0.242 22.311 0.659 0.502
PixelFormer (GE–Vanilla) 0.148 2.123 10.848 0.241 22.272 0.660 0.504
PixelFormer (GE-Adaptive) 0.145 2.122 10.803 0.241 22.268 0.661 0.505
BinsFormer [21] 0.149 2.142 10.866 0.244 22.513 0.653 0.496
BinsFormer (GE-Vanilla) 0.146 2.109 10.561 0.235 22.252 0.658 0.502
BinsFormer (GE-Adaptive) 0.145 2.101 10.459 0.235 22.060 0.659 0.504

Table 2. Comparison of GEDepth (in both vanilla and adaptive modes) and the state-of-the-art methods on DDAD. Groups 2-5 correspond
to the four representative methods integrated with the proposed ground embedding modules.

Figure 7. Comparison of the relative performance improvement
over DepthFormer and BTS by GEDepth-Vanilla and GEDepth-
Adaptive at different distance intervals on KITTI.

intrinsics as well as the resulting benefit in mitigating the
scale ambiguity problem that is inherent for the original
depth estimation networks.
Generalization on Camera Views. Next we investigate the
enhancement of our proposed module to depth estimation
on different camera views (i.e., change of both intrinsics and
extrinsics). We perform the experiment on the multi-view
dataset DDAD, where a network is trained using the for-
ward view only and then evaluated on the other three views.
As we can see in Figure 9, DepthFormer and BTS are both
tremendously degraded when they are transferred from the
forward to other views. As a contrast, GEDepth-Adaptive
largely improves their view-transferring performance. This
cross-camera test again validates the advantage of decou-
pling camera parameters from pictorial cues by our module
in promoting the generalization capability.
Generalization on Datasets. At last, we probe into the
generalization of our approach across datasets (i.e., change
of both intrinsics and extrinsics as well as data distribu-
tion). As shown in Table 3, we first train the network on
one dataset and then evaluate on the other (without fine-
tuning). Compared with DepthFormer, GEDepth-Adaptive

Figure 8. Comparison of the impact of image resolution change
to DepthFormer and BTS on KITTI. GEDepth-Adaptive enables
the two methods to be significantly more robust to the change.

improves the results by a large margin on either way, reveal-
ing that our ground embedding is also more robust to the
change of data distribution in addition to the change of cam-
era parameters, since the calculated ground depth is able to
provide vital reference in both datasets.

4.4. Ablation Study

Improvement on Different Regions. To better understand
the contribution of our approach, we take advantage of the
ground attention map to partition an image into ground and
non-ground regions, then evaluate the performance of two
regions separately. Table 4 shows that the overall improve-
ment attributes to not only ground but also non-ground re-
gion, and the improvement for the latter is even more no-
table, indicating the merit of explicit modeling of ground to
facilitate depth estimation for non-ground region.
Ground Slope. We also study the influence of range and
binning for ground slope in GEDepth-Adaptive. As shown
in Figure 10, according to the statistics in training data, the
majority of ground slop is within [−5, 5], and very few is
beyond this range. Table 5 shows that GEDepth-Adaptive
is robust to the range and binning in a wide scope. However,
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Figure 9. Comparison of the view-transferring influence (trained
on the forward view and then tested on the left forward, right for-
ward and backward views) for DepthFormer and BTS on DDAD.
GEDepth-Adaptive significantly improves the generalizability on
cross-camera views of the two methods.

Dataset Method Abs Rel ↓ RMSE ↓

K → D
DepthFormer 0.644 17.083
GE-Adaptive 0.261 16.132

D → K
DepthFormer 0.149 4.132
GE-Adaptive 0.104 3.398

Table 3. Comparison of the cross-dataset performance based on
DepthFormer. K → D denotes the networks trained on KITTI and
tested on DDAD, and vice versa. GEDepth-Adaptive brings sig-
nificant generalization enhancement to the method.

Region Method Abs Rel ↓ RMSE ↓

Ground
DepthFormer 0.032 0.431
GE-Adaptive 0.028 0.399

Non-Ground
DepthFormer 0.078 3.225
GE-Adaptive 0.074 3.104

Table 4. Comparison of the ground and non-ground performance
based on DepthFormer. GEDepth-Adaptive improves the method
on both regions, while the non-ground improvement is greater.

reducing the binning or increasing the range does not bring
further improvement. This is because the network cannot
differentiate very subtle slope difference simply from an im-
age, and the samples of steep ground are too rare.
Vanilla and Adaptive. Although the two types of mod-
ules have been compared in Tables 1 and 2, the overall per-
formance on a whole dataset may not fully convey the dis-
tinction between them as the planar ground dominates like
shown in Figure 10. To gain a better understanding, we
perform a further experiment on a subset consisting of ob-
vious sloping scenes from KITTI. As compared in Table 6,
the improvement difference between GEDepth-Vanilla and
GEDepth-Adaptive is considerably amplified, suggesting
the promising potential of the adaptive module in tackling
more challenging scenes with undulated ground.
Inference Latency. We in the end take a closer look into the
impact of our approach to network inference latency, which
is an equally important property for a lightweight plug-in

Figure 10. Distribution of ground slope in training data of KITTI.

Range Binning Abs Rel ↓ RMSE ↓
-5 to 5 0.1 0.049 2.087
-5 to 5 0.5 0.049 2.080
-5 to 5 1.0 0.048 2.050
-5 to 5 2.0 0.049 2.063
-5 to 10 1.0 0.049 2.076
-5 to 20 1.0 0.049 2.068
-5 to 30 1.0 0.049 2.080

Table 5. Comparison of GEDepth-Adaptive (with DepthFormer)
using different ranges and binnings for ground slope on KITTI.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE-log ↓
DepthFormer 0.067 0.180 2.163 0.089
GE-Vanilla 0.064 0.167 2.140 0.086
GE-Adaptive 0.057 0.156 2.100 0.080

Table 6. Comparison of GEDepth-Vanilla and GEDepth-Adaptive
(with DepthFormer) on a subset that is made up of obvious sloping
scenes selected from KITTI.

Method Params Latency ↓ Abs Rel ↓ RMSE ↓
DepthFormer 274M 179ms 0.052 2.143
GE-Vanilla 275M 182ms 0.049 2.063
GE-Adaptive 277M 185ms 0.048 2.050

Table 7. Comparison of network parameters, inference latency, and
estimation accuracy for DepthFormer using GEDepth on KITTI.

module. As can be seen in Table 7, GEDepth remarkably
improves the performance, but with a cost of negligible in-
crease in the network parameters and inference latency.

5. Conclusion
We have presented a simple module GEDepth based on

the proposed ground embedding to decouple camera pa-
rameters and pictorial cues to enhance generalizability for
monocular depth estimation. Beyond the planar ground, our
approach is capable of handling undulated ground. It is a
plug and play module that can be integrated into various
depth estimation networks requiring little effort. GEDepth
achieves the state-of-the-art results on both KITTI and
DDAD, and meanwhile, provides substantial improvement
on the comprehensive cross-domain evaluations.
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